
UNIVERSIDADE FEDERAL DO PAMPA

Luciano Marchezan

PAxSPL: A Generic Framework to Support the Planning of SPL
Reengineering

Alegrete
2020

Luciano Marchezan

PAxSPL: A Generic Framework to Support the Planning of SPL
Reengineering

Master thesis presented as partial require-
ment for obtaining the degree of Masters of
Software Engineering at Universidade Fed-
eral do Pampa.

Supervisor: Prof. PhD. Elder de Macedo Ro-
drigues

Co-supervisor: Prof. PhD. Maicon
Bernardino

Alegrete
2020

Ficha catalográfica elaborada automaticamente com os dados fornecidos
pelo(a) autor(a) através do Módulo de Biblioteca do

Sistema GURI (Gestão Unificada de Recursos Institucionais) .

Marchezan de Paula, Luciano Augusto
 PAxSPL: A Generic Framework to Support the Planning of SPL
Reengineering / Luciano Augusto Marchezan de Paula.
 137 p.

 Dissertação(Mestrado)-- Universidade Federal do Pampa,
MESTRADO EM ENGENHARIA DE SOFTWARE, 2020.
 "Orientação: Elder Rodrigues".

 1. Software reuse. 2. Variability Management. 3. Software
Product Lines. 4. Software Reuse. I. Título.

M317p

Luciano Marchezan

PAxSPL: A Generic Framework to Support the Planning of SPL

Reengineering

Master thesis presented as partial require-

ment for obtaining the degree of Masters of

Software Engineering at Universidade Fed-

eral do Pampa.

Master thesis held and approved in . 1.13. Agosto... of .2020...

Board of examiners:

Advisor

Unipampa

Prof. PhD. Maicon Bernardino
Co-Advisor

Unipampa

Prof. PhD. Wesley Klewerton Guez Assunção
UTFPR

Unipampa

Prof. PhD. Elder de Macedo Rodrigues

Prof. PhD. Fábio Paulo Basso

“I may not have gone where I intended to go,
but I think I have ended up where I needed to be.”

(Douglas Adams)

ABSTRACT

Software Product Line (SPL) is a well-known approach for systematically creating reusable
software assets and customized software products for a specific domain or market segment.
Among the different approaches for adopting SPL, the extractive approach is a promising
solution for organizations that intend to transform their legacy applications into an SPL.
In this sense, the SPL reengineering process emerges as a possible strategy for applying
the SPL extractive approach. Another important concept related to SPL development is
scoping. The SPL scoping process is conducted for defining the boundaries of an SPL,
being one of the core planning activities performed during SPL development. Although
not deeply discussed in technical SPL contributions, activities to support the definition
of SPL development budgets and cost estimations are essential. There are several studies
proposed for handling SPL reengineering such as processes, tools, frameworks, meta-
models among others. Due to the diversity of options found in daily practice of software
development, a rigorous analysis of contexts is critical to instantiate these proposals. As
there are different scenario variables, such as available artifacts and team experience,
the activities, and techniques used to perform SPL reengineering or SPL scoping tasks
may change, requiring from software engineers to adapt their approaches as a means to
satisfying the companies’ scenarios. To the best of our knowledge, however, there is a
lack of an approach supporting these tasks considering different scenarios. Therefore, in
this work we propose the Prepare, Assemble, and Execute Framework SPL reengineering
(PAxSPL). PAxSPL is composed of three different aspects: a process, guidelines, and a
supporting tool. The process provides support to prepare, assemble, and execute feature
retrieval and analysis alongside activities considering SPL scoping concepts. Thus, users
may plan the scope of their SPL while conducting the retrieval and analysis of features
by applying retrieval techniques. The guidelines were created to aid users with low ex-
perience in SPL reengineering or SPL scoping. The supporting tool was developed to
reduce the effort of managing and executing an SPL reengineering process. This effort
reduction is done by automatizing the management and generation of reports. For evalu-
ating PAxSPL customization capabilities, we extracted eight different scenarios from the
literature used as input for application of PAxSPL. The results evidenced that PAxSPL
is customizable to a variety of scenarios with different artifacts, retrieval techniques, and
activities. However, we also identified some challenges that limited the customization
level of our framework. Based on these challenges, we perform improvements to increase
the PAxSPL customization level.

Key-words: Software Reuse, Variability Management, Software Product Lines, Software
reengineering.

RESUMO

Linhas de produtos de software (LPS) é uma abordagem bem conhecida para se criar
de maneira sistemática assets de software reusáveis além de produtos de software cus-
tomizados para um domínio específico. Dentre as diferentes abordagens para se adotar
LPS, a abordagem extrativa é uma solução promissora em organizações que pretendem
transformar seus sistemas legados em LPS. Nesse contexto, o processo de reengenharia
para LPS surge como uma possível estratégia para se aplicar a abordagem extrativa de
LPS. Outro conceito importante relacionado com LPS é o escopo. O processo de escopo
de LPS é executado para se definir os limites de uma LPS, sendo uma das atividades
essenciais de planejamento executadas durante o desenvolvimento de LPS. Apesar de
não ser discutido de maneira aprofundada em contribuições técnicas, as atividades que
dão suporte a definição dos orçamentos e estimação de custos de desenvolvimento são
essenciais. Para ambos os tópicos, reengenharia e escopo de SPL, existem diversos tra-
balhos propostos, como processos, ferramentas, frameworks, meta-modelos entre outros.
Por conta da diversidade de opções encontradas em práticas diárias de desenvolvimento
de software, uma analise rigorosa de contextos é crucial para instanciar estas propostas.
Como existem diferentes variações de cenário, como artefatos disponíveis e a experiência
do time, atividades e técnicas utilizadas para se executar a reengenharia ou o escopo
de LPS podem variar, necessitando que abordagens se adaptem buscando satisfazer os
cenários dos usuários. Porém, identificamos a falta de uma abordagem que dá suporte a
essas atividades considerando diferentes cenários. Portanto, neste trabalho propomos o
Prepare, Assemble and Execute Framework for SPL Reengineering (PAxSPL). PAxSPL
é composto por três aspectos distintos: um processo, diretrizes e uma ferramenta de
suporte. O processo fornece suporte para se preparar, montar e executar recuperação
de features considerando conceitos e atividades de escopo. Portanto, os usuários podem
planejar o escopo da LPS enquanto conduzem a recuperação e análise de features apli-
cando as técnicas de recuperação. As diretrizes foram criadas com a intenção de auxiliar
usuários com pouca experiência em reengenharia ou escopo de LPS. A ferramenta de su-
porte foi desenvolvida com o objetivo de reduzir o esforço de gerenciamento e execução
do processo de reengenharia, alcançada através da automatização do gerenciamento e
geração de relatórios. Para avaliar a capacidade de customização do PAxSPL, extraímos
oito cenários da literatura, utilizados como entrada para a aplicação do PAxSPL. Os re-
sultados evidenciaram que PAxSPL é customizável para uma variedade de cenários com
diferentes artefatos, técnicas de recuperação e atividades. Porém, também identificamos
oito desafios que limitaram o nível de customização de nosso framework. Baseado nestes,
aplicamos melhorias para aumentar o nível de customização do PAxSPL.

Palavras-chave: Reuso de Software, Gerenciamento de Variabilidade, Linhas de Produto
de Software, Reengenharia de Software.

LIST OF FIGURES

Figure 1 – The two-life-cycle model of SPLE. 26
Figure 2 – SPL Reengineering process. 29
Figure 3 – A feature model of a car. 31
Figure 4 – A feature model created using the Generative Programming notation. . 32
Figure 5 – Research Methodology Design . 35
Figure 6 – SPL Scoping Concept Map . 46
Figure 7 – A Generic SPL Scoping Process . 54
Figure 8 – Evaluations by Year . 59
Figure 9 – PAxSPL Framework . 69
Figure 10 – The Prepare, Assemble and Execute Process for Software Product Line

Reengineering. 70
Figure 11 – Perform Documentation Analysis Sub-process. 71
Figure 12 – Select Techniques Sub-process. 72
Figure 13 – The Generic Process for Feature Retrieval and Analysis. 72
Figure 14 – PAxSPL Execute Phase . 73
Figure 15 – A Feature Model of Retrieval Techniques. 74
Figure 16 – An Assembled Process . 75
Figure 17 – A feature Diagram of SPL Scoping Activities 75
Figure 18 – A Generic SPL Scoping Process. 76
Figure 19 – An Assembled SPL Scoping Process. 77
Figure 20 – PAxSPL Supporting Tool Class Diagram. 81
Figure 21 – Project Home Screen . 83
Figure 22 – Artifacts Screen . 83
Figure 23 – Techniques Screen . 84
Figure 24 – Activities Screen . 85
Figure 25 – BPMN Modeling Screen . 85
Figure 26 – Execute Activities Screen . 86
Figure 27 – Feature Model Screen . 87
Figure 28 – Feature Report . 88
Figure 29 – Traceability Matrix Screen . 88
Figure 30 – Feature Configurator Screen . 89
Figure 31 – Product Traceability Matrix Screen . 90
Figure 32 – Techniques Report for (EYAL-SALMAN; SERIAI; DONY, 2013) . . . 95
Figure 33 – BPMN Process Assembled for (EYAL-SALMAN; SERIAI; DONY, 2013) 96
Figure 34 – Part of the Process Assembled Report for (EYAL-SALMAN; SERIAI;

DONY, 2013) . 96
Figure 35 – BPMN Process Assembled for (ACHER et al., 2013) 97

Figure 36 – Process Assembled Report for (ACHER et al., 2013) 98
Figure 37 – BPMN Process Assembled for (AL-MSIE’DEEN et al., 2012) 98
Figure 38 – Process Assembled Report for (AL-MSIE’DEEN et al., 2012) 99
Figure 39 – BPMN Process Assembled for (SHATNAWI; SERIAI; SAHRAOUI, 2014)100
Figure 40 – BPMN Process Assembled for (ALVES et al., 2008) 100
Figure 41 – BPMN Process Assembled for (CHEN et al., 2005) 101
Figure 42 – BPMN Process Assembled for (PAŠKEVIČIUS et al., 2012) 101
Figure 43 – BPMN Process Assembled for (BREIVOLD; LARSSON; LAND, 2008) 102
Figure 44 – New Generic Process for Feature Retrieval and Analysis. 106
Figure 45 – Changes Applied to the Generic Process for Feature Retrieval and Anal-

ysis. 106
Figure 46 – Changes Applied to PAxSPL Process. 107
Figure 47 – Team Information Report Generated by PAxSPL Tool 134
Figure 48 – Artifacts Information Report Generated by PAxSPL Tool 135
Figure 49 – Retrieval Techniques Report Generated by PAxSPL Tool 136

LIST OF TABLES

Table 1 – Terms, Synonyms and the Search String 38
Table 2 – Digital Libraries and Search Strings . 39
Table 3 – Inclusion/Exclusion Criteria . 39
Table 4 – Numbers of the SLR on Scoping . 41
Table 6 – Traceability of Scoping Concepts in the Primary Studies 47
Table 8 – Summary of Related Work . 67
Table 9 – Use Cases for PAxSPL Tool . 80
Table 11 – Results from the Evaluation. 103
Table 12 – Challenges Identified During the Evaluation. 105
Table 13 – Comparison among related works and PAxSPL (SPL Reengineering). . . 111
Table 14 – Comparison of SPL Scoping Concepts 113

LIST OF ACRONYMS

BPMN Business Process Model and Notation

DD Design Decision

FCA Formal Concept Analysis

FM Feature Model

FODA Feature-Oriented Domain Analysis

LSI Latent Semantic Indexing

PAxSPL Prepare Assemble and Execute Framework for Software Product Line Reengi-
neering

PS Possible Solution

RQ Research Question

SLR Systematic Literature Review

SMS Systematic Mapping Study

SPL Software Product Lines

SPLA Software Product Line Architecture

SPLE Software Product Line Engineering

UC Use Case

UML Unified Modeling Language

VSM Vector Space Model

TABLE OF CONTENTS

1 INTRODUCTION . 21
1.1 Context . 21
1.2 Motivation . 22
1.3 Objectives . 23
1.4 Organization . 23

2 BACKGROUND . 25
2.1 Software Product Line . 25
2.1.1 Software Product Line Engineering 26
2.1.1.1 Domain Engineering . 26
2.1.1.2 Application Engineering . 27
2.1.2 Software Product Line Reengineering 28
2.1.3 Feature Retrieval Techniques . 29
2.1.4 Feature Model . 30
2.1.5 SPL Scoping . 31
2.2 Software Process . 32
2.3 Organizational Scenarios . 33
2.4 Chapter Lessons . 33

3 METHODOLOGY . 35
3.1 Establishing Relevance . 35
3.2 PAxSPL First Evaluation . 36
3.3 Steps for Improvement . 36
3.4 New Evaluation . 36

4 A SYSTEMATIC LITERATURE REVIEW ON SPL SCOPING 37
4.1 SLR Design and Execution . 37
4.2 Results and RQ Answers . 41
4.2.1 RQ1. What are the similarities and differences among the

approaches? . 41
4.2.1.1 Approach Similarities and Differences 45
4.2.1.2 Approach Activities . 47
4.2.1.3 Types of Scoping . 54
4.2.1.4 Adaptation . 57
4.2.2 RQ.2 How are existing scoping approaches evaluated? 58
4.2.2.1 Evaluations Applied . 58
4.2.2.2 Evaluation Domains . 59

4.2.3 RQ.3 How is the decision making during the process of SPL
scope definition? . 60

4.2.3.1 Cost Models . 60
4.2.3.2 Metrics for Scoping . 61
4.2.4 RQ.4. What are the open research gaps and opportunities for

new studies on the topic of SPL scoping? 62
4.2.5 Threats to Validity . 65
4.3 Related Work . 66
4.4 Chapter Lessons . 68

5 PAXSPL . 69
5.1 PAxSPL Process . 69
5.1.1 Prepare . 69
5.1.2 Assemble . 70
5.1.3 Execute . 73
5.2 Customization for Different Scenarios 73
5.2.1 Customization for Feature Retrieval 74
5.2.2 Customization for SPL Scoping 75
5.3 Guidelines . 76
5.3.1 Support Checklist . 77
5.3.2 Retrieval Techniques Tool Support 79
5.4 PAxSPL Tool . 79
5.4.1 Requirements . 79
5.4.2 Design . 80
5.4.3 Running Example . 82
5.5 Chapter Lessons . 87

6 EVALUATION . 91
6.1 Design . 91
6.1.1 Data Set . 91
6.1.2 Procedure . 92
6.2 Execution . 93
6.2.1 Results . 94
6.2.2 Discussion . 102
6.2.3 How does PAxSPL suit different scenarios? 102
6.2.4 What challenges are observed by customizing PAxSPL? . . . 103
6.3 Improvements . 105
6.3.1 Modifications in the Generic Process 105
6.3.2 Modifications in the Guidelines and Documentation 106
6.3.3 Modification in the PAxSPL Process 107

6.4 Chapter Lessons . 108

7 RELATED WORK . 109
7.1 SPL Reeenginering . 109
7.1.1 Studies Main Contribution . 109
7.1.2 Artifacts and Strategies for Feature Retrieval 110
7.2 SPL Scoping . 112
7.2.1 Guidelines to Support SPL Scoping 112
7.2.2 Customization for Different Scenarios 112
7.2.3 Approaches Domains . 113
7.3 Chapter Lessons . 114

8 CONCLUSION . 115

BIBLIOGRAPHY . 119

ANNEX A – REPORTS FROM PAXSPL TOOL 133

Index . 137

21

1 INTRODUCTION

1.1 Context

Increasing the quality of software products is a concern that software development
companies have to handle carefully. For software development companies ensure the
quality of software products is crucial to guarantee the return of investment. Software
development companies, however, also have to balance these investments to reduce project
costs. These important aspects have led companies to look for technological solutions that
may mitigate these concerns. In this sense, software reuse may be adopted for creating
software products from existing systems, thus reusing artifacts, assets, and expertise
from the development team. However, there are different strategies for applying software
reuse (KRUEGER, 1992), providing companies with different solutions for solving the
aforementioned problem.

One possible solution arose with the definition of the Software Product Line En-
gineering (SPLE) (LINDEN; SCHMID; ROMMES, 2007). Similar to the implementation
of the product line in the automobile industry, the introduction of product lines in soft-
ware production resulted in several changes for the software development industry. As
Software Product Lines (SPL) provides a systematic way to reuse software assets when
creating new systems, to consider introducing the SPLE for replacing traditional software,
development companies have to be aware of SPLE benefits. Among these benefits is the
reduction of the maintenance effort and artifacts complexity, as well as the increasing
reusability of assets and better cost estimations (POHL; BÖCKLE; LINDEN, 2005).

As the SPLE evolved, different approaches emerged for dealing with SPL develop-
ment and commercial aspects. The development life-cycle changed when compared with
traditional software, and commercial aspects, such as market analysis, were now part of
the major software development activities. Among these approaches, Linden, Schmid e
Rommes (2007) defined a process life-cycle composed of two phases: domain engineering
and application engineering. Both phases of the life cycle share similar activities, such as
requirements engineering. These activities, however, are differentiated between the phases
concerning their generated artifacts. While domain engineering activities focus on more
high-level artifacts by fragmentation techniques, application engineering generates more
concrete artifacts through composition and merge techniques, i.e., generating low-level ar-
tifacts. While many systems started their development using the two life-cycle approach
from scratch, there are also many systems developed as traditional software that requires
to be migrated into SPL. In this sense, start from scratch may not be the best solution
as many assets of the legacy system might be still useful. These assets include artifacts,
domain information, business aspects, and even the developer’s knowledge. Hence, how
may the companies migrate their traditional or legacy systems into SPL?

22 Chapter 1. Introduction

A possible answer to the latter question is the SPL reengineering process. This
process, which is part of the SPL extractive approach (KRUEGER, 2001), might be used
to transform those legacy software products into SPL. This process uses feature retrieval
strategies and techniques to identify, extract, and categorized several product variants and
transform them into SPL with the use of techniques, methods, and tools (ASSUNÇÃO
et al., 2017).

1.2 Motivation

Similar to the SPLE development process proposed by Linden, Schmid e Rommes
(2007), different approaches emerged to manage SPL reengineering. As mapped by As-
sunção et al. (2017), a large number of approaches were proposed along the years to cover
different phases of the SPL reengineering process. Studies such as Eyal-Salman, Seriai e
Dony (2014) and Al-Msie’Deen et al. (2012) use Formal Concept Analysis (FCA) for re-
trieving the features of legacy systems while Yu et al. (2013) and Nöbauer, Seyff e Groher
(2014) used clustering algorithms. These are only two feature retrieval techniques used
for some studies among the many existing ones. As also shown by Assunção et al. (2017),
the variety of scenarios and domains require different techniques to be applied. Hence,
one approach may not be applicable in different scenarios, limiting its adherence. For
instance, an approach that utilizes Unified Modeling Language (UML) diagrams as input
for identifying the features of a SPL. In this context, if an organization does not work
with UML or if the diagrams are outdated, such an approach would not be useful in this
scenario. Thus, to address this problem, the approach should be customizable.

Also, there is the need for formalizing the reengineering process through guidelines
as argued by Otsuka et al. (2011) and Ziadi et al. (2012). Also, Kang et al. (2005) advocate
that guidelines are needed for evaluating product-line assets, making those assets more
reliable. Other authors, such as Martinez et al. (2015) and Stoermer e O’Brien (2001),
have pointed out that guidelines may lead to automated support for this process.

To the best of our knowledge, a customizable and well-defined process for per-
forming the SPL reengineering planning, including feature retrieval and analysis, would
narrow these gaps and limitations. Thus, in a previous work (MARCHEZAN et al.,
2019b), we proposed Prepare and Assembled Process for SPL Reengineering (PAxSPL).
PAxSPL is a process supported by guidelines that help users to customize a feature re-
trieval process for their context. More specifically, PAxSPL gives support to the first two
phases of the reengineering process: detection and analysis. In this work, we define these
two phases as the “planning” process of SPL reengineering.

After the execution of a case study for evaluating PAxSPL, we identified a few
aspects for improvement. Among these, we understand that activities covering SPL scop-
ing were not given the required focus during PAxSPL execution. Such activities would
help engineers handle more business-related aspects of the reengineering. The study also

1.3. Objectives 23

pointed out other pieces of evidence that some PAxSPL activities required high effort due
to the need for keeping artifacts and reports updated and well-structured throughout the
process execution. This issue implied a need for a supporting tool, aiming at reducing
such effort.

1.3 Objectives

Based on the limitations pointed by the studies discussed in the last section, as
well as the future work established in our previous work (MARCHEZAN et al., 2019b),
we defined the main goal of this work:

∙ To evolve the PAxSPL process, transforming it into a generic framework to support
the planning process of reengineering legacy applications into SPL.

This goal may be divided into different specific objectives:

i Evolve the PAxSPL process life-cycle, including SPL scoping specific activities;

ii Include the most common practices of SPL scoping in PAxSPL guidelines, providing
a mechanism to define a SPL scoping process to specific contexts;

iii Develop a supporting tool that may be used for executing all PAxSPL activities;

iv Conduct an evaluation to collect evidence about PAxSPL customization capabilities.

1.4 Organization

We organized this document as follows:

∙ Chapter 2: Background - Details the main concepts related to our work, such
as SPL and feature retrieval strategies;

∙ Chapter 3: Methodology - Explains our research methodology adopted while
conducting this project;

∙ Chapter 4: SLR on Scoping - Describes a systematic literature review performed
for collecting data from the literature used for expanding our process and guidelines;

∙ Chapter 5: PAxSPL - Description of our proposed process and its guidelines;

∙ Chapter 6: Evaluation - Presents the planned evaluations protocols;

∙ Chapter 7: Related Work - Presents studies similar to PAxSPL, discussing their
similarities and differences;

∙ Chapter 8: Conclusion - Presents the preliminary considerations.

25

2 BACKGROUND

In this chapter, we introduce the terminology and describe the main concepts
addressed throughout this work such as SPL in Section 2.1. In Section 2.1.1 the main
concepts of SPLE are presented. Section 2.1.2 presents the process of SPL Reengineering.
Feature retrieval is discussed in Section 2.1.3. The definition and characteristics of Feature
Models are shown in Section 2.1.4. Software processes are discussed in Section 2.2. Lastly,
our definition of organizational scenarios is presented and discussed in Section 2.3.

2.1 Software Product Line

The product line concept and its characteristics came from the automobile indus-
try. Henry Ford introduced product lines to car manufacturing in 1913, hoping to meet
the great demand of the time. Product lines introduced two characteristics: platform
and variability (POHL; BÖCKLE; LINDEN, 2005). These concepts were also adopted
for software product line development.

In the SPL context, a platform is a technology or process on which other processes
or even other technologies are built. It is usually what is called “core of the system”, which
contains the common features that are shared by all systems of that family. Variability
refers to the flexibility, in other words, the ability to create artifacts to be reused among
different products of the same family (KANG et al., 1990).

The SPL is defined by (CLEMENTS; NORTHROP, 2002) as “a set of software-
intensive systems that share a common, managed set of features satisfying the specific
needs of a particular market segment or mission”. Some of the main benefits of imple-
menting SPL are the long-term cost reduction, significant quality improvement of the
products, and reduction of the time-to-market (POHL; BÖCKLE; LINDEN, 2005). As it
happens with regular software products, SPL also need a development process (KANG et
al., 2005) (MARTINEZ et al., 2015) (OTSUKA et al., 2011) (STOERMER; O’BRIEN,
2001) (ZIADI et al., 2012). In this case, it is a special process because SPL cannot be
developed as a regular software (LINDEN; SCHMID; ROMMES, 2007). The field ded-
icated to the study of this development is SPLE. However, a common practice in SPL
development is to start from a set of product variants and extract their variabilities to
create the SPL. This process is called Software Product Line Reengineering (ASSUNÇÃO
et al., 2017). For both SPL reengineering and SPLE, a variability mechanism is used to
manage the features of the SPL. This mechanism is usually a feature model, which can be
created using different notations. SPLE, SPL reengineering, and feature model concepts
are described in the following sections.

26 Chapter 2. Background

2.1.1 Software Product Line Engineering

SPLE is the paradigm responsible for the development and study of SPL. It uti-
lizes platforms and mass customization concepts (DAVIS, 1989) to enable variability man-
agement. Plenty of technologies are used in SPLE as facilitators, making the SPL creation
process easier. From these technologies, we can highlight the component-based architec-
ture, software project patterns, and the object-oriented paradigm (LINDEN; SCHMID;
ROMMES, 2007).

A model for SPLE, illustrated in Figure 1 was proposed by (POHL; BÖCKLE;
LINDEN, 2005); this model is divided between domain engineering and application engi-
neering, which are described below.

Figure 1 – The two-life-cycle model of SPLE.

Source: (POHL; BÖCKLE; LINDEN, 2005)

2.1.1.1 Domain Engineering

The life-cycle of Domain Engineering focuses on the definition of the SPL scope
and common assets generation, from requirements to testing, that compose the SPL
platform. We present a brief description adapted from (POHL; BÖCKLE; LINDEN,
2005) of each sub-process below:

∙ Product Management: the product management sub-process aims to define the
scope of the SPL and manages the organization of the product portfolio. This

2.1. Software Product Line 27

process generates the product roadmap, defining the common and variable features
of the products. It also generates the schedule of each product release and the list
of reusable artifacts;

∙ Domain Requirements Engineering: the product roadmap is used to elicit, docu-
ment, negotiate, validate and verify, and manage the requirements, a set of common
variables, well-defined requirements, and the SPL variability model;

∙ Domain Design: domain requirements are used alongside the SPL variability model
to define the Software Product Line Architecture (SPLA);

∙ Domain Realisation: the SPLA and other domain assets are analyzed to design and
implement the software components of the SPL domain;

∙ Domain Testing: it is when the realization components are tested alongside their
specifications. The main goal is to create reusable test artifacts, aiming to reduce
cost and effort during application testing.

2.1.1.2 Application Engineering

In the Application Engineering life-cycle, the common and variable assets de-
veloped in the Domain Engineering are combined with specific assets to create a SPL
product. The application engineering is composed of four sub-processes are briefly de-
scribed as follows:

∙ Application Requirements Engineering: the domain requirements and the SPL
roadmap are used alongside the target application’s specific requirements. This
sub-process generates the requirements of a specific product.

∙ Application Design: the architecture of a specific application is created by using the
SPLA. This is done by selecting the desired parts from the SPLA and adding some
adaptations related to the specific product.

∙ Application Realisation: the main goal is to generate an executable software prod-
uct. This generation is done by using the application architecture and the domain
realization. At the end, a software product should be generated by simply selecting
components to realize each interface.

∙ Application Testing: here, the software product generated is tested by utilizing the
domain test artifacts and the application realization product.

28 Chapter 2. Background

2.1.2 Software Product Line Reengineering

According to (KRUEGER, 2001), there are three possible approaches to develop
SPL: proactive, reactive, and extractive. By using the proactive approach, an organi-
zation plans, analyzes, designs, and develops a complete SPL including the whole scope
of their products. With the reactive approach, the organization incrementally increases
its SPL development to reach the demand for new products or emerging new require-
ments. However, the extractive approach is used when an organization already has all its
products developed in a non-systematic manner. The extraction of common and varying
source code is performed and their products are transformed into an SPL. An extrac-
tive approach is the most indicated when the organization already has a set of software
variants because it is easy to identify and extract the commonalities and the variabilities
among them. This process of extraction is called SPL reengineering.

The term reengineering can be described as “the examination and alteration of
a subject system to reconstitute it in a new form and the subsequent implementation
of the new form” (CHIKOFSKY; CROSS, 1990). In the SPL context, reengineering is
used to transform a system, system family, or system variants into a SPL as illustrated
in Figure 2. According to (ASSUNÇÃO et al., 2017), the SPL reengineering process is
composed of three main phases, described below:

∙ Detection: it is when variabilities and commonalities, represented in the form of
features, of the products are identified and extracted throughout the use of feature
retrieval techniques. Techniques and methods used during this phase aim to extract
data from artifacts, such as class diagrams and source code;

∙ Analysis: it is where the information extracted is used to design and organize the
functional features into a variability model, usually a feature model;

∙ Transformation: it is when artifacts linked to these features, such as source code
and requirements list, are managed, refactored, and modified to create the SPL.

In this work, we propose a generic framework to support this planning process. In
this sense, we define planning the SPL reengineering as “to extract, categorize and group
features from legacy systems, as well as to design a Feature Model (FM)”. Hence, we also
refer to this planning phase as feature retrieval and analysis. Thus, our proposal gives
support to the first two phases of the reengineering process defined by Assunção et al.
(2017). In addition, we also consider the SPL scope definition to be part of SPL planning.
During this process, feature retrieval techniques are used to retrieve the variabilities and
commonalities of the products.

2.1. Software Product Line 29

Figure 2 – SPL Reengineering process.

Source: (ASSUNÇÃO et al., 2017)

2.1.3 Feature Retrieval Techniques

Based on Assunção et al. (2017), we classified the feature retrieval strategies in
three groups: i) static analysis: clustering, dependency analysis, and data-flow analysis;
ii) information retrieval: formal concept analysis, latent semantic indexing, and vector
space model; iii) support strategies: expert-driven extraction, heuristics, and rule-based
extraction. Assunção et al. (2017) also identified the use of dynamic analysis strate-
gies. However, these strategies are not considered for Prepare Assemble and Execute
Framework for Software Product Line Reengineering (PAxSPL) due to their technologi-
cal requirement, which would reduce the adaptability of our proposal.

The first strategy is Static Analysis, done by analyzing a program without its
execution (CHRISTENSEN; MØLLER; SCHWARTZBACH, 2003). Information analyzed
may include structural information and static artifacts. Static analysis techniques are
recommended when analyzing source code. Furthermore, it is recommended that the
used source code possesses low coupling and high cohesion. There are a lot of different
Static Analysis techniques, from which we highlight:

∙ Clustering: groups a set of objects (e.g., features) based on their similarities in
clusters (JAIN; DUBES, 1988);

∙ Dependency analysis: leverages static dependencies among program elements. It
may be used to validate and describe the interdependence among elements (KLATT;
KROGMANN; SEIDL, 2014);

∙ Data-flow analysis: gather information about possible values calculated at different
points of a software system. This information is used to determine which parts of

30 Chapter 2. Background

that program a particular value might propagate (RYSSEL; PLOENNIGS; KAB-
ITZSCH, 2011).

The Information Retrieval strategy collects and analyzes information in artifacts
considering text structure, text similarity, etc (FRAKES; BAEZA-YATES, 1992). Infor-
mation retrieval techniques commonly use documents written in natural language. They
are also generally used in requirements artifacts; however, they can also be used in source
code. To do that, both the source code and the requirements must have meaningful names.
Information retrieval techniques are commonly used alongside Static Analysis techniques
such as clustering. From the Information Retrieval techniques, we emphasize on:

∙ FCA: a mathematical method that provides a way to identify “meaningful groupings
of objects that have common attributes” (STUMME, 2009);

∙ Latent Semantic Indexing (LSI): an indexing and retrieval method that uses a
mathematical technique to identify patterns in the relationships between the terms
and concepts contained in an unstructured collection of text (DUMAIS, 2004);

∙ Vector Space Model (VSM): an algebraic model for representing text documents
in a way where the objects retrieved are modeled as elements of a vector space
(SALTON; WONG; YANG, 1975).

For the last group, support strategies, we have the Expert-Driven Extraction,
Heuristics, and Rule-based techniques. Expert-Driven Extraction is based on the knowl-
edge and experience of experts such as domain engineers, software engineers, and stake-
holders. To apply the Expert-Driven strategy, it is highly recommended that the team
should have skills and knowledge involving the SPL reengineering process. Heuristics are
proposed by many authors (RUBIN; CHECHIK, 2012) (BÉCAN et al., 2013). They are
used alongside other techniques to improve retrieval results. The Rule-based techniques
(MU; WANG; GUO, 2009) are similar to heuristics because they are also used alongside
other techniques. Usually, these rules are created to guide and help whoever is performing
the feature extraction.

2.1.4 Feature Model

A feature model is one of the most used mechanisms to represent the SPL vari-
ability (CLEMENTS; NORTHROP, 2002). To the best of our knowledge the first feature
model notation, Feature-Oriented Domain Analysis (FODA) was presented by (KANG
et al., 1990). The feature model is represented in a tree structure, where its root, in the
SPL context, is usually the SPL being modeled. This notation introduced some concepts
that are shared by other feature model notation such as:

∙ Mandatory Features: features shared by all products of the SPL;

2.1. Software Product Line 31

∙ Optional Features: features that can be present in the SPL realization or not based
on the stakeholders choice;

∙ Alternative xor-group: these features are always part of a group where only one of
them must be part of the product realization;

∙ Composition Rule: rules that define whether a feature will be required or excluded
from the product;

∙ Rationale: these descriptive rules serve as indications of possible product realizations
based on features selection.

A feature model constructed using the FODA notation is illustrated in Figure 3.
The car represents the SPL, transmission and horsepower are mandatory features,
air conditioning is an optional feature, and manual and automatic are an alternative
xor-group. In addition, a composition rule and a rationale are shown.

Figure 3 – A feature model of a car.

Source: (KANG et al., 1990)

Other notations, such as Generative Programming presented by (CZARNECKI;
EISENECKER, 1999) added another important concept to feature models: or-features.
The or-features are a group of features similar to alternative xor-features, however, in an
or-group, more than one feature can be selected. An example of a Generative Program-
ming feature model is presented in Figure 4, where 𝑓9 and 𝑓10 represent an or-group.

2.1.5 SPL Scoping

Planning to apply SPL-based techniques considering business alignment and goals
is called as Scoping (JOHN, 2010). Literature abounds with proposals for SPL-based
production plans as surveyed in John e Eisenbarth (2009). These works are devoted

32 Chapter 2. Background

Figure 4 – A feature model created using the Generative Programming notation.

Source: (CZARNECKI; EISENECKER, 1999)

to characterizing particular artifacts and tasks for specific domains. Proposals such
as PuLSE (BAYER; MUTHIG; WIDEN, 2000) and RiPLE (BALBINO; ALMEIDA;
MEIRA, 2011) are examples of scoping approaches well-known in the literature. Ad-
ditional information about SPL scoping is described in Chapter 4.

2.2 Software Process

The term software process is defined by Feiler e Humphrey (1993) as “a set of
partially ordered steps intended to reach a goal[...] For software development, the goal is
production or enhancement of software products[...]”. In addition, (PRESSMAN, 2005)
defines process as “a framework for the tasks that are required to build high-quality
software”. As the definition may change, a process, in the software context, is used to
create artifacts related to software development.

Despite its definition, some aspects related to software process may be considered
its main areas of investigation. As presented by (FUGGETTA; NITTO, 2014), these areas
are: process modeling and support, including techniques and languages to give support
for the design of software processes; process improvement, which concerns the constant
investigation to find points for improvement within a process; metrics and empirical stud-
ies, which includes the creation and use of quality metrics and execution of experiments
and case studies to evaluate a process; “real” processes, a process which had passed by
the three aspects mentioned early, also called “concrete” processes, such as the Rational
Unified Process (KRUCHTEN, 2004).

The software process methodology may have to follow different strategies. There
is the traditional software development process, which gives a similar priority for both
software production and software documentation (PRESSMAN, 2005). We can also high-
light agile software processes, usually intending to be iterative and focusing on software
delivery (MARTIN, 2002), such as Scrum (SCHWABER; BEEDLE, 2002).

2.3. Organizational Scenarios 33

2.3 Organizational Scenarios

As discussed in (BOSCH, 2006; BOSCH, 2009), several challenges arise when
developing SPL in intra-organizational scenarios. However, as the scope of SPL ex-
pands, the development of SPL would eventually transcend the organizational bound-
ary. In this sense, when performing the reengineering of legacy systems, companies may
face challenges related to the understanding of the features being extracted and mod-
eled (HUBAUX; HEYMANS; BENAVIDES, 2008). This issue highlights the importance
of a well-defined process for conducting the feature retrieval and analysis in different sce-
narios. A major motivation for our work is to narrow this gap. In this sense, is important
to define and explain what are the definitions of these different scenarios.

We may define a scenario as “a certain group of engineers using a specific set of
retrieval techniques for extracting features from a determined set of artifacts”. Following
this definition, a possible scenario would be: “a group of three members of an organization,
an analyst, a developer and a project manager, with previous knowledge in FCA, applying
it to retrieve features from a requirements list”. In this particular scenario, the members
have previous knowledge in a retrieval technique and used it to retrieve features from
an existing artifact. In this sense, we established a very similar scenario by “destroying”
the requirements list and providing the users with only the source code from the legacy
system. By only applying this “minor” change, we would have a scenario where the FCA
technique would be much harder to be applied in source code than in requirements. Thus,
maybe the clustering technique would be more reliable in this new scenario.

By understanding what a scenario is and how it may vary from project to project,
and also from company to company, we may argue that the guidance of how to perform
SPL reengineering is needed for formalizing such process, mitigating many of the chal-
lenges discussed in the literature.

2.4 Chapter Lessons

In this chapter, we explored the main concepts of our work. The SPL, SPLE,
SPL Scoping and SPL Reengineering process concepts are important for understanding
our proposal. Nonetheless, the feature model and feature retrieval techniques and concepts
are crucial for us to develop our process because both concepts must be acknowledged
when we start the analysis of related work to extract such information. We noticed
that are a different kind of techniques that can be used for different scenarios. The
software process concept is important because we are designing our own process based
on approaches found in the literature. Lastly, it is important to define organizational
scenarios are these are part of the motivation for conducting this work.

35

3 METHODOLOGY

In this chapter, we describe the research methodology adopted to achieve our
goals. This methodology was based on the evolutionary multi-method research approach
presented by O’Leary e Richardson (2012). As illustrated by Figure 5, the research design
of the methodology was divided into four different stages: Stage 1) Establishing Relevance;
Stage 2) First Evaluation; Stage 3) Steps For Improvement; Stage 4) New Evaluation.
We considered that each activity was executed for gathering data (The top portion of
Figure 5). Then, a new version of PAxSPL process, now called PAxSPL, was generated
for each stage. These stages and their activities are explained in the following sections.

Figure 5 – Research Methodology Design

Source: Author.

3.1 Establishing Relevance

Any research project needs to establish its relevance before being developed. As
a strategy for collecting evidence about the relevance of our proposal, we first analyzed
industry needs. Then, we looked into studies in the literature to understand how we could
satisfy this need. We were able to obtain such answers from Assunção et al. (2017). By
analyzing the data collected in their Systematic Mapping Study (SMS) we proposed the
first version of PAxSPL. This version was then reported in Marchezan et al. (2017).

36 Chapter 3. Methodology

3.2 PAxSPL First Evaluation

The first evaluation, was based on a survey with students and practitioners of the
field, and an industrial case study. The survey results were reported in Marchezan et al.
(2017), while the case study was published in Marchezan et al. (2019b). Both evaluations
were important for generating the second version of the process, but also for providing
new aspects for improvement, which then generated PAxSPL v2.

3.3 Steps for Improvement

The aspects needing improvements identified in Marchezan et al. (2019b) are
those addressed in this work. Thus, stages 3 and 4 of the methodology are the main focus
of this work in particular, which will be expanding the research from prior years.

One of the main aspects identified in the survey was the need for having activities
and guidelines aiming at addressing SPL scoping topics. Thus, we conducted a Systematic
Literature Review (SLR) (KITCHENHAM et al., 2010) on SPL scoping, which is reported
in Chapter 4.

Another main point for improvement addressed here is the need for a supporting
tool. As discussed in Marchezan et al. (2019b) some activities and artifacts of PAxSPL v2
demanded considerable effort than others. Also, as all reports have to be filled manually
(e.g. using Google Docs) the quality of those artifacts could be compromised. Due to
these reasons, we decided to develop the PAxSPL supporting tool, presented in Chapter 5.

Lastly, PAxSPL v3, resulted from these improvements is presented in Chapter 5.
However, as Figure 5 shows, we are currently at the last portion of Stage 3, thus, both
the tool and PAxSPL v3 may still be modified after our new evaluation.

3.4 New Evaluation

The final stage of our research is an empirical evaluation. This evaluation was
applied in PAxSPL v3, which already has its supporting tool. The main goal is to evaluate
how PAxSPL is adaptable in adherence to different scenarios extracted from similar stud-
ies found in the literature. The evaluation design, procedure, results, and discussions are
presented in Chapter 6. Based on the data collected from the evaluations, we performed
improvements into the process, guidelines, and supporting tool generating PAxSPL v4.

37

4 A SYSTEMATIC LITERATURE REVIEW ON SPL SCOPING

In this chapter, we describe a SLR performed to gather the information to up-
dated the state of the art in the SPL scoping field as well as to improve PAxSPL (MARCHEZAN
et al., 2019b) in terms of SPL Scoping. Section 4.1 describes the protocol adopted for our
SLR. and presents our findings. Section 4.2 discusses the approaches extracted from the
literature to answer and discuss our Research Question (RQ)s.

4.1 SLR Design and Execution

An SLR protocol must be well planned and executed to obtain the desired results.
We adopted a protocol proposed by Kitchenham et al. (2009). We used a SLR supporting
tool (MARCHEZAN et al., 2019) for the execution of this review. The first step is to
define its goal and RQs of our SLR. The main goal of our study is:

Goal: Review the literature on SPL scoping for the purpose of identifying simi-
larities and differences among existing approaches and processes, business aspects,
conceptual characteristics, and research opportunities.

To achieve this goal, we derive four Research Questions (RQs):

RQ.1. What are the similarities and differences among the approaches? In this
question we want to investigate the processes followed by each approach in terms of
activities, steps, types of scoping, and how they are open for adaptation.

RQ.2. How are existing scoping approaches evaluated? To reason about the ap-
plicability of scoping approaches, we investigate the empirical methods used in the
studies and the domain where the evaluation had focus.

RQ.3. How is the decision making during the process of SPL scope definition?
Here we explore which are the factors that drive the decisions during the scoping
definition. For example, which metrics and cost models are considered for choos-
ing features to be prioritized, estimating the effort to implement variabilities, or
maintaining many products in a business domain.

RQ.4. What are the open research gaps and opportunities for new studies on
the topic of SPL scoping? The objective of this research question is to shed
light on new pieces of research on SPL scoping. We considered the findings of our
SLR and the observed gaps in the primary sources to compose a list of directions
for new studies.

For the search of primary sources, an important part of the SLR is the definition of
the relevant terms, and their synonyms, related to the goal and RQs. To define this string,

38 Chapter 4. A Systematic Literature Review on SPL Scoping

we relied on the population, intervention, comparison, outcomes and context (PICOC)
method (WOHLIN et al., 2012), as described next:

∙ Population: studies that deal with SPL scoping.

∙ Intervention: SPL scoping process, approaches, techniques, strategies, or similar
proposals.

∙ Comparison: activities performed, scoping types covered, similarities and differ-
ences, cost models proposed or used, metrics for scoping, approach adaptation,
evaluations applied, and domains.

∙ Outcome: a set of SPL scoping approaches, an overview of the approaches describ-
ing their activities, types of scoping, similarities and differences among them, cost
models and metrics used for scoping, types of adaptation, evaluation methods, the
domain of the systems used for evaluation, gaps and opportunities in the field.

∙ Context: both academic and industrial context. Considering the industrial context,
we aim at identifying in which domains the approaches were applied.

Based on the PICOC information, we extracted terms and synonyms to construct
the base search string, using OR and AND operators, as presented in Table 1. Table 2
presents the six digital libraries (DLs) used to search for primary sources and the specific
search string for each DL. These specific search strings were defined after executing,
analyzing, and refining the base search string until they returned a satisfactory result.
Finally, for the screening of the studies returned from each DL, according to the protocol
of our SLR, we defined one inclusion criterion (IC) and four exclusion criteria (EC) to
select only relevant papers, as presented in Table 3.

Table 1 – Terms, Synonyms and the Search String

Terms Synonyms
Scope scoping
Software
product line

product line, software family, software product fam-
ily, software reuse, SPL

Approach method, methodology, process, technique
Search String Scope OR Scoping AND Software product line OR

product line OR software family OR software prod-
uct family OR software reuse OR SPL AND ap-
proach OR method OR methodology OR process OR
technique

Source: Author.

The next step in the SLR protocol is to evaluate the quality of the selected
studies. In this way, we defined a set of quality assessment questions (QAs) that were
used to qualify and classify the studies. We assigned a score for each question, and after

4.1. SLR Design and Execution 39

Table 2 – Digital Libraries and Search Strings

Digital Library Search String
ACM (Scope Scoping) AND (“Software product line” “product line”

“software family” “software product family” “software reuse”
SPL) AND (approach method methodology process technique)

Eng. Village ((Scope OR Scoping) WN KY) AND ((“Software product line”
OR “product line” OR “software family” OR “software product
family” OR “software reuse” OR SPL) WN KY) AND ((approach
OR method OR methodology OR process OR technique) WN KY)

IEEE Xplore (Scope OR Scoping) AND (“Software product line” OR “prod-
uct line” OR “software family” OR “software product family”
OR “software reuse” OR SPL) AND (approach OR method OR
methodology OR process OR technique)

Science Direct (Scope OR Scoping) AND (“Software product line” OR “prod-
uct line” OR “software family” OR “software product family”
OR “software reuse” OR SPL) AND (approach OR method OR
methodology OR process OR technique)

Scopus TITLE-ABS-KEY (Scope OR Scoping) AND (“Software product
line” OR “product line” OR “software family” OR “software prod-
uct family” OR “software reuse” OR SPL) AND (approach OR
method OR methodology OR process OR technique)

Web of Science TS=((Scope OR Scoping) AND (“Software product line” OR
“product line” OR “software family” OR “software product fam-
ily” OR “software reuse” OR SPL) AND (approach OR method
OR methodology OR process OR technique))

Source: Author

Table 3 – Inclusion/Exclusion Criteria

Inclusion Criteria Exclusion Criteria
IC1. The primary study must present a SPL
scoping approach or similar proposal.

EC1. Studies written in languages other than
English.
EC2. Studies not available online.
EC3. Studies without any evaluation of the
approach.
EC4. Studies with less than 6 pages.

Source: Author

answering them, we computed the final score for each study. The possible answers for
each question are: “total”, when the study has information to answer the QA, then the
question scores 1 point; “partial”, when we can use the study only to partially answer
the QA, the score, in this case, is 0.5; and “none” when the study does not provide
any information to answer the question, having a score equal to 0. The QAs and their
respective score rules are described next.

Quality Assessment Questions:

QA1. Does the study describe the activities and artifacts regarding SPL scoping?

Total: the study details its activities and artifacts presenting examples of
use;

40 Chapter 4. A Systematic Literature Review on SPL Scoping

Partial: the study only presents a list of brief description of its activities
and artifacts;

None: neither activities nor artifacts are presented.

QA2. Does the study present some kind of process/work-flow?

Total: the study presents a well-documented process containing roles, arti-
facts and a work-flow among its activities;

Partial: a work-flow for performing the activities is presented;

None: no work-flow is defined.

QA3. Does the study present an evaluation and its results?

Total: the study applied and reported an empirical evaluation discussing
its results;

Partial: the study applied and reported a non-empirical evaluation dis-
cussing its results;

None: no evaluation is applied or discussed.

Another important artifact of an SLR is the data extraction form. The content
retrieved when applying this extraction into the studies is crucial for achieving our goals.
Our data extraction (DE) form had the following fields:

DE1. Title;

DE2. Author;

DE3. Year of publication;

DE4. Study goals;

DE5. Study summary;

DE6. Scoping Activities;

DE7. Scope types;

DE8. Scoping metrics;

DE9. Cost model strategies;

DE10. Adaptation strategy;

DE11. System domains and cross domains;

DE12. Proposal evaluation type;

4.2. Results and RQ Answers 41

DE13. Study limitations;

DE14. Research opportunities identified/proposed by the authors.

After performing the search in the digital libraries, a total of 851 studies were
retrieved. Table 4 presents the number of studies retrieved from each DL. From these
studies, 152 were duplicated. During the application of the I/E criteria, 36 studies re-
mained. These studies were used as input for the snowballing (WOHLIN, 2014) which
resulted in the inclusion of 9 studies. Thus, the final set of studies analyzed to answer
our questions was composed of 45 primary sources1.

Table 4 – Numbers of the SLR on Scoping

Source #
ACM 67
Engineering Village 161
IEEEXplore 191
Science Direct 14
Scopus 350
Web of Science 68
Retrieved Studies 851
Duplicates Removed 152
I/E Criteria 36
Added by Snowballing 9
Selected Studies 45

Source: Author.

4.2 Results and RQ Answers

In this section, we present and discuss the results obtained after the reading and
data collection of the primary sources. These results are the basis to answer the four
posed RQs.

4.2.1 RQ1. What are the similarities and differences among the approaches?

Among the 45 primary sources, we found 33 approaches. Once that some ap-
proaches are presented by more than one article, it is important to highlight the main
contribution of each one. Thus, the 45 primary studies are summarized in Table 5, along-
side their goals.

1 The repository of the SLR is available at <https://github.com/lucianoMarchezan/lesseResearch/tree/
master/slr_SPL_scoping>

https://github.com/lucianoMarchezan/lesseResearch/tree/master/slr_SPL_scoping
https://github.com/lucianoMarchezan/lesseResearch/tree/master/slr_SPL_scoping

42 Chapter 4. A Systematic Literature Review on SPL Scoping

Table 5: Studies and Goals

Study Proposal
Name

Study Goal

Bayer, Muthig e Widen
(2000)

PuLSE-CDA Presents CDA, a method for domain analysis that is
customizable to the project context where it will be
applied.

deBaud e Schmid (1999) PULSE-Eco PULSE-Eco, a technique especially developed to ad-
dress product line scoping.

Bayer et al. (2000) PuLSE-I Presents the application engineering process associ-
ated with the PuLSE SPLE method.

Knauber et al. (2000) PuLSE Applies PuLSE method in six small and medium-
sized enterprises addressing six different domains

Kishi, Noda e Katayama
(2002)

Kishi et al. Proposes a method for product line scoping as a
decision-making activity in which we determine the
appropriate scope of the product line considering
both the whole and the individual optimalities.

Schmid (2000) PuLSE Presents a framework that helps to assess how infor-
mation elicited during scoping is done at the begin-
ning of product line scoping.

Schmid (2002) PuLSE Presents improvements performed in PuLSE-Eco.
Schmid et al. (2005) PuLSE Discusses experiences with a project where re-

searchers successfully dealt with SPL scoping diffi-
culties and achieved a successful product line transi-
tion.

Park e Kim (2005) Park et al. Proposes a process for domain analysis and econom-
ical analysis of core asset scope. They also defined
guidelines for each activity of the process.

Ramachandran e Allen
(2005)

FARE Introduces a method for analyzing requirements for
their scope and for their potential to be candidate
requirements for a product family.

John et al. (2006) PuLSE Authors present an update of the PuLSE process to
include more detailed context characteristics.

Her et al. (2007) Her et al. Proposes a comprehensive framework for evaluat-
ing the reusability of core assets in SPL based on
ISO/IEC 9126.

Noor, Grünbacher e
Briggs (2007)

Noor et al. Proposes a collaborative product line scoping ap-
proach for reengineering-based product line adoption
which is based on involving success-critical stake-
holders to balance business and technical concerns.

Noor, Grünbacher e Hoyer
(2008)

Noor et al. Describes a collaborative scoping approach for orga-
nizations migrating existing products to a product
line

Kim, Park e Sugumaran
(2008)

DRAMA Provides a framework for modeling domain architec-
ture based on domain requirements within SPL.

Carbon et al. (2008) Planning
Game for
SPLE

Presents an adaptation of the agile practice “plan-
ning game” to a real SPL context.

4.2. Results and RQ Answers 43

Table 5: Continued

Study Approach
Name

Study Goal

Estublier, Dieng e Lev-
eque (2010)

CADSE Describes how the evolution of the associated engi-
neering environment market and SPL scope needs
are addressed together.

John (2010) CAVE Describes the CAVE approach and its industrial ap-
plications as a solution for the domain expert lack of
involvement problem.

Ullah, Ruhe e Garousi
(2010)

COPE+ Introduces a method that attempts to address short-
comings for the specific evolution scenario when a
single evolving software system is evolved into SPL.

Elsner et al. (2010) PLiCs Provides a generic, reusable reference architecture
and methodology for implementing such customiz-
able product lines.

Villela, Dörr e John
(2010)

PLEvo-
Scoping

Describes a quasi-experiment performed to charac-
terize PLEvo-Scoping in terms of adequacy and fea-
sibility

Mærsk-Møller e Jørgensen
(2010)

PuLSE-Eco Reports experience from applying SPLE in a small
team.

Cavalcanti et al. (2011) Cavalcanti et
al.

Presents a metamodel that aims to coordinate SPL
activities by managing different SPL phases and their
responsibilities and to maintain the traceability and
variability among different artifacts.

Balbino, Almeida e Meira
(2011)

RiPLE SC Proposes RiPLE-SC, an agile scoping process for
SPL.

Muller (2011) VB Portfolio
Opt.

Introduces Value-Based Portfolio Optimization as an
addition to common Product Portfolio Scoping ap-
proaches that help to decide on what features are
most important to realize.

Acher et al. (2012) Acher et al. Aims at easing the transition from product descrip-
tions expressed in a tabular format to FMs accu-
rately representing them.

Bartholdt e Becker (2012) Bartholdt et
al.

Discusses experiences related with the scope exten-
sion of a SPL.

Gillain et al. (2012) Gillain et al. Proposes a mathematical program able to optimize
the product portfolio scope of a software product line
and sketch both a development and a release plan-
ning

O’Leary, Almeida e
Richardson (2012)

Pro-PD Defines a systematic process that provides a struc-
tured approach to the derivation of products from an
SPL based on a set of tasks roles and artifacts.

Lobato et al. (2012) RiPLE-SC Aims at identifying SPL risks during the scoping
and requirement disciplines to provide information
to better understand risk management in SPL.

44 Chapter 4. A Systematic Literature Review on SPL Scoping

Table 5: Continued

Study Approach
Name

Study Goal

Abbas e Andersson (2013) ASPLE Proposes extensions to an architectural reasoning
framework with constructs/artifacts to define and
model a domain’s scope and dynamic variability

Cruz et al. (2013) Cruz et al. Presents a hybrid approach which combines fuzzy in-
ference systems and the multi-objective metaheuris-
tics

Souza et al. (2013) SPLSmart Aims at gathering evidence about the effects of ap-
plying an inspection approach to feature specifica-
tion for SPL.

Nöbauer, Seyff e Groher
(2014)

Nobauer et
al.

Presents an evaluation of a tool-supported approach
that enables the semi-automatic analysis of existing
products to calculate their similarity.

Silva et al. (2014) RiPLE-SC The study is a step towards bridging the gap of SPL
for the situation for small to medium-sized enter-
prises in contextual evidence by characterizing the
weaknesses discovered in the scoping (SC) and re-
quirements (RE) disciplines of SPL.

Sierszecki et al. (2014) Sierszecki et
al.

Presents an extension of the variability management
that goes beyond the scope of software assets reuse
previously introduced into the organization.

Khtira, Benlarabi e Asri
(2014)

SPLBench Proposes a requirement-based framework that capi-
talizes on the specific products already derived from
the product line.

Alsawalqah, Kang e Lee
(2014)

PPSMS Proposes a novel method to find the optimized scope
of a software product platform based on end-user fea-
tures

Ianzen et al. (2015) Ianzen et al. Presents a semi-automatic approach for defining
scope identification and classification of product fea-
tures along with an approach for evaluating the vari-
abilities and commonalities between the established
line and a new product.

Karimpour e Ruhe (2016) Karimpour
et al.

Proposes to include uncertainty as part of the SPL
scoping model. Scoping planning developed in con-
sideration of uncertainty would be more robust
against possible fluctuations in estimates.

Neto et al. (2016) Neto et al. Presents an improved hybrid approach to solve the
feature model selection problem aiming at support-
ing product portfolio scoping.

Alam, Khan e Zafar
(2017b)

ISPL Proposes an improved framework for SPL which ad-
dresses cross-cutting concerns such as security and
configurability.

Alam, Khan e Zafar
(2017a)

ISPL Presents a validation of ISPL, using the Expert Opin-
ion Technique.

Ojeda et al. (2018) CoMeS Proposes a collaborative method for SPL Scoping.

4.2. Results and RQ Answers 45

Table 5: Continued

Study Approach
Name

Study Goal

Ojeda, Rodriguez e Colla-
zos (2019)

Small-SPL Reports an exploratory study aimed to identify prob-
lems related to the collaborative work at scoping SPL
in practice.

Source: Author

With the intent to derive a conceptual map and also a generic process, in the
following, we analyzed each of these 33 approaches. They were grouped chronologically
to better understand their evolution to accomplish specific scoping issues.

4.2.1.1 Approach Similarities and Differences

To investigate their characteristics, we analyzed similarities and differences be-
tween the 33 found approaches. They are composed of different characteristics that may
or may not be necessary in a given context, for example, the use of cost models. Thus,
we formulated a SPL scoping concept map. The research and practice in the area would
benefit from a model that, both provide means for decision support and that constraint
selection by a well-characterized set of features found in these 33 approaches. The Fea-
ture Model is a well-accepted representation for such a need (SEIDL; WINKELMANN;
SCHAEFER, 2016), as illustrated by Figure 6, which describes contexts where each ap-
proach can be inserted, in a conceptual map. We derived this conceptual map to guide
software engineers in the selection process for an approach, as well as to characterize the
studies.

Our conceptual map is composed of two main concepts, scoping type that might
be the domain, asset or product, and supporting concepts. The supporting concepts,
metrics, metamodel, and evolution planning may be used to provide additional infor-
mation and depth to any concept within the scoping type. For each scoping type, we
have or-alternative concepts, such as feature definition and candidate analysis for Prod-
uct Scoping; Variability analysis, architecture definition and prioritize products for Asset
scoping; and cost-benefit analysis and market analysis for domain scoping. Cost benefits
have customer needs and cost models, which may be mathematical models or algorithms.

Table 6 presents the traceability between each concept from the concept map
(depicted in Figure 6) to the 33 approaches identified in this SLR. When considering the
support concepts, 22 of them make use of such concepts, most are metrics definition (13),
and evolution planning (11). Scoping meta-modeling is only considered in five approaches.
Considering similarities in this aspect, both metric definition and evolution planning are
present in six approaches (SPLSmart, COPE+, PLEvo-Scoping, RIPLE-SC, PPMS, and
Karimpour et al.). However, the way they handle these concepts may vary, as discussed

46 Chapter 4. A Systematic Literature Review on SPL Scoping

Figure 6 – SPL Scoping Concept Map

Source: Author.

in Section 4.2.1.2.
In terms of scoping specific concepts, the product roadmap is present in ten

approaches, while market analysis is present in the great majority (16). An important
contrast between these two concepts is also presented in Table 6 as most of the approaches
using product roadmap also make use of market analysis. This relation is due to roadmap
containing market-related aspects, such as time for launching the software or related costs.
A similar analysis may be performed considering the customer needs, as it’s a concept
that may also be related to both the product roadmap and market. Cost models, on
the other hand, presented fewer relations with the other scoping domain concepts in this
sense.

Considering the asset scoping concepts, we noticed that most approaches (20)
apply variability analysis as part of SPL scoping. Architecture definition is also consid-
ered in several approaches (14). For approaches that apply both of these concepts, they
are strongly related, as the variability is defined based on the reference architecture. This
relation is also present in approaches that consider both variability analysis and prioritize
products. Prioritize products is also related to the candidate analysis, a product scoping
concept. It was found five works using the analysis of candidates for prioritizing prod-
ucts, and despite their different strategies, both concepts influence each other. A similar
influence was found between the feature definition and the variability analysis concepts,
as usually when defining how the variability of the asset is managed, approaches also look
into how the features were defined for the SPL.

Although the majority of approaches (18) handle all types of scoping, their strate-
gies vary. It is also important to mention that some approaches focus on specific contri-
butions besides discussing scoping activities, such as CADSE focusing on a SPL scoping

4.2. Results and RQ Answers 47

Table 6 – Traceability of Scoping Concepts in the Primary Studies
Ref. MD SM EP PR MA CM CN PP AD VA CA FD
PuLSE X X X X X X X X
Kishi et al. X X X
SPLSmart X X X X X X X X X X
Park et al. X X
FARE X X
Her et al. X X X X
Noor et al. X X X X X
DRAMA X X X X X
Planning Game in
SPLE

X X X

CADSE X X X X
COPE+ X X X X
PLEvo-Scoping X X X X X X
CAVE X X X X
PLiCs X X X X X
Cavalcanti et al. X X X X X
RiPLE-SC X X X X X X X X X X
VB Portfolio Opt. X X X X X X
Acher et al. X X X X
Bartholdt et al. X X X X X X
Gillain et al. X X X X
Pro-PD X X X
ASPLE X X X
Cruz et al. X X X X X X X
Nobauer et al. X X X
Sierszecki et al. X X X X
SPLBench X X X X X
PPSMS X X X X X X X X
Ianzen et al. X X X
Karimpour et al. X X X X X X
Neto et al. X X X X
ISPL X X X X X X X
CoMeS X X X X X
Small-SPL X X

MD - Metrics Definition; SM - Scoping Meta model; EP - Evolution Planning; PR - Product Roadmap;
MA - Market Analysis; CM - Cost Modes; CN - Customer Needs; PP - Prioritize Products;

AD - Architecture Definition; VA - Variability Analysis; CA - Candidates Analysis; FD - Feature Definition.

Source: Author

meta-model. More details about these aspects are discussed in the following sections.

4.2.1.2 Approach Activities

The concept map shown in Figure 6 is created based on the analysis of the ac-
tivities performed by each approach, which were briefly described in Table 5. Next, the
approaches are presented in more detail, allowing us to identify similarities and differences,
and reasoning about a common process. To highlight the evolution of SPL scoping con-
tributions, we present the approaches in chronological order. The year of the publications
are presented in Table 7:

PuLSE (BAYER; MUTHIG; WIDEN, 2000; DEBAUD; SCHMID, 1999;
BAYER et al., 2000; KNAUBER et al., 2000; SCHMID, 2000; SCHMID, 2002;
SCHMID et al., 2005; JOHN et al., 2006; MÆRSK-MØLLER; JØRGENSEN,
2010): developed as a customizable method to support the conception, construction, us-
age, and evolution of SPL, PuLSE is divided in components. One of such components was

48 Chapter 4. A Systematic Literature Review on SPL Scoping

created specifically for SPL scoping, the PuLSE-Eco (DEBAUD; SCHMID, 1999). This
component aims at identifying the characteristics that are directly supported by the ref-
erence architecture. For achieving this, product candidates must be mapped, evaluation
functions are developed, products are characterized, a benefit analysis is performed and
the SPL plan is developed. By performing these tasks, PuLSE captures on an abstract
level the relationships between scoping information and implementation aspects and thus
allows them to provide rough guidance on implementation aspects of the project.

Kishi et al. (KISHI; NODA; KATAYAMA, 2002): two types of require-
ments are considered for scoping: those for a unique product and those for the product
line. The requirements for a unique product consist of functionality and quality attributes.
The activities may be described as: i) identify the requirements for each product and the
product line; ii) define the design policy in terms of priority among the requirements; iii)
list the architectural candidates for the given products; iv) determine the preference of
each architectural candidate and examine their applicability for each product; v) examine
the candidates for the SPL scope, determining the preference of the candidates.

Park et al. (PARK; KIM, 2005): a process accompanied by guidelines for
domain analysis and economic analysis of core assets scope. To analyze the economic value
of the scope, the authors considered not only the variability but also dependencies among
variabilities. Activities of the process: i) commonality analysis; ii) variability analysis;
iii) variability dependency analysis; iv) domain model refinement; and v) economical
evaluation of core asset scope.

FARE (RAMACHANDRAN; ALLEN, 2005): a method for analyzing re-
quirements for their scope, and their potential to be candidate requirements for a SPL.
To adapt the scope, commonality, and variability analysis to capture, organize, and man-
aging requirements, the FARE method provides a systematic process, clearly specified
checklists for self-assessment and improvement, cost-benefit analysis. It also provides
method-specific guidelines for the use case method. The process is divided into: i) pre-
pare; ii) plan; iii) commonality and variability analysis; iv) quantify; and v) review.

Her et al. (HER et al., 2007): the proposed framework is based on ISO/IEC
9126 quality standard, and it consists of quality attributes, metrics for them, and guide-
lines for applying the metrics. The framework does not describe specific activities, how-
ever.

Noor et al. (NOOR; GRüNBACHER; BRIGGS, 2007; NOOR; GRÜN-
BACHER; HOYER, 2008): the process presents guidelines and uses thinkLets for
collaboration engineering. The activities are divided among five parts: i) discuss and
agree on domains: participants brainstorm on selected issues related with domains while
stakeholders develop a shared understanding of the domains; ii) assign features to do-
mains: features already known are categorized inappropriate domains, new features are
brainstormed and evaluated in quick sessions, participants go through features to ensure

4.2. Results and RQ Answers 49

that they are categorized appropriately; iii) agree on products: participants give their
opinion on proposed products, to consolidate their vision regarding them; iv) develop
product map: voting is performed to formulate a product map, reason for disagreements
are elicited, and a consensus is built upon it; v) prioritize product map: voting is per-
formed to ascertain the priority of products and features of the product map, reasons for
disagreements are revealed, and the consensus is built.

DRAMA (KIM; PARK; SUGUMARAN, 2008): DRAMA is a framework
designed to aid the modeling of domain architecture. The framework consists of processes,
methods, and a supporting tool for domain requirements analysis and domain architecture
modeling. Covered scoping activities are divided into phases: i) identifying components:
define business strategy and marketing plan; ii) calculating the priority of components:
generates goal tree and components; iii) calculating the priority of quality attributes:
prioritize components; iv) modeling domain architectures: analyze priority of quality
attributes and define domain architectures.

Planning Game in SPLE (CARBON et al., 2008): a well know planning
game used in traditional software development is adapted to a SPL context. The planning
game is used as a means to provide to family engineers with feedback from the application.
The game is subdivided into three phases with several activities: i) exploration phase:
the application engineers write down their feedback on the available reusable artifacts
employing reuse stories and prioritize them; ii) commitment phase: the scope of the next
release of the reusable product line components is derived; iii) steering phase: After the
scope of the next release has been fixed iterations to realize the selected reuse stories can
be conducted.

CADSE (ESTUBLIER; DIENG; LEVEQUE, 2010): proposes a solution
that uses meta-modeling and engineering environment evolution generation, scope compo-
sition, and market evolution. In addition, presents a component database and a selection
language for the product variability evolution. The proposal does not present any flow of
activities. CADSE, however, allows us to define and compose wide scope environments.
The composition technology provides flexibility allowing to expand the scope of a given
family with new concepts, new components, new features, and new constraints.

CAVE (JOHN, 2010): offers a solution concerning the problem of domain
experts’ availability during the SPLE. The approach is divided into three phases: i)
preparation, where the SPL consultants collect user documentation; ii) analysis, when
the SPL consultant applies patterns searching the documentation; iii) validation, domain
experts validate and change the invalidated artifacts.

COPE+ (ULLAH; RUHE; GAROUSI, 2010): a decision support method
to address the product evolution problem. From a high-level standpoint, the decision
support method COPE+ has three modules. To analyze and update the data and results,
it involves human decision making at various stages of the decision support. Scoping is

50 Chapter 4. A Systematic Literature Review on SPL Scoping

covered by the following activities: i) voice of the customer analysis: customer voting
and prioritizing features; ii) structural Impact Analysis: identification of features impact
in evolving software systems; iii) similarity Analysis: conformance of product variant
implementations;

PLiCs (ELSNER et al., 2010): provides a tool-supported methodology for
combination of SPL components based on customer needs. The tool follows a four steps
process: i) specify customized SPL (CPL); ii) setup the CPL; iii) specify the CPL prod-
ucts; iv) generate the CPL product.

PLEvo-Scping (VILLELA; DÖRR; JOHN, 2010): complements and ex-
tends SPL scoping approaches by helping the SPL scoping team to anticipate emergent
features and distinguish unstable from stable SPL features. It contains several activities:
i) preparation for volatility analysis: establishing the basis for the volatility analysis; ii)
environment change anticipation: identifying and characterizing facts that may take place
in the SPL environment within the pre-established time-frame, and may allow or require
adaptations in the SPL; iii) change impact analysis: analyze the impact of the identified
facts on the SPL; iv) SPL Evolution Planning: establishes when and how relevant adapta-
tion needs are expected to be introduced into the SPL, and prepare it for accommodating
the adaptation needs beforehand.

Cavalcanti et al. (CAVALCANTI et al., 2011): a metamodel providing
support for several SPL aspects, such as scoping, requirements, tests, and project and risk
management. There is no process itself, but the proposed metamodel may be used for
various Scoping tasks: feature modeling, product scoping, variability management, and
asset definition.

RiPLE-SC (BALBINO; ALMEIDA; MEIRA, 2011; LOBATO et al.,
2012; SILVA et al., 2014): the main focus is to operate in small to medium-sized
companies. The general process is divided into four phases: i) pre-scoping: when meetings
are scheduled with different project stakeholders to evaluate the SPL availability, benefits,
drawbacks, and their market; ii) domain scoping: when the domains and sub-domains are
identified and prioritized; iii) product scoping: performed to identify and review features,
identify products, and construct and validate a product map; iv) asset scoping: metrics
are created and applied to prioritize the features on the product map.

Value-Based Portfolio Optimization (MULLER, 2011): the goal is to aid
the planning of an optimal product portfolio, pricing the SPL products, and understanding
the contribution of assets to profit. The authors provide an ontology and an algorithm to
support decision making concerning product portfolio decisions. The approach may be
SPLit into different steps: i) determine a profit optimal product portfolio; and ii) identify
which assets have the highest positive impact on profit due to the products related to
them.

Acher et al. (ACHER et al., 2012): the approach presented in the study

4.2. Results and RQ Answers 51

extracts feature models from several tabular data files. This procedure is semi-automated
and the features are hierarchically organized. The authors also proposed a language
supporting scoping activities, which is used to parameterize the features extraction. The
scoping is only covered as a single task. A practitioner may scope the data in various
ways and for many purposes using the proposed language.

Bartholdt et al. (BARTHOLDT; BECKER, 2012): in the work, the au-
thors discuss their experiences on the various activities of SPLE while extending a SPL.
The authors describe how they have identified beneficial sub-domains to increase the
commonality of their SPL while extending the scope of the SPL. Although the activities
are not described as a workflow, the experience reports several activities performed such
as commonality/variability analysis, use of supporting tools for mapping the domain,
selection, and prioritization of features, and definition of a reference architecture.

Gillain et al. (GILLAIN et al., 2012): a mathematical model based on the
joint use of goals and features. The approach may help to optimize SPL scoping, especially
product portfolio and assets scoping. During scoping, identification and evaluation of the
three types of scoping can be performed separately. In general, is composed of three
activities: i) determine relevant customers and what their needs are; ii) defining what the
products are constituted of; iii) identify conditions for the product to realize the tasks.

Pro-PD (O’LEARY; ALMEIDA; RICHARDSON, 2012): a systematic
process that provides a structured approach for the derivation of products from a SPL,
based on a set of tasks, roles, and artifacts. The process is composed of several activities:
i) initiate project; ii) identify and refine requirements; iii) derive the products; iv) develop
the product; v) test the product; and vi) management and assessment.

ASPLE (ABBAS; ANDERSSON, 2013): the authors extended the archi-
tectural reasoning framework (ARF) to provide models and constructs to domain archi-
tects. These models allow reasoning about variability in domain quality attributes with
self-adaptation. The ASPLE framework considers two separate SPL, one for managing
subsystems and one for the managed subsystems. These two separate SPL are com-
posed of some activities: i) ASPL domain engineering: defines and implements a reusable
platform for the adaptation logic; ii) baseline SPL: focuses on application logic.

Cruz et al. (CRUZ et al., 2013): a systematic approach to deal with SPL
optimization, based on several measures and the relevance perceived by the customers.
Fuzzy inference systems and multi-objective optimization are used together to select the
best products of different segments of users and group them in a portfolio. This goal is
achieved by following five activities: i) inferring the cost of each asset; ii) calculating the
asset relevance for each segment; iii) calculating candidate products for each segment; iv)
qualifying candidate products; v) grouping the best product of each segment.

SPLSmart (SOUZA et al., 2013): presents findings of how the inspection
should be handled in a SPL scenario, to gather evidence of inspection on scoping artifacts,

52 Chapter 4. A Systematic Literature Review on SPL Scoping

as well as, identify possible gaps that have not been addressed by current research. The
study was conducted based on an empirical study, aimed at investigating inspection-
related issues during the application of a systematic software inspection approach in a
SPL project. The inspection steps are: i) planning; ii) preparation; iii) meeting; iv)
correction; and v) validation.

Nobauer et al. (NÖBAUER; SEYFF; GROHER, 2014): presents an eval-
uation of a tool-supported approach that enables the semi-automatic analysis of existing
products to calculate their similarity. This is achieved by identifying key information on
the reuse potential of existing software product configurations. The approach consists of
the following steps: i) select products for analysis; ii) define the scope of the analysis; iii)
define how similarity between selected configuration settings are calculated; iv) perform
similarity analysis; v) draw conclusions.

Sierszecki et al. (SIERSZECKI et al., 2014): concepts for further evolution
of a SPL approach from code-centric to a more holistic approach are discussed. Authors
show that moving further up by extending the variability management scope to require-
ments and portfolio management is a challenging task. They also outline a solution to
this challenge and present a prototype realization. This realization is composed of: i) cus-
tomer requirements; ii) product requirements; iii) software packages; iv) Implementation;
v) variant validation; vi) qualification test; and vii) software release.

SPLBench (KHTIRA; BENLARABI; ASRI, 2014): the framework uses
early customer requirements capitalizing on the specific products already generated. This
information is used for providing metrics that aid stakeholders to make decisions. The
framework is composed of several tasks: i) requirements stage, where elicitation, weight-
ing, and transformation of requirements language are performed; ii) benchmarking; iii)
features Stage, when the transformation of domain feature model do XML, and instanti-
ation of application feature models are executed.

PPSMS (ALSAWALQAH; KANG; LEE, 2014): mathematically formu-
lates optimized product platform scope that will maximize life cycle cost savings and the
amount of commonality, while meeting the goals and needs of the envisioned customers
segments. The method is divided into three main phases: i) analyzing customer needs
using the Kano model and prioritize features; ii) analyzing features for potential common-
ality and variability; iii) optimization phase where a mathematical model is constructed,
optimized with simulated annealing, and non-dominated solutions are analyzed.

Ianzen et al. (IANZEN et al., 2015): a semi-automatic approach to assist
in SPL scoping. The approach can help organizations that wish to migrate to the SPL
approach to begin mapping their products and view them as families in the same domain
that share components seen as common features. The activities may be described as: i)
Scoping using a proposed method for the semi-automatic identification and classification
of features based on artifacts of the organization’s product; ii) realize product engineering,

4.2. Results and RQ Answers 53

facilitating the evaluation of the variabilities and commonalities between the created SPL
and a new product.

Karimpour et al. (KARIMPOUR; RUHE, 2016): incorporates uncertainty
in scoping optimization and its application to generate robust solutions. Captures uncer-
tainty as part of the formulation and models scoping optimization as a multi-objective
problem with profit and stability as fitness functions. The proposal is divided into dif-
ferent approaches: i) plan the portfolio scoping based on high profits goals using robust
analysis algorithms; ii) incorporated uncertainty into SPL scope modeling; iii) perform
optimization by simulating changes in the environment.

Neto et al. (NETO et al., 2016): a hybrid approach not dependent on any
particular algorithm/technology. The approach can be split into several activities: i)
calculate feature costs; ii) calculate feature relevance and generate candidate products;
iii) calculate product suitability and select the best products.

ISPL (ALAM; KHAN; ZAFAR, 2017b; ALAM; KHAN; ZAFAR, 2017a):
the model is a mix of an aspect-oriented and a feature-oriented approach. The first ad-
dresses crosscutting concerns and functional behaviors of SPL while the latter is used to
capture variability and commonality of the products. The framework is composed of two
high-level processes: domain engineering and application engineering. SPL Scoping is
covered inside the domain engineering phase by the following activities: i) Potential SPL
and its products are identified. ii) The scope should be practically attainable; iii) The
output is a product portfolio, comprising of all potential products of the product family,
and a product roadmap.

CoMeS (OJEDA et al., 2018): a collaborative way of guiding the definition of
the scope, presents the tasks, and details the steps with the objective that the stakeholders’
team could perform the outcomes of each task and at the end of the scoping activity,
obtain a represented scope. The activities present in CoMeS are: i) Initial Meeting; ii)
Explore existing products; iii) Identify features, products, and sub-domains; iv) Specify
product map and establish objectives; v) Quantify product map and domains; vi) Closure
meeting.

Small-SPL (OJEDA; RODRIGUEZ; COLLAZOS, 2019): Small-SPL is a
process for SPL engineering for small development companies based on the SEI’s frame-
work. The life cycle SPL includes three sub-processes: Domain Engineering and Product
Engineering, geared by a third sub-process called Asset Management which is based on
Requirements. The scoping activities covered are: i) Study the objective domain; ii)
Identify needs; iii) Explore existing solutions; iv) List possible solutions and Identify fea-
tures; v) Establish common features; vi) Recognize variable features; vii) Diagram feature
model.

By analyzing the similar activities amongst these works, we were able to establish
a generic SPL scoping process, illustrated in Figure 7. Pre-Scoping is the first task, where

54 Chapter 4. A Systematic Literature Review on SPL Scoping

supporting concepts from the scoping concept map may be used, such as metrics definition.
The other activities are related which each scoping type. For instance, a market analysis
may be performed in the domain scoping activity. As presented in the BPMN model,
the activities related to the scoping type are not mandatory, however, at least one must
be performed. Lastly, the scoping closure activity is executed. This activity is generic
as several ways to close the scoping process may be performed, such as the evolution
planning, also extracted from the concept map.

Figure 7 – A Generic SPL Scoping Process

Source: Author

4.2.1.3 Types of Scoping

Once many studies are applied to some application, organizational and economic
contexts, i.e., considering different artifacts as input, the identification of scoping types
is also important for the selection of an approach for SPL. In the following we present
a characterization of approaches by types, deriving a conceptual map for supporting
software engineers towards the selection of an approach.

Details about the scoping types alongside other information such as evaluations
applied and domain of the proposal are shown in Table 7. Considering the scoping type, 18
studies covered all three types. Also, six approaches dealt with only domain scoping, eight
with both asset and domain, four with domain and product, seven with asset and product
scoping, and two with product scoping only. Concerning this topic, the works with higher
coverage may be considered more complete. For instance, PPSMS (ALSAWALQAH;
KANG; LEE, 2014) and SPLSmart (SOUZA et al., 2013) cover all scoping types and also
cover several concepts as shown in Table 6.

Table 7: Studies Summary

Study Scoping Type Evaluation Domain Year

PuLSE-CDA Bayer, Muthig e
Widen (2000)

Domain Manual SPL 1999

4.2. Results and RQ Answers 55

Table 7: Continued

Study Scoping Type Evaluation Domain Year

PuLSE deBaud e Schmid (1999) Asset, Domain Proof of con-
cept

SPL 1999

PuLSE-I Bayer et al. (2000) Asset, Domain,
Product

Manual SPL 2000

PulSE Knauber et al. (2000) Asset, Domain Case Study Architecture
CAD systems

2000

Kishi, Noda e Katayama (2002) Product Case Study Intelligent
Transport Sys-
tems

2002

PuLSE Schmid (2000) Domain Case Study SPL 2000
PuLSE Schmid (2002) Asset, Domain,

Product
Case Study SPL 2002

PuLSE Schmid et al. (2005) Asset, Domain,
Product

Case Study SPL 2005

Park e Kim (2005) Domain Proof of
Concept

SPL 2005

FARE Ramachandran e Allen
(2005)

Domain Proof of con-
cept, Manual

SPL 2005

PuLSE John et al. (2006) Asset, Domain Case Study SPL 2006
Her et al. (2007) Asset, Product Case Study SPL Quality 2007
Noor, Grünbacher e Briggs
(2007)

Asset, Domain Case Study SPL reengineer-
ing

2007

Noor, Grünbacher e Hoyer
(2008)

Asset, Domain Case Study SPL reengineer-
ing

2008

DRAMA Kim, Park e Sugu-
maran (2008)

Asset, Domain Quasi-
experiment,
Manual

SPLE 2008

Planning Game in SPLE Carbon
et al. (2008)

Asset, Domain Case Study Agile Methods 2008

CADSE Estublier, Dieng e Lev-
eque (2010)

Asset, Product Manual,
Proof of
concept

SPL 2010

CAVE John (2010) Asset, Domain,
Product

Case Study SPL 2010

COPE+ Ullah, Ruhe e Garousi
(2010)

Product Proof of con-
cept

SPL 2010

PLiCs Elsner et al. (2010) Asset, Domain,
Product

Case Study,
Manual

SPL 2010

PLEvo-Scoping Villela, Dörr e
John (2010)

Asset, Domain,
Product

Quasi-
experiment

SPL 2010

PulSE-Eco Mærsk-Møller e Jør-
gensen (2010)

Asset, Domain,
Product

Case Study S-M-Sized
Enterprises

2010

Cavalcanti et al. (2011) Asset, Product Proof of con-
cept

SPL 2011

56 Chapter 4. A Systematic Literature Review on SPL Scoping

Table 7: Continued

Study Scoping Type Evaluation Domain Year

RiPLE-SC Balbino, Almeida e
Meira (2011)

Asset, Domain,
Product

Manual Agile Methods 2011

VB Portfolio Opt. Muller (2011) Domain, Product Proof of con-
cept

SPL 2011

Acher et al. (2012) Asset, Product Experiment SPL 2012
Bartholdt e Becker (2012) Asset, Domain,

Product
Manual,
Other

Healthcare 2012

Gillain et al. (2012) Domain, Product Case Study SPL 2012
Pro-PD O’Leary, Almeida e
Richardson (2012)

Asset, Product Manual,
Other

SPL 2012

RiPLE-SC Lobato et al. (2012) Asset, Domain,
Product

Case Study Healthcare 2012

ASPLE Abbas e Andersson
(2013)

Domain, Asset Proof of con-
cept

Self-adaptive
systems

2013

Cruz et al. (2013) Asset, Domain,
Product

Proof of con-
cept, Survey

SPL 2013

SPLSmart Souza et al. (2013) Asset, Domain,
Product

Case Study SPL Inspection 2002

Nöbauer, Seyff e Groher (2014) Domain Case Study SPL 2014
RiPLE-SC Silva et al. (2014) Asset, Domain,

Product
Case Study Agile Methods 2014

Sierszecki et al. (2014) Asset, Product Case Study Embedded con-
trollers

2014

SPLBench Khtira, Benlarabi e
Asri (2014)

Asset, Domain,
Product

Proof of con-
cept

SPL 2014

PPSMS Alsawalqah, Kang e Lee
(2014)

Asset, Domain,
Product

Case Study SPL 2014

Ianzen et al. (2015) Asset, Product Experiment SPL 2015
Karimpour e Ruhe (2016) Domain, Product Experiment SPL 2016
Neto et al. (2016) Domain, Product Case Study SPL 2016
ISPL Alam, Khan e Zafar
(2017b)

Asset, Domain,
Product

Manual SPLE Security 2017

ISPL Alam, Khan e Zafar
(2017a)

Asset, Domain,
Product

Survey SPLE Security 2017

CoMeS Ojeda et al. (2018) Asset, Domain,
Product

Proof of con-
cept

SPL 2018

Small-SPL Ojeda, Rodriguez e
Collazos (2019)

Domain Quasi-
experiment

S-M-Sized
Enterprises

2019

Source: Author.

Riple-SC (BALBINO; ALMEIDA; MEIRA, 2011; SILVA et al., 2014; LOBATO
et al., 2012) covers all scoping types by providing a well-defined agile process composed of
tasks, guidelines, and roles. Another approach covering all activities, CoMeS (OJEDA et

4.2. Results and RQ Answers 57

al., 2018), presents a collaborative way of guiding the definition of the scope. The method
presents tasks that a team of stakeholders may perform and will generate the represented
scope of the SPL.

Another proposal covering all scoping types is PLEvo-Scoping (VILLELA; DÖRR;
JOHN, 2010) which was defined as a complement and extension of other SPL scoping ap-
proaches. This goal is achieved by aiding the SPL scoping team to anticipate emerging
stable features and distinguish them from unstable ones.

4.2.1.4 Adaptation

When analyzing the approaches to understand how they handle the capability of
adaptation to different organizational contexts/scenarios, we can observe that the topic
is covered using different strategies. Further discussion on the adaption of existing ap-
proaches is presented next.

The work of Alsawalqah et al. (ALSAWALQAH; KANG; LEE, 2014) uses a set of
rules for defining possible scenarios. These scenarios are responsible for the result of the
cost calculations. Thus, their approach handles the scoping costs according to the sce-
nario of the organization. Cavalcanti et al. (CAVALCANTI et al., 2011) metamodel also
considers organization scenario. The metamodel was designed for modeling the scoping
according to different scenarios.

PLiCs (ELSNER et al., 2010) was designed for customizable SPL. Authors dis-
cuss the approach applicability in other contexts, besides the one shown in their case
study. Similar to CAVE (JOHN, 2010), which is applicable in different situations based
on existing documentation, as it was designed as a generic process. COPE+ (ULLAH;
RUHE; GAROUSI, 2010) also is customizable according to the organization’s business
and technical parameters. Her et al. (HER et al., 2007) goes further in that area, as their
framework contains guidelines to aid its application in different projects.

The proposal presented by Gillain et al. (GILLAIN et al., 2012) is context-aware
and may be instantiated in different contexts, as the authors show in their study. Their
mathematical model considers market strategies as one of the aspects of defining the
instantiation. Neto et al. (NETO et al., 2016) presents a different strategy using fuzzy
sets associated with a fuzzy inference system.

Lastly, PuLSE (DEBAUD; SCHMID, 1999; BAYER; MUTHIG; WIDEN, 2000;
BAYER et al., 2000; KNAUBER et al., 2000; SCHMID, 2000; SCHMID, 2002; SCHMID
et al., 2005) presents a sub-process called PuLSE-BC. This sub-process defines the adapta-
tion/customization of PuLSE-CDA according to the context where it will be applied. This
customization ensures that the process and the products are appropriate. Several works
have reported a customized PuLSE process (JOHN et al., 2006; MÆRSK-MØLLER;
JØRGENSEN, 2010; SCHMID et al., 2005).

58 Chapter 4. A Systematic Literature Review on SPL Scoping

Answering RQ1: What are the similarities and differences among the
approaches? We were able to define a SPL scoping concept map (Figure 6) cate-
gorizing all different concepts mapped from the studies. By analyzing the traceability
of each approach to these concepts, we could understand how each concept relates
to each other. This analysis gave us evidence to establish a generic SPL scoping
process (Figure 7) which represents the different scoping types. For handling these
required adaptations, approaches use different strategies, such as using cost mod-
els, analyzing existing documentation or deriving their approach following a specific
adaptation activity.

4.2.2 RQ.2 How are existing scoping approaches evaluated?

The selection of an approach may also be affected by the maturity of an approach,
which is directly related to the contexts where studies have been applied. In this section,
we present the methodological aspects of the analyzed studies including their evaluations
and the domains where the evaluation was applied.

4.2.2.1 Evaluations Applied

As defined in our protocol, all studies included in this SLR present some eval-
uation, which are summarized in Table 7. In Figure 8, we crossed the evaluations with
the publication year giving an overview of the number of different evaluations among the
years. The most applied empirical evaluation was the case study, performed in 21 studies.
The reason would be the context of a case study protocol, as we understand that applying
SPL approaches in real organizations gives more reliability to the proposal. We noticed,
however, a lack of controlled experiments as only three were present in the studies. Al-
though case studies are more indicated to evaluate in real scenarios, experiments are still
important when the researchers intend to monitor and compare their proposals with sim-
ilar ones. Also, three works performed quasi-experiments for evaluating their approach.
And one work (ALAM; KHAN; ZAFAR, 2017a) performed a survey with experts.

There were also non-empirical evaluations performed in 19 studies. The proof of
concept was applied in ten studies, while manual comparisons were performed by eight,
and one study performed a survey. Although these strategies for evaluating an approach
may provide important results, they lack the reliability of empirical evaluations. Figure 8
also shows that the number of studies related to SPL scoping has decreased in the last five
years. This decreasing number may be a result of the organization’s lack of understanding
of the real benefits obtained from adopting well-defined SPL scoping approaches. Such
benefits include the decision-making process, discussed in Section 4.2.3.

4.2. Results and RQ Answers 59

Figure 8 – Evaluations by Year

2014
2013

Quasi-experiment

Proof of Concept

Experiment

Case Study

2006
2005

2002
2000

1999
2018

2017
2016

2015

Survey

2012
2011

2010
2008

2007

Manual

2019
2014

2013
2006

2005
2002

2000
1999

2018
2017

2016
2015

2012
2011

2010
2008

2007
2019

1

1

2 3

2

1 3

1

1

1

2

4

1

1

2

1

1

1

1

22

1

1

1

1

1

1

1

2

2

1

Source: Author.

4.2.2.2 Evaluation Domains

When extracting the domain on which the approaches were evaluated, we wanted
to identify if approaches were focusing on specific domains. Most of the domains iden-
tified, however, were only referred by the authors as SPL. Despite the SPL domain, we
analyzed studies that were applied in systems of specific domains. ASPLE (ABBAS; AN-
DERSSON, 2013) may be also applied for self-adaptive systems. RiPLE-SC (BALBINO;
ALMEIDA; MEIRA, 2011; SILVA et al., 2014; LOBATO et al., 2012) and the work of
Carbon et al. (2008) were designed specifically for agile environments. The proposal of
Kishi et al. was evaluated in a case study using intelligent transport systems. PuLSE
was also evaluated using systems of a specific domain, the architecture CAD systems.
The studies of Noor et al. (NOOR; GRüNBACHER; BRIGGS, 2007; NOOR; GRÜN-
BACHER; HOYER, 2008) were applied for SPL reengineering of legacy systems. While
ISPL (ALAM; KHAN; ZAFAR, 2017b; ALAM; KHAN; ZAFAR, 2017a) was designed for
secure SPLs. Some works (BARTHOLDT; BECKER, 2012; LOBATO et al., 2012) also
evaluated their approach with healthcare systems.

Considering organization scenarios, two pieces of work (MÆRSK-MØLLER; JØR-
GENSEN, 2010; OJEDA; RODRIGUEZ; COLLAZOS, 2019) were designed for small and
medium-sized enterprises. These studies are important as usually, these companies lack
the project resources of big companies for performing SPL scoping. Thus, such approaches
may aid these companies to reduce the effort and costs of scoping their SPL.

60 Chapter 4. A Systematic Literature Review on SPL Scoping

Answering RQ2: How are existing scoping approaches evaluated? We
conclude that most of the evaluations applied by the approaches focused on measuring
how these approaches may benefit the organizations in real projects, as 21 studies
applied case studies. As for evaluations domains, we identified works applicable
in agile environments, self-adaptive systems, SPL reengineering, secure SPLs, and
small and medium-sized companies.

4.2.3 RQ.3 How is the decision making during the process of SPL scope
definition?

In this section, we discuss the topics regarding the decisions made during the
approaches life-cycle. Two major aspects are used for making decisions concerning SPL
scoping: cost models and metrics.

4.2.3.1 Cost Models

Costs related to scoping activities are not covered by all studies as only eight ap-
proaches presented some contribution. The work of Alsawalqah et al. (ALSAWALQAH;
KANG; LEE, 2014) considers the estimation of feature costs which are calculated ac-
cording to the scenario where the approach is being applied. Balbino et al. (BALBINO;
ALMEIDA; MEIRA, 2011) possesses a specific task with regard to identifying business
goals. During the execution of this task, economic and social activity is analyzed for
identifying future costs.

Authors from (CRUZ et al., 2013) formalized the inferences of development costs
using mathematical equations. This is considered during the Scoping process. The work
presented in (GILLAIN et al., 2012) makes use of cost functions from other works. These
cost functions are integrated within their mathematical model. The work of Karimpour
et al. (KARIMPOUR; RUHE, 2016) considers profit as a goal for planning a scoping
portfolio. The portfolio provides metrics such as costs for calculating profit using specific
functions. Kishi et al. (KISHI; NODA; KATAYAMA, 2002) uses cost as a quality attribute
for decision making during the scoping process. The Value-Based Portfolio Optimization
approach presented in (MULLER, 2011) considers a Cost-Revenue for defining the profit
related to the SPLE.

Neto et al. (NETO et al., 2016) uses the results of feature cost metrics for gen-
erating candidate products for the SPL aiming at a higher return of investment. A dif-
ferent strategy is used by Noor et al. in their works (NOOR; GRüNBACHER; BRIGGS,
2007) (NOOR; GRÜNBACHER; HOYER, 2008) where several strategies are used to pro-
vide initial cost/effort estimation for adapting logical components while modeling scoping.

There is also Pro-PD approach (O’LEARY; ALMEIDA; RICHARDSON, 2012)

4.2. Results and RQ Answers 61

which considers the cost calculation for taking decisions as their approach possesses cost-
dependent activities. In (PARK; KIM, 2005) metrics are defined for calculating the cost of
different aspects of the scoping process. While in (RAMACHANDRAN; ALLEN, 2005),
cost-benefit analysis is due to mathematical expressions.

4.2.3.2 Metrics for Scoping

Considering metrics for defining scoping, in (ABBAS; ANDERSSON, 2013) the
authors use quality attribute scenarios (QAS). These QAS are composed of different
elements that are related to three variability questions: i) why does it vary? ii) what does
vary? and iii) how does it vary? The authors also extended these QAS with additional
elements than can be used for specifying the variability in terms of variation-points and
constraints. Alsawalqah et al. (ALSAWALQAH; KANG; LEE, 2014) included in their
approach the Kano model of customer satisfaction, which is used for classifying and
prioritize customer needs based on how these needs affect their satisfaction.

The RiPLE-SC (BALBINO; ALMEIDA; MEIRA, 2011; SILVA et al., 2014; LO-
BATO et al., 2012) approach presents a specific phase related with metrics. During this
phase, metrics are created based on business goals and are categorized as development
benefits metrics and characterization metrics. These metrics are applied to prioritize a
product map, selecting the features with more potential for the SPL. A similar strategy is
used by Kishi et al. (KISHI; NODA; KATAYAMA, 2002), where the metrics are defined
using a decision-making method, the analytic hierarchy process (AHP). The AHP method
considers the most desirable architectural candidates according to some decision criteria.
The results of this selection are used for calculating the applicability of the architectural
candidates for each product of the SPL.

The metamodel presented by Cavalcanti et al. (CAVALCANTI et al., 2011) con-
siders the importance of metrics in SPL scoping. The metamodel includes the abstraction
of these metrics allowing their instantiation based on a specific scenario. As their approach
considers metrics in a modeling level, the work of Neto et al. (NETO et al., 2016) uses
metrics in a source code level. The first metric is related to the level of interdependence
between scoping assets. The second metric represents the number of lines of code asso-
ciated with each asset. The last metric considered is the number of flows represented by
each asset of the SPL. The studies of Noor et al. (NOOR; GRüNBACHER; BRIGGS,
2007; NOOR; GRÜNBACHER; HOYER, 2008) also consider metrics in a source code
level such as the size of files and methods of a file. Other metrics such as complexity,
dependencies, and understandability of the source code are also measured for decision
making regarding the SPL.

In (CRUZ et al., 2013), the cyclomatic complexity and the size of product assets
are calculated considering metrics from a Metric tool. The work presented in (KHTIRA;
BENLARABI; ASRI, 2014), considers metrics for performing the bench-marking of the

62 Chapter 4. A Systematic Literature Review on SPL Scoping

SPL. These metrics are the number of products per requirements, requirements per prod-
uct, number of requirements per product, an average of requirements in products, re-
quirements of the best product, new requirements, percentage of new requirements, non-
implemented requirements, and percentage of non-implemented requirements.

The work of Her et al. (HER et al., 2007) is completely designed around quality
metrics. These metrics are defined based on quality attributes from the ISO/IEC 9126.
As their set of metrics is extensive, three of these are specifically designed for scoping:
functional coverage, non-functional commonality, and variability richness. In addition, the
work of (PARK; KIM, 2005) merges metrics with cost models, using a set of metrics to
analyze the economical aspects and value of the SPL. Lastly, the COPE+ approach (UL-
LAH; RUHE; GAROUSI, 2010) uses a small set of metrics to measure similarities among
product portfolios.

Answering RQ3: How is the decision making during the process of SPL
scope definition? The decision making during the SPL scoping process is directly
related to the economic aspects of the organization. Such aspects were analyzed by
different studies using different types of mathematical/cost models. In this sense,
cost models were used for calculating and making decisions when considering the
business aspects of the organization. A similar strategy is followed by other studies;
however, they have defined metrics based on business and development aspects. Such
metrics are used similarly to the cost models, making decisions during the SPL
development.

4.2.4 RQ.4. What are the open research gaps and opportunities for new
studies on the topic of SPL scoping?

In this section, we present and discuss the research gaps and opportunities iden-
tified by our findings. These opportunities are categorized according to SPL scoping
concepts.

Decision Making: As we identified, many aspects of SPL scoping are used for
decision making. In this context, some works planned to further investigate how decisions
may be addressed based on different elements of the SPL. In (ALSAWALQAH; KANG;
LEE, 2014), the authors discuss that business factors must be addressed to provide more
comprehensive decision support for their framework. These factors may aid the team to
decide how to prioritize the SPL features. In (BAYER et al., 2000), the authors stated
that they will work on a guidebook, containing lessons learned from their experience.
Such a guidebook will be incorporated into their process. A similar gap is identified in
(ESTUBLIER; DIENG; LEVEQUE, 2010), where the authors argue that heuristics could
be used to improve their process. In (JOHN et al., 2006), authors cite that in the future,
they plan to create a model for scoping and SPL goals that may be integrated into their

4.2. Results and RQ Answers 63

approach and used for introducing the SPL concept into an organization.
Similar to these examples, in (GILLAIN et al., 2012), the authors plan to in-

vestigate in future work how to integrate customer decisions based on the analysis of
competitors’ products. Their work is also one of those that utilize cost models for making
decisions. As the market analysis is important, so it is the consideration of cost-benefit
from the SPL perspective. Thus, mathematical models capable of calculating costs are
important when considering SPL scoping such as those presented in their work (GILLAIN
et al., 2012). In this sense, guidelines are important to ease the complexity of this calcu-
lation. Also, the authors of (GILLAIN et al., 2012) intend to extend their cost functions
to further integrate them into mathematical models. Thus, integrating risk management
based on these cost models. Risk management is also discussed in the future work of
(LOBATO et al., 2012). In their case, however, the idea is to combine their experience
obtained for executing different case studies. Another work that mentions the improve-
ment of cost modes as future work is (SCHMID, 2002), as authors intend to improve
market aspects of their proposal.

Another aspect of decision making is the use of metrics. When analyzing the
metrics proposed or used by the studies, we noticed that this aspect of the approaches
needs more formalization. As reported in (CAVALCANTI et al., 2011), the management
of metrics is important for detailing SPL scoping on a technical level. Using the ISO/IEC
for defining such metrics may aid to formalize this process as presented in (HER et al.,
2007). In this sense, the authors from (ACHER et al., 2012) plan, in future work, to adapt
existing metrics to further characterize properties of the FMs generated by their approach.
Another future work discussing the use of metrics is presented in (CAVALCANTI et
al., 2011), where the authors plan to extend their metamodel for supporting metrics
management. In (KHTIRA; BENLARABI; ASRI, 2014), the use of metrics is also cited
as future work. In this case, the authors plan to add new metrics related to cost estimation,
which related to the use of cost models.

Adaptation and Evaluation: Although different adaption strategies are used
in different approaches, this is still a challenge, as mentioned in (SILVA et al., 2014).
According to them, the SPL scoping process should consider the organizational aspects of
the company. A similar problem is discussed in (KNAUBER et al., 2000), where authors
argued that in small companies, where project resources and data are short, the team
would not devote their time for gathering additional data to perform Scoping. However,
the authors also stated that their proposal, PuLSE-Eco, handles this problem by only
requiring little effort on the side of the company.

As we presented in Figure 8, empirical evaluations have being performed in most
studies. However, we also identified that several authors argued that their proposals
needed additional evaluations to collect more evidence about their capabilities and ma-
turity (ACHER et al., 2012; ALAM; KHAN; ZAFAR, 2017b; BALBINO; ALMEIDA;

64 Chapter 4. A Systematic Literature Review on SPL Scoping

MEIRA, 2011; CARBON et al., 2008; CRUZ et al., 2013; SILVA et al., 2014; ES-
TUBLIER; DIENG; LEVEQUE, 2010; HER et al., 2007; IANZEN et al., 2015; KIM;
PARK; SUGUMARAN, 2008; MÆRSK-MØLLER; JØRGENSEN, 2010; MULLER, 2011;
NETO et al., 2016; NOOR; GRÜNBACHER; HOYER, 2008; SCHMID, 2000; VILLELA;
DÖRR; JOHN, 2010; SOUZA et al., 2013; SIERSZECKI et al., 2014; OJEDA; RO-
DRIGUEZ; COLLAZOS, 2019). The most common problem stated is related to the lack
of sufficient evidence to consider their proposal to be reliable. Thus, many approaches
still need more solid evaluations.

Other research opportunities: When analyzing the open research oppor-
tunities in the field, one aspect that was clear in the works is the lack of supporting
tools. We conclude this as only a few tools were found in the proposals. For instance,
DRAMA (KIM; PARK; SUGUMARAN, 2008) is a process with an automation support-
ing tool. Other processes use tools for specific tasks, such as PuLSE-BEAT in (JOHN et
al., 2006) and an untitled tool in (SILVA et al., 2014). We notice, however, that tools
are cited as future works of several studies (GILLAIN et al., 2012; DEBAUD; SCHMID,
1999; NOOR; GRÜNBACHER; HOYER, 2008; ACHER et al., 2012; ALSAWALQAH;
KANG; LEE, 2014; JOHN, 2010; KHTIRA; BENLARABI; ASRI, 2014; PARK; KIM,
2005). This may indicate that developing and evaluating such tools in different organiza-
tional aspects is still an open research opportunity in the field. Hence, researchers may
guide their future works by trying to answer the following RQs: What features should
be present in an SPL scoping supporting tool? How to evaluate such tool?

A similar conclusion was achieved based on the domains for which the propos-
als were proposed. To the best of our knowledge, SPL reengineering is important as we
understand that it is a common strategy used by organizations when migrating to an
SPL context SPL (KRUEGER, 2001). In this sense, only Noor et al. (NOOR; GRüN-
BACHER; BRIGGS, 2007; NOOR; GRÜNBACHER; HOYER, 2008) have covered this
aspect, leaving opportunities for further investigation is this area when considering SPL
scoping. Thus, future works may try to answer the following RQs: How can SPL
reengineering and SPL scoping be integrated? Which are the main benefits
and drawbacks?

Another aspect discussed among the works is the effort required to perform scop-
ing related activities as this process demands much effort from the companies. In this
sense, (SILVA et al., 2014) argued that reducing the effort of SPL scoping is an important
challenge in the field. A similar conclusion is presented in (KARIMPOUR; RUHE, 2016),
where authors stated that for their approach effort should be reduced. Similar future
work is stated by the authors in (ULLAH; RUHE; GAROUSI, 2010). One of the possible
strategies for overcoming this challenge, as mentioned in (SILVA et al., 2014), is the use of
agile practices for requirements engineering. This strategy is being used in the Riple-SC
framework (BALBINO; ALMEIDA; MEIRA, 2011). However, additional strategies may

4.2. Results and RQ Answers 65

be used for handling the issue related to the demanding effort of scoping the SPL. These
possibilities make a possible RQ emerges: Which strategies and techniques may be
used for reducing the effort of scoping an SPL?

Answering RQ4: What are the open research gaps and opportunities
for new studies on the topic of SPL scoping? As a result of answering
our RQs, we identified several aspects of improvement in the SPL scoping field.
Decision making using cost models and metrics is still not well formalized, further
investigation should be performed and even guidelines may be proposed. Adaptation
of approaches and their evaluation are aspects that may also require further investi-
gation. For the latter, evaluations considering different organizational aspects may
collect evidence about how the adaptation may benefit companies. Considering open
research opportunities, we concluded that supporting tools, SPL reengineering, and
strategies for reducing the SPL scoping effort may be investigated and even combined
to increase the reliability and appeal of approaches in the field.

4.2.5 Threats to Validity

In this section, we discuss the main threats to validity related to our SLR and
present how we mitigated them based on (WOHLIN et al., 2012; AMPATZOGLOU et
al., 2019).

Conclusion validity: Researchers are usually not aware of their own bias during
the analysis and classification of studies. This bias could negatively impact the results of
the SLR. An additional threat is a possible inaccuracy during data extraction. Therefore,
trying to mitigate both threats, two researchers independently performed the QA and
data extraction from the studies. In the case of divergences, an additional researcher was
assigned to discussing divergent points. Lastly, the fishing and error rate problems may
impact the conclusions of an SLR. We handle this problem by achieving our conclusions
and answering our RQs after collecting and analyzing the results of all 45 studies.

Internal validity: Publication bias refers to SPL scoping approaches that were
not selected due to research results not being satisfactory. To mitigate this threat, the
analysis of the studies in this field was performed considering a large sample of the stud-
ies. An additional threat is the inclusion of studies considered to have low quality, thus,
negatively impacting the RQs answers. For mitigating this threat, we defined and ap-
plied QAs, classifying, and guaranteeing that each study selected contained at least the
minimum information required for answering our RQs. Another possible threat is the low
number of studies analyzed, which may not represent the field. We mitigated this problem
by selecting and analyzing a large set of studies. When compared to related reviews (see
Section 4.3), we analyzed 30 additional studies.

Construct validity: Not retrieving studies due to their absence from a certain

66 Chapter 4. A Systematic Literature Review on SPL Scoping

database is an additional major threat. We mitigated this problem by using different digi-
tal libraries which index a large amount of conferences proceedings and journals. Besides,
we conducted a snowballing, which is a technique independent of DLs. To mitigate the
issue related to the inclusion/exclusion of relevant works, two researchers applied indepen-
dently a set of well-defined exclusion and inclusion criteria, as well as QA for qualification
and classification of studies. In the case of divergences, a third researcher would present
its opinion. These strategies give our SLR reliability regarding the studies retrieved.

External validity: A possible external threat is related to the coherence of
our results. In this sense, as we based our SLR protocol on well-defined SLR guide-
lines (KITCHENHAM et al., 2010) we believe that we achieved satisfactory results for
answering our RQs. Considering the RQs answers, we tried to perform a generic anal-
ysis of the data collected, considering both academic and practice points of view. An
additional threat is related to the incorrect identification of the research opportunities
discussed in RQ4. To mitigate this threat, we extracted the limitations and future work
described by the authors in each study. After documenting this information, we analyzed
whether the limitations of one study was covered by another or not. We also considered
open research opportunities that were pointed out as future work by several studies, such
as the development of supporting tools.

4.3 Related Work

When considering secondary studies, we may find several in the SPL field. For
the past decade, more than 60 relevant secondary studies, including systematic reviews
were conducted in this field (MARIMUTHU; CHANDRASEKARAN, 2017). Among
these, we have reviews focusing on SPL requirements (ALVES et al., 2010; SEPÚLVEDA;
CRAVERO; CACHERO, 2016; KHURUM; GORSCHEK, 2009), SPL quality attributes
(MONTAGUD; ABRAHÃO; INSFRAN, 2012), SPL reengineering (ASSUNÇÃO et al.,
2017; LAGUNA; CRESPO, 2013) and SPL testing (MACHADO et al., 2014; ENGSTRöM;
RUNESON, 2011; NETO et al., 2011). Despite their important contributions to the field,
however, there are few studies in the literature comparing SPL scoping approaches. Table
8 summarizes these contributions: three studies identified as related to this SLR. In this
section, we describe these studies in comparison with our SLR, discussing their focus in
analyzing the state of the art for SPL scoping approaches.

Schmid (SCHMID, 2000) reported a survey analyzing a set of scoping approaches.
The survey analyzed technological approaches considering four dimensions: scoping tasks,
the object of scoping, scoping product, and scoping process. The survey considered works
outside the software discipline. The author used a framework to structure the scoping
field with four goals: organize and structure the scoping field; analyze scoping approaches
considering their benefits and drawbacks to provide an overview of the field; assist the
selection of existing approaches; assist the improvement of existing methods and de-

4.3. Related Work 67

Table 8 – Summary of Related Work

Ref. Year Protocol Studies
Analyzed

Main Goal

Schmid (2000) 2000 Survey 13 Analyze technological proposals for SPL scop-
ing considering scoping tasks, object of scop-
ing, scoping products and scoping process.

John e Eisen-
barth (2009)

2009 Survey 16 Investigate SPL scoping approaches among
their goals, variability management; inputs
and outputs among other characteristics.

Moraes,
Almeida e
Romero (2009)

2009 SLR 13 Investigate SPL scoping approaches and iden-
tify scope definition techniques, analyzing
their properties, in addition to strong points
and drawbacks.

Our SLR 2019 SLR 45 Identify similarities and differences among
SPL scoping approaches and processes, busi-
ness aspects, conceptual characteristics and
research opportunities.

Source: Author.

velopment of new ones. The approaches analyzed were categorized into three scoping
categories: product line scoping, domain scoping, and asset scoping. When conducting
our SLR, we apply the same classification. This classification was combined with the goal
of the approaches which could be for identification, evaluation, or optimization of scope.

The survey results may be used to better understand the SPL scoping activity,
by organizing its results among the proposed dimensions it was possible to identify con-
siderable differences among the proposals. Although we have similar goals, our SLR will
focus on more technical aspects of the proposals, such as scoping types, metrics, and cost
models.

John e Eisenbarth (2009) presented the results of another survey aiming to inves-
tigate some aspects in SPL scoping: the goal of the approaches; variability management;
inputs and outputs of the approaches; roles; effort to perform scoping activities; and ma-
turity and benefits of the approaches analyzed. To investigate these aspects the authors
formulated three main goals: identify the connection between scoping and requirements
engineering; identify the connection between scoping and architecture; how the approaches
handle the production of quantifiable results. These two works (SCHMID, 2000; JOHN;
EISENBARTH, 2009), did not apply any systematic review protocol, thus their reviews
are not repeatable. The SR presented in (MORAES; ALMEIDA; ROMERO, 2009), how-
ever, applied such a protocol allowing users to reuse its protocol.

The main goal of the SR presented by Moraes, Almeida e Romero (2009) is to
investigate the existent SPL scoping approaches to identify scope definition techniques,
analyzing their properties, in addition to strong points and drawbacks. Their strongest
contribution is to serve as a guide to practitioners to identify the more appropriate ap-
proach to be used in an industrial context. These goals are similar to our SLR goals.
However, we intend to identify information that was not analyzed by them, such as

68 Chapter 4. A Systematic Literature Review on SPL Scoping

re-factoring strategies, commonalities and variabilities, and domains. Despite these dif-
ferences, as their work was conducted in 2009, our SLR included SPL scoping approaches
published in the last ten years. Their work reported the result of an analysis performed
in eleven primary studies, which were used to extract information used in our protocol,
such as keywords, and terms for the search strings definition.

Another comparison work was presented in (LEE; KANG; LEE, 2010) where
the authors compared and analyzed three called “mainstream approaches”. The authors
presented a framework to perform such comparisons. The result was the extraction of
their essential components and the creation of a unified approach.

4.4 Chapter Lessons

In this chapter, we presented the protocol and results of a SLR on SPL Scoping.
With the results of this SLR, we could achieve different contributions:

i We provide a comprehensive analysis of the current literature on the topic of SPL
scoping. Our work encompasses more than 10 years of advance in this research topic
with 32 additional papers about previous mappings and surveys on this topic.

ii For practitioners our work contributes by providing a generic scoping process, based
on similarities found on existing approaches, to guide those companies envisaging
the adoption or migration towards SPLs.

iii This SLR supports researchers on understanding the current body of knowledge on
SPL scoping in terms of existing approaches, concepts. Furthermore, we describe
identified open challenges and research opportunities to conduct new studies.

This SLR is important to our work due to two aspects: i) it provides information
used form improving PAxSPL; ii) it is used for identifying related works, discussed in
Chapter 7.

69

5 PAXSPL

In this chapter, we present the PAxSPL framework. The version presented here
includes the improvements made based on the future work defined in Marchezan et al.
(2019b). Section 5.1 presents an overview of the PAxSPL process, detailing each phase.
Section 5.2 discusses how the customization is handled in terms of feature retrieval and
SPL scoping. The PAxSPL guidelines are presented in Section 5.3. The supporting tools
are discussed in Section 5.4 These two aspects are part of our proposed framework. This
framework is presented in Figure 9. As stated, the framework is composed of a process
that follows a set of guidelines that guide the tool execution, supporting the process.

Figure 9 – PAxSPL Framework

Source: Author

5.1 PAxSPL Process

To aid the decisions related to selecting the strategies and techniques for feature
retrieval, and SPL scoping, we defined PAxSPL main workflow. The process is presented
in Figure 10, divided into three main phases: prepare, assemble, and execute.

5.1.1 Prepare

To prepare the process assembly, the information is collected in the first phase
of PAxSPL. The first activity is, therefore, to Collect Team Information, as illustrates
Figure 10. During this activity, information about the team is collected. This information

70 Chapter 5. PAxSPL

Figure 10 – The Prepare, Assemble and Execute Process for Software Product Line
Reengineering.

Source: Author.

includes the experience, skills, knowledge, and preferences of each member. The second
activity is Assign Roles based on the information collected on the previous activity.
Possible roles are: Domain Engineer, Analyst, Architect and Developer. These roles
are related with the following sub-process, which is Perform Documentation Analysis,
detailed in Figure 11. Here, domain information, constraints, and glossary are collected
by the Domain Engineer. This activity allows the user to collect and analyze information
regarding SPL scoping, such as descriptions of domain models and reuse benefits and
risks. Requirements information of the products is gathered by the Analyst. Information
about architecture and artifacts is registered by the Architect. Also, the Developer
may document technologies and development information. The main contribution of
Prepare is the generation of a Documentation Set, composed of artifacts and information
used during the Assemble phase. The Documentation Set artifacts may include product
architecture, requirements, domain information, and team information. Some artifacts
have a higher level of impact when choosing a technique, but they all must be used to
assemble the process.

5.1.2 Assemble

In this phase, the information collected is analyzed and techniques are selected
and assembled into the generic process. The first sub-process is to Select Techniques,
here, the data collected previously is analyzed to help the selection of techniques for
feature retrieval (Figure 12). First, a candidate technique is selected to be analyzed. This
selection is made based on artifacts from the documentation set, (e.g., team members
experience with the technique). After the candidate technique is selected, it must be

5.1. PAxSPL Process 71

Figure 11 – Perform Documentation Analysis Sub-process.

Source: Author.

analyzed considering three points. The first is practical examples, which are examples
of the technique found in the literature. The second is a comparison among techniques
recommended scenarios with the current scenario, also found in the literature. The users
should analyze whether their scenario contains some similarities in comparison with the
scenarios for which the technique was used. Lastly, users should check available product
artifacts with technique artifacts, for instance, if a technique uses requirements artifacts,
this type of artifact should be available. Based on the analysis performed considering those
three points, the user must decide to use the techniques or not. If the technique qualifies
to be used, it is included as a selected technique, then related and support techniques are
analyzed to decide whether they may be candidate techniques. The decision of including
or not the technique must be registered along with its reasons. If another technique is
considered a candidate the process repeats.

The second activity during the Assemble phase is Assemble Techniques (Fig-
ure 10). In this activity, the chosen techniques are assembled inside our generic process,
shown in Figure 13. The generic process consists of the main activities performed during
the feature retrieval process considering the literature mapped during our process cre-
ation. Extract, Categorize and Group are basic activities performed with the features
prior to the creation of the feature model. After the end of each activity, we placed a
check gateway, implying to the user that some kind of checking may be performed before
moving to the next activity. The retrieval techniques, presented in Figure 15 are assem-
bled into the generic process, generating the assembled process. The assembled process is

72 Chapter 5. PAxSPL

Figure 12 – Select Techniques Sub-process.

Source: Author.

customized according to the scenario where PAxSPL has been applied, giving our process
flexibility to be applied in different situations. To help the assembly of techniques, we
created in the guidelines what we call a priority order attribute for each technique. This
attribute shows in which step of our generic process each feature retrieval technique may
best fit. The last Assemble activity is Assign Tasks where each member of the team will
receive a task to perform during the retrieval process execution. These tasks are not di-
rectly related with the roles used during the Perform Documentation Analysis activity,
they are related to the retrieval tasks (e.g., extract features). In this case, one member
may perform more than one task and a task can be performed by multiple members.

Figure 13 – The Generic Process for Feature Retrieval and Analysis.

Source: Author.

Considering the scoping line pool in Figure 10, we have a parallel gateway which
divides the main workflow into the feature retrieval and scoping. Thus, still, during the
Assemble phase, the scoping process should be assembled using the scoping concept map
(see Figure 17) and the scoping generic process (see Figure 18).

5.2. Customization for Different Scenarios 73

Figure 14 – PAxSPL Execute Phase

Source: Author.

5.1.3 Execute

During this phase, see Figure 14, the feature retrieval is performed and the fea-
ture artifacts are collected. The first activity is Execute Assembled Process, where the
assembled process is executed to detect, extract, categorize, and group the features ac-
cording to the selected techniques. The second activity is Document Feature Artifacts,
here, artifacts are documented in a structured way according to the techniques selected.
Artifacts may be variability reports, feature descriptions, data dictionary among others.
In parallel to these activities, the scoping process is being executed, scoping artifacts may
be traced with feature artifacts. Lastly, reports are created to document the experience of
the process execution during the Document Process Experience activity. These reports
may be used in future re-execution of the process (e.g. when new features emerge from
clients’ demand, or for different software products of the same organization), reducing
cost and effort.

5.2 Customization for Different Scenarios

PAxSPL was designed for giving its users enough guidance when conducting fea-
ture retrieval. As organizational contexts change, the approach must cover these changes.
Thus, we defined guidelines with alternatives techniques and strategies for performing the
retrieval and SPL scoping.

74 Chapter 5. PAxSPL

5.2.1 Customization for Feature Retrieval

As illustrated in Figure 15, we grouped the techniques based on their strategy.
We have the mandatory group of Retrieval Techniques which are composed of two Or-
alternatives (at least one must be selected (CZARNECKI; EISENECKER, 1999)), Static
Analysis, and Information Retrieval techniques.

Figure 15 – A Feature Model of Retrieval Techniques.

Source: Author.

For Static analysis, we have three Or-alternatives: Dependency Analysis and
its variations, Data-Flow analysis, and its variations, and Clustering. For information
retrieval we also have three Or-alternatives: LSI, VSM (ALVES et al., 2008) and FCA.
The second group is optional, composed of three techniques: Expert Driven Extraction,
Rule-Based Techniques, and Heuristics.

Based on the selection of the techniques, the user would assemble them into
the generic process for feature retrieval and analysis, shown in Figure 13. As stated,
the generic process is used to tailor the assembled process that generates the extracted
features and the feature model. We give an example of the assembled process in Figure 16,
in which FCA and clustering can be assembled as extraction techniques to retrieve the
features and create the Feature Model. In this particular case, the tasks were not assigned
to a specific actor, which means they may be performed by anyone. As Figure 16 shows,
a concept lattice is checked to find problems. Then, the extracted features are grouped
into clusters and a check for inconsistencies is performed. The clusters are refined, the
features are categorized and validated with the domain specialist. Lastly, the feature
model is created and checked, and the process ends.

5.2. Customization for Different Scenarios 75

Figure 16 – An Assembled Process

Source: Author.

5.2.2 Customization for SPL Scoping

In addition to the feature retrieval, PAxSPL also guides customization considering
the Scope of the SPL. By analyzing a set of 45 works citing SPL scoping proposals (see
Chapter 4), we were also able to establish a feature model of Scoping activities and
concepts. Figure 17 presents these activities which are divided by Scoping type and
Supporting concepts.

Figure 17 – A feature Diagram of SPL Scoping Activities

Source: Author

All features in the model are Or-alternative, except by the supporting concepts,
which are optional. Among the supporting, we have the definition of metrics for scoping,
use, or definition of meta-models and the SPL evolution plan. Considering the scoping
types, they are three: Domain, Asset, and Product. A domain is subdivided into mar-
ket analysis, cost-benefit analysis, and product roadmap. Continuing, the asset scoping

76 Chapter 5. PAxSPL

may be divided into prioritizing products, the definition of architecture, and variability
analysis. Lastly, product scoping, also called product portfolio, is composed of candidate
analysis and feature definition.

Similar to the feature retrieval strategies, the scoping activities and concepts
must be selected by PAxSPL users and assembled into a generic SPL Scoping process,
presented in Figure 18. Pre-Scoping is the first task, where supporting concepts from the
Scoping feature model may be used, such as metrics definition.

The users would then assemble the activities related to which scoping type. The
selection of activities is performed based on the user’s context. As presented in the
Business Process Model and Notation (BPMN) model (Figure 18), the activities related
to the scoping type are not mandatory, however, at least one must be performed. Lastly,
the scoping closure activity is executed. This activity is generic as several ways to close
the scoping process may be performed. To better represent this process, we present an
example of the scoping process assembled in Figure 19. The process starts by defining
metrics based on business aspects, then deriving these metrics for specific projects. Both
of these activities are part of the pre-scoping. After the pre-scoping is finished, the
candidate features are analyzed and their names and descriptions are defined, these two
activities are examples of product scope. While these are executed, the market is analyzed
in an activity related to domain scoping. Lastly, a plan for evolving the SPL is defined
in the scoping closure.

Figure 18 – A Generic SPL Scoping Process.

Source: Author

5.3 Guidelines

In this section, we discuss the second part of the PAxSPL framework, a set
of guidelines. These guidelines were created to present retrieval techniques strategies,
describe each technique, give examples, supporting tools, define recommended scenarios,
and give a prioritization assemble order when assembling a technique into the generic pro-
cess. In our guidelines we also included basic information about SPL, SPL Scoping, SPL
reengineering, variability management, and feature model notations. This information

5.3. Guidelines 77

Figure 19 – An Assembled SPL Scoping Process.

Source: Author

is important for users with low experience with SPL reengineering and may help miti-
gate their difficulty when performing PAxSPL. Within our guidelines, we also included a
checklist (see Section 5.3.1) to give support during the process execution.

With this kind of documentation, we intend to give as much help as possible
for PAxSPL users when selecting the techniques for feature retrieval. We also created
a feature model of Feature Retrieval Techniques that formalizes possible techniques and
makes it possible to calculate how many different combinations can be chosen. These
techniques are those illustrated in Figure 15.

In addition to the feature retrieval techniques, we added for PAxSPL new ver-
sion the SPL scoping guidelines1. These contain information with regard to the con-
cepts/activities presented in Figure 17.

5.3.1 Support Checklist

The guidelines contain a support checklist to be used by users. This checklist
was created to give support during PAxSPL execution. It contains items for each activity
of our process and may reduce the difficulty to conduct the process and to make some
decisions as well. All questions of the checklist should be answered with yes or no. The
checklist is described as follows:

1. Prepare Phase

1.1. Is the team information (members skills, experience, roles) registered?

1.2. Does the company possess a business organization chart?

1.3. Is the team information registered using a template?

1.4. Are all the roles assigned to team members?

1.5. Do all team members possess at least one role?

1.6. Are the assigned roles related to team members’ experience, skills, or role in
the company?

1 The full guidelines documentation is available at <https://github.com/HestiaProject/PAxSPL/wiki/
Guidelines#spl-scoping-concepts>

https://github.com/HestiaProject/PAxSPL/wiki/Guidelines#spl-scoping-concepts
https://github.com/HestiaProject/PAxSPL/wiki/Guidelines#spl-scoping-concepts

78 Chapter 5. PAxSPL

1.7. Are the Feature Retriever and Feature Tester roles assigned to different team
members?

1.8. Documentation Analysis

1.8.1. Do the system variants possess important domain information?
1.8.2. Do the system variants need a domain glossary?
1.8.3. Do the system variants need a domain constraints list?
1.8.4. Are the requirements well documented?
1.8.5. Is the architectural information well documented?
1.8.6. Is the artifacts type information registered in a document?
1.8.7. Is the development and technological information (programming patterns,

programming, and development paradigms) registered?

2. Assemble Phase

2.1. Select Techniques

2.1.1. Is the candidate technique related to some team member skills or experi-
ence?

2.1.2. Is the candidate technique related to other selected technique?
2.1.3. Were the technique practical examples analyzed?
2.1.4. Are the practical examples somehow similar to the current scenario(s)?
2.1.5. Is the candidate technique recommended scenarios similar to the current

scenario(s)?
2.1.6. Are the candidate technique input artifacts available from the system vari-

ants artifacts?
2.1.7. Does the candidate technique have related techniques?
2.1.8. Is a support technique needed?

2.2. Assemble Techniques

2.2.1. Is the technique priority to be assembled for extraction?
2.2.2. Is the technique priority to be assembled for categorization?
2.2.3. Is the technique priority to be assembled for group?
2.2.4. Can the techniques be combined for one activity (extract, categorize, or

group)?
2.2.5. Are there techniques assembled for the three first activities (extract, cat-

egorize, or group) of the generic process?

2.3. Are all activities of the assembled process assigned to at least one team mem-
ber?

2.4. Were the scoping activities assembled into the Scoping Generic Process?

5.4. PAxSPL Tool 79

3. Execute Phase

3.1. Was the assembled process executed without major problems?

3.2. Were the retrieved features verified by the feature tester?

3.3. Are the feature artifacts well documented?

3.4. Was a feature diagram of the retrieved features created?

3.5. Was the assembled scoping process fully executed?

3.6. Was the process preparation, assembly, and execution experience registered?

5.3.2 Retrieval Techniques Tool Support

Lastly, our guidelines contain information about tools found in the literature that
may be used to perform the feature retrieval techniques. Most information was extracted
from Assunção et al. (2017) SMS. Within our guidelines, users may find the tools name,
basic description, link for download, citations were the tool was used, and for which
retrieval techniques they may be used2.

5.4 PAxSPL Tool

In this section, we present the third part of the PAxSPL framework, a supporting
tool developed to support the process’ life-cycle.

5.4.1 Requirements

As a result of the work presented in Marchezan et al. (2019b), where we conducted
a case study to measure PAxSPL in terms of effort, we concluded that a supporting tool
would reduce the effort of conducting some activities of the process. Thus, we started
the development of such a tool. We defined that the tool would have four distinct actors,
and nine Use Case (UC), presented in Table 9. The actor Manager performs the UCs:
UC1. Manage Project, UC2. Manage Team, UC3. Document Process Experience. Actor
Feature Retriever performs UC4. Execute Retrieval Process. The Feature Tester performs
UC5. Check Features Artifacts. Lastly, Team Member performs UC6. Select Strategies
and Techniques, UC7. Generate Documentation Set, UC8. Create Feature Model and
UC9. Configure Products.

After deriving this UCs into more detailed requirements, we started the design
of our tool.

2 More information at <https://github.com/HestiaProject/PAxSPL/wiki/Tool-Support>

https://github.com/HestiaProject/PAxSPL/wiki/Tool-Support

80 Chapter 5. PAxSPL

Table 9 – Use Cases for PAxSPL Tool
Actor Id Name
Manager UC1 Manage Project

UC2 Manage Team
UC3 Document Process Experience

Feature Retriever UC4 Execute Retrieval Process
Feature Tester UC5 Check Feature Artifacts
Team Member UC6 Select Strategies and Techniques

UC7 Generate Documentation Set
UC8 Create Feature Model
UC9 Configure Products

Source: Author

5.4.2 Design

Figure 20 presents the class diagram constructed based on the requirements. We
defined a Project to be the central part of the tool. This Project is managed by one
Manager, may have several Processes (e.g. feature retrieval and scoping processes) and
one Documentation Set. This Project also possess several Techniques. The Manager is
a specialization of a Team Member, which is a type of User. The Team Member also
generates different Artifacts, which are part of the Documentation Set. All these classes
cover the first phase of PAxSPL, Prepare.

Continuing, the Process is an aggregation of Activities, which may have from one
to several Techniques that may be for feature retrieval or scoping. The ActivityArtifact is
an associative class representing an activity that possesses artifacts linked to it. Thus, the
ActivityArtifact class has and status, observations for each artifact and an attribute called
“io” which shows wheter the artifact is an input or output. These classes cover PAxSPL’s
second phase, Assemble. Then, we have the Features extracted by the Feature Retriever
and checked by the Feature Tester. The features may be related to several artifacts and the
artifacts may be related to several features. Also, products can be generated. The product
class is a composition of features and is related to a project. Lastly, the Manager must
generate an Experience Report. These classes cover the last phase of PAxSPL life-cycle,
Execute.

After defining the requirements and the class diagram, they were analyzed with
the purpose to support the decision-making regarding design and development of the tool.
Thus, we established Design Decision (DD) as follows:

DD1. The tool must cover all activities of the PAxSPL process: we want to
centralize the process execution around the usage of the tool. Thus, the PAxSPL
supporting tool will support all activities of the PAxSPL life-cycle. Also, the tool
will support the activities created and assembled into the generic process by the
users.

5.4. PAxSPL Tool 81

Figure 20 – PAxSPL Supporting Tool Class Diagram.

Source: Author.

DD2. The tool must be open-source and free to use: as an academic work, we
desire that the tool may be used by researchers and practitioners of the field. Thus,
collecting their feedback to improve our tool.

DD3. The tool must allow work among multiple users: as there are different types
of users (e.g. Manager and Feature Retriever) generating and managing similar
artifacts, the tool must support collaborative work.

DD4. The tool must be developed as a web-tool: two reasons for this are that
PAxSPL aims at been executable in different organizational scenarios (including
remote work), and the need for collaborative work with several users performing
different tasks during the process execution.

DD5. The tool must allow the modeling of a BPMN processes: as one of the most
important UC of our tool is the assembly of the feature retrieval process, our tool

82 Chapter 5. PAxSPL

must allow users to model their process as they desire. The BPMN representation
may aid users to better visualize and understand their process as BPMN is a well-
known and defined process language.

DD6. The BPMN modeling environment should be build using a JavaScript
library: as BPMN is a well know language, there are many libraries available
online providing resources for modeling BPMN processes. In this sense, built an in
house solution for modeling such a process is not necessary.

DD7. The tool must allow the users to model a FM according to a specific
notation: as FM is the most common way of representing the SPL variability, and
also is a mandatory activity in our generic process, the tool should allow for the
users to create their FM. This FM however, should follow the rules and structure
of a specific FM notation, to be adequate to SPL variability standards.

DD8. The tool must allow the users to configure products according to the
FM: in this case, the user may generate different products by selecting the features
from the FM according to their rules (mandatory, optional, XOR-Alternative and
OR-Alternative).

Thus, to follow DD1, we used PAxSPL life-cycle as a basis for creating the work-
flow and screen navigation of our tool. Based on DD2, we created a public repository3 at
GitHub, then the development process may be followed by researchers and practitioners of
the field. For addressing DD3 and DD4, we selected the PHP programming language and
the Laravel Framework4 for developing our solution. For DD5 and DD6 we decided to use
the bpmn-js toolkit5 which allows for editing and visualizing BPMN diagrams in any web
application. The toolkit uses the BPMN 2.0 standard, which satisfies our requirements.
To address DD7, we decided to use the FM notation presented in Czarnecki e Eisenecker
(1999). This notation contains all the mandatory aspects of a FM as well as the optional
aspects that are most used by SPL engineers (SEIDL; WINKELMANN; SCHAEFER,
2016). For DD8 we decided to integrate an open-source feature configurator6 to reduce
the effort of developing this configuration process.

5.4.3 Running Example

In this section, we present an example of the use of the tool7, describing some
of its screens. For this case, we considered a scenario based on a case study presented
in Eyal-Salman, Seriai e Dony (2013). Figure 21 shows the project home screen, divided
3 <https://github.com/HestiaProject/PAxSPL/tree/master/Tool/paxspl-tool>
4 <https://laravel.com/>
5 <https://github.com/bpmn-io/bpmn-js>
6 <https://github.com/ekuiter/feature-configurator>
7 The tool is currently available at <http://paxspl-tool.herokuapp.com/>

https://github.com/HestiaProject/PAxSPL/tree/master/Tool/paxspl-tool
https://laravel.com/
https://github.com/bpmn-io/bpmn-js
https://github.com/ekuiter/feature-configurator
http://paxspl-tool.herokuapp.com/

5.4. PAxSPL Tool 83

into the three phases of the PAxSPL life-cycle. From this screen, the user may access all
activities of the life-cycle, however, the tool will only provide access to an activity (e.g.
select techniques) if all prior activities were completed. Following the correct order, the
user first will collect team information. Then, the artifacts must be registered. Figure 22
illustrates the artifacts screen. In this case, we have artifacts, where their names, types,
owner, and modification dates are displayed.

Figure 21 – Project Home Screen

Source: Author

Figure 22 – Artifacts Screen

Source: Author

Once all artifacts are registered, the user should select the retrieval techniques
for the project. Figure 23 illustrates part of the techniques screen. Besides the technique
name and type, it is also shown the recommendation level of each technique. This level is
calculated based on the current scenario, which considers the team members’ information
and the artifacts of the documentation set. For instance, if a team member has experience
with Formal Concept Analysis, the recommendation level of these techniques is increased.
Also, if a technique uses as input an artifact which is part of the documentation set, this
technique recommendation level is increased. Also, there is (at the top of the screen) the

84 Chapter 5. PAxSPL

button for downloading a report containing the description of all techniques selected and
the reasons for selection.

Figure 23 – Techniques Screen

Source: Author

The next step is to add activities to the feature retrieval and scoping generic
processes. Figure 24 shows the screen where activities were included in the Group and
Create Feature Model phases of the generic feature retrieval process. The activities have a
name, an order of execution, and a retrieval technique to be performed. A similar screen
is also present in the tool, allowing the users to include activities in the generic scoping
process.

To better represent the assembled processes, our tool also allows to model a
BPMN representation. Once a process is created, the tool generates a generic BPMN
representation. Figure 25 shows the screen where the generic BPMN representation of
the process may be customized. In this case, we have changed the generic process into
a process with five activities. As defined in the DD, we used an open-source library for
developing this functionality. This screen provides the users all required functionalities
for modeling a BPMN process.

After the processes are assembled, the user should execute them. Figure 26 shows
the screen of an activity execution, allowing the users to provide inputs and outputs. The
user may click Pause to put that activity on hold and continue it later, or the activity
may be concluded. Once all activities are finished, the users assigned as Feature Tester
may check the artifacts generated. If no artifacts presented problems, the feature model
may be created.

Figure 27 shows the screen where the feature model is created. The tool al-
lows creating a feature model based on the same feature notation used by the Fea-
tureIDE (KASTNER et al., 2009) tool. The features may be abstract, optional, XOR-

5.4. PAxSPL Tool 85

Figure 24 – Activities Screen

Source: Author

Figure 25 – BPMN Modeling Screen

Source: Author

alternative, or OR-alternative. The user may also add artifacts related to each feature.
The tool allows the user to download a feature report containing all details of the features
and their related artifacts. An example is presented in Figure 28 where the features text
editing system, file management, and basic are shown. In this case, the feature file man-

86 Chapter 5. PAxSPL

Figure 26 – Execute Activities Screen

Source: Author

agement had a related artifact, the minimal disjoint sets. The user can also download an
XML representation of the feature model. This XML may be imported by the FeatureIDE
tool, so the features may be implemented.

Our tool also provides two additional functionalities that may help the users
better handle the features. One of these functionalities is presented in Figure 29, a
Traceability Matrix showing which artifacts (columns) are related to each feature (rows).
Lastly, the tool also allows users to configure a product from the feature model. Figure 30
shows the configuration screen, where the features may be selected based on the rules of
the feature model. The product has a name and a description. After configuring a valid
product, the configuration may be downloaded as XML. This XML file can be imported
in the FeatureIDE. Also, a feature report of the features and artifacts present in each
product may be downloaded. Besides, it is possible to visualize a matrix (Figure 31)
showing the features (rows) that are present in each product (columns).

The last part of the process is to document the process experience. Here, the
user may create an experience report containing details about the activities executed,
including their time, issues and decisions.

5.5. Chapter Lessons 87

Figure 27 – Feature Model Screen

Source: Author

5.5 Chapter Lessons

In this chapter, we described PAxSPL framework, including the improvements
related to SPL scoping. We described our process structure including its roles/actors,
artifacts, phases, and activities. We also discussed how the scoping activities may aid users
when conducting the reengineering. We presented the PAxSPL guidelines documentation
aiming at guiding the team while applying the process, aiding users with low experience to
reduce the effort of applying retrieval techniques. Besides, we presented the analysis and
design of the PAxSPL supporting tool. We discussed the requirements and DD defined
during development. Finally, we presented a running example.

88 Chapter 5. PAxSPL

Figure 28 – Feature Report

Source: Author

Figure 29 – Traceability Matrix Screen

Source: Author

5.5. Chapter Lessons 89

Figure 30 – Feature Configurator Screen

Source: Author

90 Chapter 5. PAxSPL

Figure 31 – Product Traceability Matrix Screen

Source: Author

91

6 EVALUATION

In this chapter, we present an initial evaluation performed on the PAxSPL frame-
work. Section 6.1 presents the design and the procedure for conducting the evaluation
on PAxSPL framework. Then, Section 6.2 presents the execution and the results of the
evaluation. Lastly, Section 6.3 presents the improvements based on the answers of the
RQs.

6.1 Design

In this section, we present the design of our evaluation, containing its goal, RQs,
data set, and procedure. The main goal of this evaluation is:

Goal: To measure PAxSPL customization capabilities. Thus, we aim at customiz-
ing PAxSPL to different scenarios extracted from related works and measure how
PAxSPL adapts to these scenarios.

Hence, we defined our RQs as:

RQ1. Is PAxSPL customizable to different scenarios? The results may evidence
that our proposal is customizable and flexible to be applied in different scenarios.

RQ2. How does PAxSPL suit different scenarios? We intend to measure how did
PAxSPL adapted to different scenarios.

RQ3. What challenges are observed by customizing PAxSPL? We aim at identi-
fying and understand which challenges were faced on adapting PAxSPL.

By answering these RQs, we aim at obtaining enough evidence for achieving
our goal. In this sense, RQ1 gives evidence about PAxSPL customization capabilities.
Different from RQ1 where we only looked if the assembled process would be executed in
the original scenario, in RQ2 we look at how this assembled process would be executed.
Hence, if any problems emerged, or even if some activities from the original scenario were
not performed by the assembled process. Lastly, we want to identify all challenges faced
when customizing PAxSPL for these different scenarios. Therefore, RQ3 was defined for
collecting and analyzing these challenges and how they have impacted the customization
process.

6.1.1 Data Set

The data set used as input for this evaluation is composed of studies where
SPL reengineering was applied. More specifically, we selected studies mapped in Mar-
tinez, Assunção e Ziadi (2017), which is a collaborative catalog of case studies on SPL

92 Chapter 6. Evaluation

reengineering called Extractive Software Product Line Adoption (ESPLA). We randomly
selected a study from the catalog, and by applying three criteria in each of them we would
use it or not. The study should be approved in all 3 criteria to be considered for this
evaluation. The criteria are:

i The study applied at least one retrieval technique present in PAxSPL
guidelines: Hence, we only considered studies which used retrieval techniques also
covered by PAxSPL;

ii The study presents a scenario different from other approaches already
selected: Therefore, we guaranteed that all selected studies presented different
scenarios from one another; We considered different scenarios when the study: a)
used at least one different retrieval technique; b) used at least one different input
artifact; or c) had a different work-flow when applying the feature retrieval tech-
niques.

iii The study evaluation protocol, data set, and results are available online:
Thus, we could use their artifacts to evaluate our results.

After applying these criteria to the works mapped in Martinez, Assunção e Ziadi
(2017), we have our final set of selected studies as input for this evaluation.

6.1.2 Procedure

We executed PAxSPL in each scenario extracted from the selected studies. In
this case, we defined as a scenario: the artifacts, retrieval techniques, and activities of the
study. Therefore, the team information used for our evaluation will be different from the
original study, as we could not extract this information from the selected studies. Hence,
once we started PAxSPL execution for one scenario, we intend to observe if by executing
PAxSPL life-cycle, we would be able to assemble a retrieval process which would be fully
executable in that scenario. Thus, we do not intend to compare the features extracted
from legacy software using PAxSPL. We limited the evaluation at looking at how PAxSPL
assembled a feature retrieval process representing the original process from the study.
More specifically, for each study selected, we will be performing the following steps:

1. Identify and register inputs and output artifacts;

2. Identify and register feature retrieval techniques used;

3. Identify the feature retrieval activities and their work-flow;

4. Execute PAxSPL using the artifacts, techniques, and activities identified.

After executing these steps, we plan to answer the RQs by analyzing:

6.2. Execution 93

∙ The number of scenarios for which PAxSPL was able to adapt to (RQ1 and RQ3);

∙ The number of artifacts from the original study that were used by PAxSPL (RQ2
and RQ3);

∙ The retrieval techniques that were assembled into PAxSPL generic process (RQ2
and RQ3);

∙ The activities that were assembled into PAxSPL generic process (RQ2 and RQ3);

∙ The number of challenges found when adapting the scenario using PAxSPL (RQ3).

6.2 Execution

We included eight studies using our criteria1, Table 10 presents the data extracted
from these studies. As shown in the column artifacts, there is a variety of different artifacts
from the studies, ranging from domain to development artifacts. Also, different techniques
were used in these scenarios. There is also a different combination of techniques, which
defines a different scenario. We executed PAxSPL using the supporting tool described in
Section 5.4. The following section presents the artifacts generated during the execution.

Table 10: Data Extracted from the Original Studies
Reference Artifacts Techniques Activities
Eyal-Salman,
Seriai e Dony
(2013)

object-oriented
source code; feature
descriptions

LSI; FCA; clus-
tering;

i) Use LSI to divide features and classes into
common and variable partitions; ii) fragment
variable partitions into minimal disjoint sets
using FCA; iii) derive code-topics from com-
mon class partition; iv) perform traceability
links between features and their code-topics;
v) determine which classes implement each
feature.

Acher et al.
(2013)

150% architecture of
the system; specifi-
cation of the system
plugins; system plug-
ins dependencies; ar-
chitectural FM; plu-
gin FM; constraints
mapping; enhanced
architectural FM;

dependency
analysis; struc-
tural similarity;
clustering;

i) extraction of a raw architectural FM;
ii) extraction of plugin dependencies to de-
rive inter-feature constraints from inter-plugin
constraints (plugin FM); iii) automatically re-
construction of the bidirectional mapping be-
tween the architect FM and plugin FM; iv)
explore the mapping to derive enhanced ar-
chitectural FM.

Al-Msie’Deen
et al. (2012)

object-oriented
source code; object-
oriented building
elements; commonal-
ities and variations;
blocks of variations;
atomic blocks of
variation;

LSI; FCA; i) analyze OO source code to extract OO
building elements; ii) commonalities and vari-
ations are extracted using FCA (blocks of vari-
ations); iii) blocks of variations are divided
into atomic blocks and features are identified
based on textual similarity using FCA and
LSI.

1 Results are available at <https://docs.google.com/spreadsheets/d/1gVvkdcPxDowW_
kxxvX4bWrYhvm0Uj7WSFTduDHaOl98/edit?usp=sharing>

https://docs.google.com/spreadsheets/d/1gVvkdcPxDowW_kxxvX4bWrYhvm0Uj7WSFTduDHaOl98/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1gVvkdcPxDowW_kxxvX4bWrYhvm0Uj7WSFTduDHaOl98/edit?usp=sharing

94 Chapter 6. Evaluation

Table 10: Continued
Reference Artifacts Techniques Activities

Shatnawi,
Seriai e
Sahraoui
(2014)

object-oriented
source code; com-
ponent architecture;
sets of component
variants; concept
lattice; architecture
variability;

FCA; depen-
dency analysis;
ROMANTIC
approach;

i) extract component-based architecture; ii)
identity component variants; iii) use FCA to
analyze the commonality and variability; iv)
identify architecture variability.

Alves et al.
(2008)

requirement docu-
ments; requirements
clusters; config-
urations; feature
model;

VSM; clustering;
LSI;

i) perform a requirements similarity determi-
nation; ii) abstract requirements clusters into
a configuration; iii) merge configurations for
all requirements.

Chen et al.
(2005)

individual require-
ments; requirements
relationship graph;
application feature
trees; domain feature
tree;

clustering; i) requirements elicitation; ii) requirements
relationship graph construction; iii) require-
ments clustering and hierarchical structure
construction; iv) merging and variability mod-
eling.

Paškevičius et
al. (2012)

java source code; java
.class files; depen-
dency graph; fea-
ture distance matrix;
cluster dendrogram;
feature model; Fea-
ture model defined in
FDL/Prolog;

clustering; depen-
dency analysis

i) compile Java source code using a standard
Java compiler ; ii) extract feature dependen-
cies from Java class files; iii) construct a fea-
ture distance matrix; iv) cluster features based
on their dependency in a feature tree; v) con-
vert a feature tree into a FM; vi) generate de-
scription of FM in FDL/Prolog.

Breivold,
Larsson e
Land (2008)

architecture descrip-
tion; design docu-
ments; source code;
user documentation;
requirements specifi-
cation; architecture
requirements; com-
mon core assets; vari-
able assets; SPL ar-
chitecture;

dependency anal-
ysis;

i) identify requirements on the software archi-
tecture; ii) identify commonalities and vari-
abilities; iii) restructure architecture; iv) in-
corporate commonality and variability; v)
evaluate software architecture quality at-
tributes.

Source: Author

6.2.1 Results

After extracting eight scenarios using the data from the original studies, we were
able to assemble and execute their processes into the PAxSPL tool. In the following, we
present some of the artifacts generated (by our tool) during this execution2.

The first scenario was extracted from Eyal-Salman, Seriai e Dony (2013). Figure
32 presents the report of the selected retrieval techniques. These techniques are presented
in detail, showing their names, description, types of input artifacts, priority order, rec-
ommendation level based on the current scenario, and the reasons for being selected. In
2 Artifacts available at <https://github.com/HestiaProject/PAxSPL/tree/master/process/

evaluation>

https://github.com/HestiaProject/PAxSPL/tree/master/process/evaluation
https://github.com/HestiaProject/PAxSPL/tree/master/process/evaluation

6.2. Execution 95

this sense, as we were instantiating Eyal-Salman, Seriai e Dony (2013) process, all these
techniques were selected because they were used in the original study.

Figure 33 presents the BPMN representation of the assembled retrieval process.
This representation is the result of assembling the techniques selected in the generic
process. The five activities and their work-flow were based on the original study, however,
minor modifications were made due to some challenges faced (C). First, some activities
from the original study were performed in parallel (C1). As our generic process did not
support this parallelism, we have to modify the original workflow. Also, not all activities
were used for executing retrieval techniques (C2). This was also a challenge because our
process documentation states that every activity of the assembled process should apply a
retrieval technique. The last challenge faced was related to a phase of the generic process
not being assembled (C3). In this case, the group phase did not have any activity assemble
into it. This was also a problem as all four phases of our generic process were mandatory
by definition.

Figure 32 – Techniques Report for (EYAL-SALMAN; SERIAI; DONY, 2013)

Source: Author

Figure 34 presents part of the report detailing the assembled process. The report
shows all the five activities assembled into the process as well as their input and output
artifacts. In this case, the Divide features with LSI activity is detailed. This activity
contains two input artifacts, the Object-oriented source code and the Features descriptions

96 Chapter 6. Evaluation

and one output artifacts, the common and variable partitions.

Figure 33 – BPMN Process Assembled for (EYAL-SALMAN; SERIAI; DONY, 2013)

Source: Author

Figure 34 – Part of the Process Assembled Report for (EYAL-SALMAN; SERIAI; DONY,
2013)

Source: Author

The second scenario was defined by extracting the information from (ACHER
et al., 2013). Figure 35 presents the BPMN representation of the assembled process. In
this case, the process was composed of four activities which were described in Table 10.

6.2. Execution 97

Although it was possible to assemble all activities from the original study, we faced some
challenges, similar to the first scenario. All three challenges faced in the first scenario
were also present here, the activities not being performed in parallel (C1), an activity not
using any retrieval technique (C2), and also that the group phase from the generic process
was not used (C3). In addition, a new challenge was identified as one technique used in
the original study was not present in PAxSPL guidelines (C4). Figure 36 presents part
of the process report, showing the first activities and artifacts used as input and output
for them. In this case, the plugins from the systems should be extracted to generate an
architectural model, which would then be refined into a FM.

Figure 35 – BPMN Process Assembled for (ACHER et al., 2013)

Source: Author

The third scenario used in the evaluation was extracted from (AL-MSIE’DEEN
et al., 2012). Figure 37 presents the assembled process for the scenario, composed of
three activities: extract building elements from object-oriented (OO) source code, extract
commonalities and variabilities with FCA, and identify features using FCA and LSI.
Considering the challenges faced when assembling this scenario, we also faced two that
were presented in the previous scenarios. First, the problem with an activity not applying
any retrieval technique (C2). Second, two phases (group and create FM) of the generic
process were not used (C3). Also, two additional challenges were identified. The first
new challenge was that one activity (Identify features using FCA and LSI) from the
process applied more than one retrieval technique (C5). This is a challenge as in our
documentation we have a relation of one retrieval technique for each activity. The second
new challenge identified was that one of the activities could be part of both the extract
and categorize phases of the generic process (C6). Figure 38 presents part of the process
report generated in this scenario. The report describes the first two activities and their
input and output artifacts. In this case, the challenge related to an activity not applying
a retrieval technique is presented in the first activity where FCA is shown to be used,
however, that was not the case.

98 Chapter 6. Evaluation

Figure 36 – Process Assembled Report for (ACHER et al., 2013)

Source: Author

Figure 37 – BPMN Process Assembled for (AL-MSIE’DEEN et al., 2012)

Source: Author

We extracted the fourth scenario from (SHATNAWI; SERIAI; SAHRAOUI, 2014).
In this scenario, the assembled process was composed of four activities presented in Figure
39. These four activities are: extract component-based-architecture, identify component
variants, analyze commonality and variability, and identify architecture variability.

When assembling the activities, once again, the challenges related to some phases
of the generic process not being used (C3) as well as a technique that was not present

6.2. Execution 99

Figure 38 – Process Assembled Report for (AL-MSIE’DEEN et al., 2012)

Source: Author

in PAxSPL guidelines (C4). Also, we identified a new challenge related to the final
input of the approach, which was not a FM (C7). More specifically, the final activity
called Identify Architectural Variability aimed at defining the variability of the
SPL architecture using design models, such as class diagrams.

The fifth scenario used during the evaluation was extracted from (ALVES et al.,
2008), and its assembled process was composed of three activities, perform a requirements
similarity determination, cluster requirements to generate configuration, and merge con-
figurations for all requirements, as illustrated by Figure 40. Only two challenges were
faced during this scenario assembly, both were cited already: a phase (categorize) from
the generic process was not used (C3), and that one activity (Perform a requirements
similarity determination) applied more than one retrieval technique, characterizing
C5.

The evaluation’s sixth scenario was extracted from (CHEN et al., 2005). In this
scenario, the assembled process was composed of four activities as presented in Figure 41.

100 Chapter 6. Evaluation

Figure 39 – BPMN Process Assembled for (SHATNAWI; SERIAI; SAHRAOUI, 2014)

Source: Author

Figure 40 – BPMN Process Assembled for (ALVES et al., 2008)

Source: Author

These activities are requirements elicitation, requirements relationship graph construc-
tion, requirements clustering, and merging variability modeling. Two challenges were
faced when assembling the retrieval process. First, the problem with one activity not
applying any retrieval technique reappeared (C2). Second, a new challenge was identified
as the original scenario did not use input artifacts for the first activity (C8). More specifi-
cally, all artifacts from the original scenario were output from some of the activities. This
may be a problem because the Documentation Analysis sub-process is mandatory in
PAxSPL life cycle, which means that at least one artifact should be documented before
the retrieval process execution.

The seventh scenario was defined by extracting the information from (PAŠKE-
VIČIUS et al., 2012). This scenario was composed of six activities, as illustrated in Figure
42 and only one challenge was faced. The six activities are: compile java source code,
extract features dependencies from source code, construct feature distance matrix, cluster
features based on dependency, convert feature tree into FM, and generate the description

6.2. Execution 101

of FM in Feature Description Language (FDL) or PROLOG. The challenge was the same
discussed in the previous scenario, as one activity from the assembled process did not
apply any retrieval technique (C2). No new challenges were identified.

Figure 41 – BPMN Process Assembled for (CHEN et al., 2005)

Source: Author

Figure 42 – BPMN Process Assembled for (PAŠKEVIČIUS et al., 2012)

Source: Author

The eighth scenario was extracted from (BREIVOLD; LARSSON; LAND, 2008).
In this case, we had five activities in the assembled process. As illustrated in Figure 43,
these activities are: identify requirements on the architecture, identify commonalities and
variabilities, restructure the architecture, incorporate commonality and variability, and
evaluate software architecture quality attributes. As happened with the previous scenario,
no new challenges were identified, however, three were faced once again. First, the most
recurrent one, an activity that did not apply any retrieval technique (C2). Second, phases
from the generic process which were not used (C3). Lastly, the original study did not aim
at generating a FM (C7).

102 Chapter 6. Evaluation

Figure 43 – BPMN Process Assembled for (BREIVOLD; LARSSON; LAND, 2008)

Source: Author

6.2.2 Discussion

With the results of the evaluation, we were able to collect enough evidence for
answering our RQs. In this section, we discuss these results.

Is PAxSPL customizable to different scenarios?
Our first questions, RQ1, aimed at measuring if our framework was customizable

as planned. The protocol of our evaluation was specifically designed based on this RQ
as we selected eight different scenarios from real case studies already published, which
were part of the ESPLA catalog (MARTINEZ; ASSUNçãO; ZIADI, 2017). As presented
in Table 10, all eight scenarios were different, using a variety of different artifacts, tech-
niques, and composed of different activities. In total, when executing the scenarios using
PAxSPL, more than 20 different types of artifacts were handled for our framework. Also,
five different retrieval techniques were used, and their different combinations (e.g., FCA
and LSI) made all scenarios unique. This variety among the scenarios, along with side
the fact we could customize eight assembled processes according to them, gives us evi-
dence suggesting that our framework is indeed customizable for different scenarios. Some
challenges were faced when conducting customization. These challenges were not crucial
problems, however, they must be considered aiming at improving our proposal. These
challenges are discussed in Section 6.2.4.

6.2.3 How does PAxSPL suit different scenarios?

As stated before, we were able to customize our framework without major prob-
lems. Table 11 summarizes these results, showing how many artifacts, activities, and
techniques from the original studies were supported by PAxSPL. All artifacts used in
the original studies could also be used in PAxSPL, which shows that concerning artifacts
flexibility, our framework shows satisfactory results. The same results apply to the activi-
ties assembled, as all activities from the original studies could be assembled into PAxSPL

6.2. Execution 103

generic process. However, we faced a few challenges. Some of these challenges directly
impact the results of this RQ. For instance, some techniques from the original studies
were not part of PAxSPL guidelines. This means that these techniques could not be as-
sembled into the retrieval process, as they are not presented in our documentation or tool.
This challenge (C4) appeared in two scenarios, (ACHER et al., 2013) and (SHATNAWI;
SERIAI; SAHRAOUI, 2014).

The more impactful challenges, however, were those related to the activities.
Although all activities could be assembled for each scenario, minor modifications were
performed. The first modification was related to some scenarios having parallel activities,
which was not supported in our framework. The second problem, the most frequent,
happened when one activity from the original study did not apply a retrieval technique.
Our documentation determines that all activities in the assembled process should apply a
retrieval technique. A related problem occurred when more than one retrieval technique
was used in the same activity from the original study. Although these challenges impacted
the PAxSPL customizability, our framework still provided satisfactory results in terms of
all three variables analyzed: artifacts, techniques, and activities.

Table 11 – Results from the Evaluation.
Reference Art. Tech. Act. Challeges

O P O P O P C1 C2 C3 C4 C5 C6 C7 C8
Eyal-Salman, Seriai e Dony
(2013)

6 6 4 4 5 5 3 3 3

Acher et al. (2013) 7 7 3 2 4 4 3 3 3 3
Al-Msie’Deen et al. (2012) 5 5 3 3 3 3 3 3 3 3
Shatnawi, Seriai e Sahraoui
(2014)

5 5 3 2 4 4 3 3 3

Alves et al. (2008) 4 4 3 2 3 3 3 3
Chen et al. (2005) 4 4 1 1 4 4 3 3
Paškevičius et al. (2012) 7 7 2 2 6 6 3
Breivold, Larsson e Land
(2008)

9 9 1 1 5 5 3 3 3

O - Original Study; P - PAxSPL Support.

Source: Author.

6.2.4 What challenges are observed by customizing PAxSPL?

As discussed, eight different challenges were identified during the evaluation. Ta-
ble 12 summarizes these challenges identified in this evaluation and also present possible
solutions to address them. We have also to mention that these challenges affect our
framework as a whole (process, guidelines, and tool). Thus, the solution may also require
modifications in the whole framework.

The first challenge (C1) occurred in the first two scenarios. As our generic process
does not support parallel activities, we had to handle this problem by transforming these
activities into linear ones. However, a Possible Solution (PS) (PS1), would be to change
the generic process and its documentation to support parallel activities.

104 Chapter 6. Evaluation

The second challenge (C2) was the most frequent, appearing in six scenarios
during the evaluation. This challenge occurred when an activity from the original study
did not apply any retrieval technique. After analyzing this problem, we argue that PS2
may address it by changing our documentation to allow the users to assemble activities
in the generic process without the need of assembling retrieval techniques to them.

Challenge C3 was related to some phases of the generic process not receiving
activities during the assembly. For instance, in the second scenario, the group phase was
not used. This was not a major problem as the generic process can be modified. As
defined in its BPMN representation, however, all its phases are mandatory. We plan to
solve this problem by changing the generic process to make its activities Or-optional,
which means that at least one is mandatory (PS3).

Challenge C4 was more related to the guidelines than the process itself. This
challenge was faced twice when techniques that were not present in the guidelines were
used. This does not stop the user from applying the retrieval process as they can add
the technique manually in their project. However, as we desire PAxSPL to reduce the
complexity of conducting the retrieval process and also to evolve with the help of the
community, we believe that C4 can be addressed by allowing the users to add or suggest
the addition of new retrieval techniques into our guidelines (PS4). This could be done by
providing a template or online form for users to fill and send us.

Challenges C5 and C6 are somehow similar as they both were faced due to
PAxSPL current lack of handling multiple facets at the same time. First, C5 was iden-
tified when one of the activities from the original study applied more than one retrieval
techniques at the same time, complementing each other. As our documentation does not
give enough information about how this situation should be handled, we should include it
on it PS5. The next challenge, C6, is related to one activity being part of more than one
phase of the generic process, for instance, extract and categorize. The possible solution,
PS6, would be similar as we should clarify in the documentation that this can be done.

The seventh challenge identified (C7) is not trivial to analyze. It was faced when
two of the scenarios did not aim at generating a FM at the end of their process. This
challenge is different because PAxSPL final output should be the FM as defined in our
framework. However, we still understand this as an opportunity for improvement, as a
company works or desires to have a variability artifact different from a FM, such as a SPL
architecture. Thus, we plan to change the last activity of the generic process, which is
called Create Feature Model to “create variability model” PS7. We also plan to clarify
this in the documentation, as a variability model may be a FM, SPL architecture, or
something different.

The last challenge (C8) impacts the artifacts used. This challenge appeared
only in one scenario (CHEN et al., 2005), where their approach did not have input only
artifact. We consider an input only artifact to be some artifact that already existed

6.3. Improvements 105

before the execution of the retrieval process. Input only artifacts are those collected and
analyzed during the Perform Documentation Analysis sub-process. To address this,
we would change the whole documentation analysis sub-process to be optional (PS8), as
for in the current version at least one activity for this process should be performed.

Table 12 – Challenges Identified During the Evaluation.

ID Description ID Possible Solution
C1 Some activities from the original study were

performed in parallel
PS1 Change the generic process to support par-

allelism
C2 An activity did not apply any retrieval tech-

nique
PS2 Allow the users to define activities without

the application of retrieval techniques
C3 Some phases of the generic process did not

have an activity related to it
PS3 Change the generic process to make some

phases optional
C4 A technique that was not present in PAxSPL

guidelines was used in an activity
PS4 Allow the users to add new techniques in

our guidelines by providing a form or tem-
plate

C5 One activity used more than one retrieval
technique

PS5 Allow the user to assemble multiple re-
trieval techniques into an activity

C6 One activity was part of the more than one
phase of the generic process

PS6 Allow the user to create activities that are
part of more than one phase

C7 The approach did not aim at generating a FM PS7 Consider to change the last activity of the
generic process

C8 The original scenario had no input artifacts PS8 Make the whole documentation analysis
sub-process optional

Source: Author.

6.3 Improvements

In this section, we present the modifications3 performed into our framework to
address the PS described earlier.

6.3.1 Modifications in the Generic Process

Three challenges (C1, C3, C7) could be mitigated by changing the generic process.
Firstly, we included a parallel gateway among the extract, categorize, and group activities
as illustrated by Figure 44. Also, we used an inclusion gateway, meaning that only the
execution of one activity would be mandatory. Lastly, we changed the name of the
last activity to Create Variability Model, making it more generic. These changes are
highlighted and compared to the original version in Figure 45, where at the top we have
the old generic process and at the bottom, we have the new one. The A letter points
out the changes made to address challenges C1 and C3. Challenge C7 was mitigated by
the part highlighted by the letter B. The changes applied in A also led to minor changes
concerning the check artifacts activity. These changes, marked with the letter C, were
3 All modifications are already implemented into the documentation available at <https://github.com/

HestiaProject/PAxSPL/wiki>

https://github.com/HestiaProject/PAxSPL/wiki
https://github.com/HestiaProject/PAxSPL/wiki

106 Chapter 6. Evaluation

made to adapt the new parallel structure of the process. As shown, the check artifacts
activity is executed the parallel gateway has finished, then if problems were found the
artifacts should be fixed. When no problems are found, the create variability model
activity is performed.

Figure 44 – New Generic Process for Feature Retrieval and Analysis.

Source: Author.

Figure 45 – Changes Applied to the Generic Process for Feature Retrieval and Analysis.

Source: Author.

6.3.2 Modifications in the Guidelines and Documentation

To address C2 and C5, we changed our process documentation when describing
the Assemble Techniques activity. The new versions state “For each activity added to
the generic process, the user may choose to assemble one or more retrieval techniques
from our guidelines into it”. The first change is related to C2, where we changed the
original “should assemble” into “may choose to assemble”. The second change, which
is related to C5 is on “one or more retrieval techniques”, whereas the original version

6.3. Improvements 107

was “a retrieval technique”. Although these are seen as minor changes, they are required
to provide to users the flexibility desired from our framework.4 We also modified the
documentation of the Assemble Techniques to clarify that “The activities added to the
generic process may be used for different phases of the retrieval process (extract, categorize
and group) depending on the user scenario”. This clarification should be enough to avoid
the occurrence of C6. For addressing C4, we created an online form for users to submit
new techniques into our guidelines5. Thus, we allowed users to contribute to the evolution
of our framework as well as mitigating the occurrence of C6.

6.3.3 Modification in the PAxSPL Process

To address C8, we changed PAxSPL life-cycle. As highlighted by the letter A
in Figure 46, we included an exclusive gateway before the documentation analysis sub-
process. This sub-process will only be executed if the system’s documentation is available
for the user, otherwise, this sub-process will be ignored. This addresses the challenge in
scenarios where no input-only artifacts exist, such as the scenario from Chen et al. (2005).

Figure 46 – Changes Applied to PAxSPL Process.

Source: Author.

4 It is important to mention that these changes were still not performed in the PAxSPL tool as they
required some database re-structure.

5 Form is available at <https://forms.gle/Br2BjR56QhEpm2g4A>

https://forms.gle/Br2BjR56QhEpm2g4A

108 Chapter 6. Evaluation

6.4 Chapter Lessons

In this chapter, we presented and discussed an evaluation aiming at measuring
how PAxSPL is customized for different scenarios extracted from the literature. The
protocol defined was discussed, as well as the reasons for selecting its RQs. We also pre-
sented the execution of its results. The results helped us to answer our RQs, showing that
PAxSPL is customizable for different scenarios (RQ1) and supports almost all artifacts,
activities, and techniques from the scenarios (RQ2). Some challenges were identified by
answering RQ and by addressing these challenges we believe that we were able to improve
our framework.

109

7 RELATED WORK

In this chapter, we discuss the works related to our project. We also analyze
these studies and compare them with PAxSPL in terms of: SPL Reengineering in Section
7.1 and SPL Scoping in Section 7.2.

7.1 SPL Reeenginering

First, we intend to perform a more detailed comparison with PAxSPL, analyzing
studies that we consider more similar to ours regarding two topics of SPL reengineering:
artifacts analyzed to extract features and strategies used for feature retrieval.

7.1.1 Studies Main Contribution

Considering the main contributions of the selected proposals, Acher et al. (2013)
present a process, alongside a language and a tool to extract the variability from software
products. They used products specification and descriptions to extract and synthesize a
feature model. These product artifacts may be of different types, however, the technique
used is always the merging of product descriptions using structural similarity. Despite
having a similar goal to the PAxSPL, the strategy adopted by having a similar goal, Acher
et al. (2013) strategy is not flexible as the user is required to perform their strategy without
considering the current scenario. Bécan et al. (2013) propose a generic and ontological-
aware procedure that guides users to identify siblings and parent candidates for a feature.
They created and evaluated a series of heuristics for clustering and syntactic and semantic
relationships, which may be considered a set of guidelines. These guidelines have a similar
goal to ours, since their techniques may also be applied without prior knowledge, thus
reducing the effort in comparison to other proposals.

The main contribution from Martinez et al. (2015) is a generic and extensible
framework for SPL reengineering, having similar goals in comparison to PAxSPL. How-
ever, have objectives similar to ours, however, they achieved these objectives differently.
On the one hand, we achieve our objectives by providing a set of guidelines to aid users
when assembling a feature retrieval and analysis process to their scenario, however, our
proposal cannot be extended. On the other hand, Martinez et al. (2015) contribute with
a technology-based framework which does not provide the same amount of artifacts or
techniques as PAxSPL, however, their framework may be expanded by extending the tech-
nologies used. In addition, their proposal intends to reduce the high investment required
to adopt the SPLE. The proposed framework may be easily adapted to different artifacts
types, similar to PAxSPL, and integrates state-of-the-art algorithms and visualization
paradigms. Their work also presents a realization of the framework, called Bottom-Up
Technologies for Reuse (BUT4Reuse).

110 Chapter 7. Related Work

Santos et al. (2013) propose to use testing to support the feature retrieval process.
They use testing as the main input for feature extraction, and other artifacts (e.g., use
cases) to complement the feature retrieval process. Heuristics are used on requirements or
design models, the features are mapped and test artifacts are used to expand the quality
of the features retrieved. Acher et al. (2012) proposed a retrieval process focusing on
plugin-based systems. Their process automatically extracts architectural feature models
by combining several sources of information. These sources include software architecture,
plugin dependencies, and software architectural knowledge. Their proposal also aims to
give the architect the freedom to remove or create new features based on their knowledge.

Lastly, Fischer et al. (2014) study propose a novel approach for supporting
clone-and-own by software engineers, the Extraction and Composition for Clone-and-
Own (ECCO). Their approach is iterative, automating the Extraction and Composition
steps of the clone-and-own. ECCO also provides hints guiding their users during the Com-
pletion step. This guidance can be compared to PAxSPL guidelines, however, ECCO’s
guidance is focused on a specific phase of their approach. Some benefits from using ECCO
as described by the authors are: no need to manually find implementations of all features
and features interactions, and no need to merge different implementations, preserving
structure and semantics. Although ECCO and PAxSPL have some similarities such as
their main goal and guidance provided, ECCO is designed specifically to be used with the
clone-and-own practice, while PAxSPL aims for flexibility to the user’s scenario.

7.1.2 Artifacts and Strategies for Feature Retrieval

As summarized in Table 13, these studies present some flexibility concerning
artifacts and strategies used for feature retrieval. The artifacts and strategies classifica-
tion used as a basis for comparison are those present in PAxSPL guidelines. However,
techniques that are not present in our guidelines also appear because they were used by
the related work. Considering the artifacts classification, requirements artifacts are used
in (ACHER et al., 2013; BÉCAN et al., 2013; MARTINEZ et al., 2015; SANTOS et
al., 2013), becoming the most common artifact amongst the approaches alongside design
models which is also used in four of the studies. Domain information, however, is only
used in (ACHER et al., 2012), despite being relevant in the SPL context. Architecture is
also only used in (ACHER et al., 2013). Source code is used in (MARTINEZ et al., 2015;
SANTOS et al., 2013; FISCHER et al., 2014). Despite these approaches using different
types of artifacts, their flexibility could still be improved. For instance, in (BÉCAN et
al., 2013) all artifacts are mandatory, reducing the customization according to the user’s
scenario. The proposal by Martinez et al. (2015), however, was designed to be generic
regarding the artifact types, because gives support for integrating new artifact types in
the proposal. With regard to the strategies used for feature retrieval, there is also a lack
of flexibility. Despite some studies using more than one strategy type (ACHER et al.,

7.1. SPL Reeenginering 111

2013; MARTINEZ et al., 2015), as presented in Table 13, these strategies are mandatory,
similar to the lack of flexibility concerning artifacts. Once again, Martinez et al. (2015)
give more flexibility to the user because it allows new strategies to be integrated by ex-
tending their proposal. Also, some studies use retrieval techniques that are not present in
PAxSPL guidelines. Acher et al. (2013) use structural similarity to identify architecture
FM from plugins. Martinez et al. (2015) apply overlaps for identifying elements that
compose an artifact, which will later be analyzed to extract features. Lastly, (ACHER et
al., 2012) apply propositional logic for extracting FM from product descriptions.

Table 13 – Comparison among related works and PAxSPL (SPL Reengineering).
Studies

A
ch

er
et

al
.(

20
13

)

B
éc

an
et

al
.(

20
13

)

M
ar

tin
ez

et
al

.(
20

15
)

Sa
nt

os
et

al
.(

20
13

)

A
ch

er
et

al
.(

20
12

)

Fi
sc

he
r

et
al

.(
20

14
)

PA
xS

PL

Artifacts Type Domain Information 3 3
Requirements 3 3 3 3
Design Models 3 3 3 3 3
Architecture 3 3
Development 3 3 3 3
Technological 3 3

Static Analysis Clustering 3 3
Dependency Analysis 3 3
Data-Flow Analysis 3
Structural Similarity 3
Overlaps 3
Propositional Logic 3

Information Retrieval Formal Concept Analysis 3
Latent Semantic Indexing 3
Vector Space Model 3

Support Techniques Expert Driven 3 3 3 3 3
Heuristics 3 3
Rule-Based 3

Source: (MARCHEZAN et al., 2019b).

For both topics, artifacts, and strategies, Martinez et al. (2015) give more flexi-
bility to the users to select the most adequate option for their scenario. Still, there is a
lack of flexibility for the remaining proposals. For instance, if the user’s system variants
possess requirements artifacts and source code only, three of the studies would not be
applicable. Considering strategies, if one of the users has experience applying informa-
tion retrieval strategies, they could use this experience with only one of these approaches.
In addition, the studies are focused on technical aspects, which is an important point,
however, there is a few concern with preparation before feature retrieval. In the related
approaches, there is no activity aiming to analyze the experience and knowledge of the

112 Chapter 7. Related Work

user, which is a concern covered in PAxSPL. Another weak point of those studies is the
lack of guidelines to help to execute their proposals since guidelines were only found in
(BÉCAN et al., 2013).

7.2 SPL Scoping

We also performed a detailed comparison of a different set of related studies in
terms of SPL Scoping. As these studies are detailed in Chapter 4, Section 4.2, in this
section we will only focus on the direct comparisons with our work. Table 14 summarizes
the SPL scoping concepts supported by all studies analyzed in our SLR with PAxSPL.
As the results of the SLR were used in PAxSPL guidelines, our framework should give
support to all of them. However, we should mention that this support is not broader
than those presented in the works. This happens because our framework aims to guide
the user when conducting the SPL scoping, however, the users are required to apply the
techniques themselves. For instance, Park e Kim (2005) not only supports the metrics
definition but also contains metrics that may be used by a company when scoping the
SPL.

In the following section, we give an additional comparison considering the major
aspects of PAxSPL.

7.2.1 Guidelines to Support SPL Scoping

Guidelines are present in Noor, Grünbacher e Hoyer (2008), CoMeS (OJEDA et
al., 2018), PLEvo-Scoping (VILLELA; DÖRR; JOHN, 2010), however such guidelines are
lacking information, such as the recommendation scenarios, in comparison to PAxSPL.
PAxSPL guidelines aim at guiding users with low experience regarding SPL Scoping,
which are not the goal of the guidelines presented by the aforementioned works. Both
works use Thinklets to describe aspects of the Scoping process, such as collaborative
and prioritization techniques, used for defining a product roadmap. Villela, Dörr e John
(2010), on the other hand, present the use of guidelines alongside procedural descriptions,
checklists, and document templates to support the SPL scoping team during the 13 activ-
ities of their process. This kind of guideline is similar to those presented in PAxSPL. In
the same context, Her et al. (2007) framework contains guidelines to aid its application
in different SPL projects.

7.2.2 Customization for Different Scenarios

The customization considering different scenarios and contexts is given by PuLSE-
Eco (SCHMID, 2002). PuLSE-ECO is part of the PuLSE framework (DEBAUD; SCHMID,
1999), focusing on SPL scoping. As part of PuLSE, the PulSE-Eco presents the cus-
tomization of its components. Despite providing this customization, however, the PulSE

7.2. SPL Scoping 113

framework does not provide some customization mechanisms as does PAxSPL, such as
the generic scoping process and the feature model of scoping concepts, both presented in
Chapter 4.

Table 14 – Comparison of SPL Scoping Concepts
Ref. MD SM EP PR MA CM CN PP AD VA CA FD
PuLSE X X X X X X X X
Kishi et al. X X X
SPLSmart X X X X X X X X X X
Park et al. X X
FARE X X
Her et al. X X X X
Noor et al. X X X X X
DRAMA X X X X X
Planning Game in SPLE X X X
CADSE X X X X
COPE+ X X X X
PLEvo-Scoping X X X X X X
CAVE X X X X
PLiCs X X X X X
Cavalcanti et al. X X X X X
RiPLE-SC X X X X X X X X X X
VB Portfolio Opt. X X X X X X
Acher et al. X X X X
Bartholdt et al. X X X X X X
Gillain et al. X X X X
Pro-PD X X X
ASPLE X X X
Cruz et al. X X X X X X X
Nobauer et al. X X X
Sierszecki et al. X X X X
SPLBench X X X X X
PPSMS X X X X X X X X
Ianzen et al. X X X
Karimpour et al. X X X X X X
Neto et al. X X X X
ISPL X X X X X X X
CoMeS X X X X X
Small-SPL X X

PAxSPL
X X X X X X X X X X X X

MD - Metrics Definition; SM - Scoping Meta model; EP - Evolution Planning; PR - Product Roadmap;
MA - Market Analysis; CM - Cost Modes; CN - Customer Needs; PP - Prioritize Products;

AD - Architecture Definition; VA - Variability Analysis; CA - Candidates Analysis; FD - Feature Definition.

Source: Author

The work presented in Alsawalqah, Kang e Lee (2014) define a set of rules for dif-
ferent scenarios. Their approach handles scoping costs according to the current scenario,
thus, making their approach customizable. In contrast, when defining which scoping
aspects to be used in PAxSPL, the users may also handle different aspects of scoping,
including costs. Other works also present some kind of customization, as we discussed in
Section 4.2.1.4.

7.2.3 Approaches Domains

Lastly, the domains for which the approaches were proposed are mostly SPL in
general. However, we also have a proposal for specific domains, presented in Abbas e

114 Chapter 7. Related Work

Andersson (2013). Their framework, called ASPLE, aims at investigating how a self-
adaptive software with systematic reuse is developed as a dynamic SPL. This limits
the use of the framework for other types of system, however, it is important to have
works focusing on self-adaptive software, as these systems require specific development
solutions (SILVA et al., 2018); Although PAxSPL is not specifically designed for self-
adaptive systems development as SPL, our approach may be used for reengineering self-
adaptive legacy systems, help to transform them into SPL.

RiPLE-SC (BALBINO; ALMEIDA; MEIRA, 2011) was proposed for agile meth-
ods. According to RiPLE-SC authors, SPL and agile methods share a few similar goals:
to satisfy customers, increase product, decrease time-to-market, and reduce project costs.
Thus, integrating SPL and agile methods, despite being challenging, may create a com-
bined strategy to increase the benefits for both of them. Considering this context,
PAxSPL’s customization allows users to assemble a feature retrieval and scoping pro-
cess that are suited to be executed in agile environments.

Noor, Grünbacher e Hoyer (2008) is the only approach focusing on the SPL reengi-
neering domain, the same as PAxSPL. Thus, both approaches have similar goals, to trans-
form legacy systems into SPL. The work of Noor, Grünbacher e Hoyer (2008), however,
uses ThinkLets for describing collaborative processes through collaborative techniques.
By using ThinkLets, their proposal is more robust than PAxSPL in terms of variation.
However, this same robustness makes their approach less flexible in comparison to ours.

7.3 Chapter Lessons

In this chapter, we discussed works related to ours in two different aspects: SPL
reengineering and SPL scoping. We analyzed these works considering different topics of
interest and compare them to PAxSPL highlighting the differences and similarities among
them.

115

8 CONCLUSION

SPL is a systematic way to reuse software assets aiming to reduce the cost of mass
customization. The SPL extractive approach emerged as a solution for organizations that
have a set of similar products with the potential to become SPL. SPL reengineering
processes may have a huge contribution to this field, with techniques, technologies, and
guidelines to help users to perform feature retrieval.

Through the analysis of a set of SPL reengineering processes mapped in Assunção
et al. (2017), we established PAxSPL. PAxSPL is a process that gives support to prepare,
assemble, and execute feature retrieval in a set of system variants for SPL reengineer-
ing. In previous work (MARCHEZAN et al., 2019b) we evaluated PAxSPL and defined
steps for improvement: including SPL scoping specific activities into PAxSPL life-cycle,
developing a supporting tool, and performing a new evaluation to measure PAxSPL cus-
tomization capabilities. Thus, with the intention to investigate SPL scoping approaches,
we conducted and reported an SLR in this field. With the results of this SLR, we were
able to define a generic scoping process and a SPL scoping concept map, both included
in the new PAxSPL version. For the next step, we defined UCs and DDs for guiding our
tool development. These changes evolved PAxSPL into a framework.

To initially evaluate PAxSPL, we identified and executed eight different scenar-
ios from the ESPLA catalog (MARTINEZ; ASSUNçãO; ZIADI, 2017). By assembling
eight different retrieval process based on the scenarios identified, we were able to collect
evidence suggesting that PAxSPL is customizable in adherence to different real scenarios.
We could measure how well does PAxSPL support customization. We identified that
our framework gives support to the use of several different types of artifacts, retrieval
techniques, and activities. During the evaluation, however, eight challenges emerged.
The identification of these challenges is important as by analyzing their impact we could
propose and apply modifications into PAxSPL process, guidelines, and tools. Three mod-
ifications were applied in the generic process, which can now handle parallel and optional
activities. The documentation was updated to better clarify to users how the techniques
assembly can be flexible. Also, the perform documentation sub-process was changed to
be only executed based on the user’s scenario.

By concluding these steps for improvement, we believe that we achieved different
contributions:

i A SLR collecting, analyzing and discussing 33 different approaches for SPL scoping;

ii Providing a customizable process that considers SPL scoping in different reengineer-
ing scenarios;

iii Guidelines for users define their own customized scoping process in parallel to feature

116 Chapter 8. Conclusion

retrieval activities of the SPL reengineering process;

iv A web-based, collaborative supporting tool to aid users while executing the process;

v An evaluation showing evidence of PAxSPL’s customization capabilities in scenarios
extracted from the literature;

vi Eight identified challenges that helped us understand PAxSPL limitations and apply
improvements to address them.

As future work, we plan to conduct additional evaluations. We would like to
extend our current evaluation to include additional scenarios, such as teaching classrooms
scoping software evolution and software reuse. Also, we plan to conduct a case study in
an organization to measure the benefits of using PAxSPL. These evaluations may also
be used for collecting evidence about our tool applicability and usability. The results of
these evaluations may be used to further evolve our framework. Also, several publications
emerged from the results of this project. These are described as follows:

Published:

∙ Marchezan, Luciano, et al. “PAxSPL: A feature retrieval process for software
product line reengineering.” Software: Practice and Experience 49.8 (2019): 1278-
1306. (MARCHEZAN et al., 2019b)

∙ Marchezan, Luciano, et al. “A Customizable SPL Scoping Process for SPL Reengi-
neering.” Anais da III Escola Regional de Engenharia de Software. SBC, 2019. (MARCHEZAN
et al., 2019a)1

Under Review:

∙ Software Product Line Scoping: A Systematic Literature Review. Submitted to
The Journal of Systems and Software.2

∙ A Web-based tool for SPL reengineering. Submitted to XXXIV Brazilian Sympo-
sium on Software Engineering (Tool track).3

∙ PAxSPL: A feature retrieval process for software product line reengineering (Journal
First Paper). Submitted to 24TH ACM International Systems and Software Product
Line Conference.4

To be Submitted:

∙ Towards a Framework to Support SPL Reengineering. To be Submitted to the
Third Workshop on Experiences and Empirical Studies on Software Reuse5

1 Best Post-graduation Paper Award at <http://eres.sbc.org.br/2019/>
2 JSS at <https://ees.elsevier.com/jss/>
3 SBES at <http://cbsoft2020.imd.ufrn.br/sbes-ferramentas.php>
4 SPLC at <http://splc2020.net/>
5 WEESR at <https://weesr.github.io/>

http://eres.sbc.org.br/2019/
https://ees.elsevier.com/jss/
http://cbsoft2020.imd.ufrn.br/sbes-ferramentas.php
http://splc2020.net/
https://weesr.github.io/

117

∙ PAxSPL: A Framework to Support Feature Retrieval and Analysis. To be Submitted
to a Journal.

119

BIBLIOGRAPHY

ABBAS, N.; ANDERSSON, J. Architectural reasoning for dynamic software
product lines. In: Proceedings of the 17th International Software Product
Line Conference Co-located Workshops. New York, NY, USA: ACM,
2013. (SPLC ’13 Workshops), p. 117–124. ISBN 978-1-4503-2325-3. Available in:
<http://doi.acm.org/10.1145/2499777.2500718>. Access in: 10 jun 2020. Cited 6 times
at pages 44, 51, 56, 59, 61, and 114.

ACHER, M. et al. Extraction and evolution of architectural variability models in plugin-
based systems. Software & Systems Modeling, Springer, v. 13, n. 4, p. 1367–1394,
2013. Available in: <https://link.springer.com/article/10.1007/s10270-013-0364-2>.
Access in: 16 april 2020. Cited 10 times at pages 11, 12, 93, 96, 97, 98, 103, 109, 110,
and 111.

ACHER, M. et al. On extracting feature models from product descriptions. In:
Proceedings of the Sixth International Workshop on Variability Modeling of
Software-Intensive Systems. New York, NY, USA: ACM, 2012. (VaMoS ’12), p. 45–54.
ISBN 978-1-4503-1058-1. Available in: <http://doi.acm.org/10.1145/2110147.2110153>.
Access in: 10 jun 2020. Cited 7 times at pages 43, 50, 56, 63, 64, 110, and 111.

AL-MSIE’DEEN, R. et al. An approach to recover feature models from object-oriented
source code. Actes de la Journée Lignes de Produits, p. 15–26, 2012. Available
in: <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.373.1958&rep=rep1&
type=pdf>. Access in: 16 april 2020. Cited 7 times at pages 12, 22, 93, 97, 98, 99,
and 103.

ALAM, M. M.; KHAN, A. I.; ZAFAR, A. An empirical study of the
improved spld framework using expert opinion technique. IJEACS) Inter-
national Journal of Engineering and Applied Computer Science,
v. 2, n. 03, 2017. Available in: <http://ijeacs.com/Files/Other/Journal-V02-I03/
An-Empirical-Study-of-the-Improved-SPLD-Framework-using-Expert-Opinion-Technique.
pdf>. Access in: 18 jun 2020. Cited 5 times at pages 44, 53, 56, 58, and 59.

ALAM, M. M.; KHAN, A. I.; ZAFAR, A. A secure framework for software
product line development. International Journal of Computer Applications,
Foundation of Computer Science, v. 975, p. 8887, 2017. Available in: <https://www.
researchgate.net/profile/Asif_Khan67/publication/313767271_A_Secure_Framework_
for_Software_Product_Line_Development/links/58a55e5892851cf0e393144c/
A-Secure-Framework-for-Software-Product-Line-Development.pdf>. Access in: 18 jun
2020. Cited 6 times at pages 44, 53, 56, 59, 63, and 64.

ALSAWALQAH, H. I.; KANG, S.; LEE, J. A method to optimize the scope of
a software product platform based on end-user features. Journal of Systems
and Software, v. 98, p. 79 – 106, 2014. ISSN 0164-1212. Available in: <http:
//www.sciencedirect.com/science/article/pii/S0164121214001861>. Access in: 10 jun
2020. Cited 10 times at pages 44, 52, 54, 56, 57, 60, 61, 62, 64, and 113.

ALVES, V. et al. Requirements engineering for software product lines: A systematic
literature review. Information and Software Technology, Elsevier, v. 52, n. 8, p.

http://doi.acm.org/10.1145/2499777.2500718
https://link.springer.com/article/10.1007/s10270-013-0364-2
http://doi.acm.org/10.1145/2110147.2110153
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.373.1958&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.373.1958&rep=rep1&type=pdf
 http://ijeacs.com/Files/Other/Journal-V02-I03/An-Empirical-Study-of-the-Improved-SPLD-Framework-using-Expert-Opinion-Technique.pdf
 http://ijeacs.com/Files/Other/Journal-V02-I03/An-Empirical-Study-of-the-Improved-SPLD-Framework-using-Expert-Opinion-Technique.pdf
 http://ijeacs.com/Files/Other/Journal-V02-I03/An-Empirical-Study-of-the-Improved-SPLD-Framework-using-Expert-Opinion-Technique.pdf
https://www.researchgate.net/profile/Asif_Khan67/publication/313767271_A_Secure_Framework_for_Software_Product_Line_Development/links/58a55e5892851cf0e393144c/A-Secure-Framework-for-Software-Product-Line-Development.pdf
https://www.researchgate.net/profile/Asif_Khan67/publication/313767271_A_Secure_Framework_for_Software_Product_Line_Development/links/58a55e5892851cf0e393144c/A-Secure-Framework-for-Software-Product-Line-Development.pdf
https://www.researchgate.net/profile/Asif_Khan67/publication/313767271_A_Secure_Framework_for_Software_Product_Line_Development/links/58a55e5892851cf0e393144c/A-Secure-Framework-for-Software-Product-Line-Development.pdf
https://www.researchgate.net/profile/Asif_Khan67/publication/313767271_A_Secure_Framework_for_Software_Product_Line_Development/links/58a55e5892851cf0e393144c/A-Secure-Framework-for-Software-Product-Line-Development.pdf
 http://www.sciencedirect.com/science/article/pii/S0164121214001861
 http://www.sciencedirect.com/science/article/pii/S0164121214001861

120 Bibliography

806–820, 2010. Available in: <https://www.sciencedirect.com/science/article/abs/pii/
S0950584910000625>. Access in: 26 jun 2020. Cited at page 66.

ALVES, V. et al. An exploratory study of information retrieval techniques in domain
analysis. In: 12th International Software Product Line Conference. [S.l.]: IEEE,
2008. p. 67–76. Available in: <https://ieeexplore.ieee.org/abstract/document/4626841/
>. Access in: 16 april 2020. Cited 6 times at pages 12, 74, 94, 99, 100, and 103.

AMPATZOGLOU, A. et al. Identifying, categorizing and mitigating threats to validity
in software engineering secondary studies. Information and Software Technology,
Elsevier, v. 106, p. 201–230, 2019. Available in: <https://www.sciencedirect.com/
science/article/abs/pii/S0950584918302106>. Access in: 4 may 2020. Cited at page 65.

ASSUNÇÃO, W. et al. Reengineering legacy applications into software product lines:
a systematic mapping. Empirical Software Engineering, Springer, p. 1–45, 2017.
Available in: <https://link.springer.com/article/10.1007/s10664-017-9499-z>. Access
in: 10 april 2020. Cited 8 times at pages 22, 25, 28, 29, 35, 66, 79, and 115.

BALBINO, M.; ALMEIDA, E.; MEIRA, S. An agile scoping process
for software product lines. In: Proceedings of SEKE. [S.l.: s.n.],
2011. p. 717–722. Available in: <https://www.semanticscholar.org/paper/
An-Agile-Scoping-Process-for-Software-Product-Lines-Balbino-Almeida/
2fa671fd0d418f3ae4bbc00a26f19d55f432733a>. Access in: 10 jun 2020. Cited 10
times at pages 32, 43, 50, 56, 59, 60, 61, 63, 64, and 114.

BARTHOLDT, J.; BECKER, D. Scope extension of an existing product line. In:
Proceedings of the 16th International Software Product Line Conference
- Volume 1. New York, NY, USA: ACM, 2012. (SPLC ’12), p. 275–282. ISBN
978-1-4503-1094-9. Available in: <http://doi.acm.org/10.1145/2362536.2362573>.
Access in: 10 jun 2020. Cited 4 times at pages 43, 51, 56, and 59.

BAYER, J. et al. Pulse-i: Deriving instances from a product line infrastructure. In:
Proceedings Seventh IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems (ECBS 2000). [S.l.: s.n.], 2000. p. 237–
245. ISSN null. Available in: <https://ieeexplore.ieee.org/abstract/document/839882/>.
Access in: 18 jun 2020. Cited 5 times at pages 42, 47, 55, 57, and 62.

BAYER, J.; MUTHIG, D.; WIDEN, T. Customizable domain analysis. In:
Proceedings of the First International Symposium on Generative and
Component-Based Software Engineering. London, UK, UK: Springer-
Verlag, 2000. (GCSE ’99), p. 178–194. ISBN 3-540-41172-0. Available in: <http:
//dl.acm.org/citation.cfm?id=645416.652056/>. Access in: 10 jun 2020. Cited 5 times
at pages 32, 42, 47, 54, and 57.

BÉCAN, G. et al. Breathing ontological knowledge into feature model management.
2013. Available in: <https://hal.inria.fr/hal-00874867/>. Access in: 26 april 2020.
Cited 5 times at pages 30, 109, 110, 111, and 112.

BOSCH, J. The challenges of broadening the scope of software product fam-
ilies. Communications of the ACM, ACM New York, NY, USA, v. 49,
n. 12, p. 41–44, 2006. Available in: <https://cacm.acm.org/magazines/2006/12/
5762-the-challenges-of-broadening-the-scope-of-software-product-families/fulltext>.
Access in: 26 jun 2020. Cited at page 33.

 https://www.sciencedirect.com/science/article/abs/pii/S0950584910000625
 https://www.sciencedirect.com/science/article/abs/pii/S0950584910000625
 https://ieeexplore.ieee.org/abstract/document/4626841/
 https://ieeexplore.ieee.org/abstract/document/4626841/
 https://www.sciencedirect.com/science/article/abs/pii/S0950584918302106
 https://www.sciencedirect.com/science/article/abs/pii/S0950584918302106
 https://link.springer.com/article/10.1007/s10664-017-9499-z
 https://www.semanticscholar.org/paper/An-Agile-Scoping-Process-for-Software-Product-Lines-Balbino-Almeida/2fa671fd0d418f3ae4bbc00a26f19d55f432733a
 https://www.semanticscholar.org/paper/An-Agile-Scoping-Process-for-Software-Product-Lines-Balbino-Almeida/2fa671fd0d418f3ae4bbc00a26f19d55f432733a
 https://www.semanticscholar.org/paper/An-Agile-Scoping-Process-for-Software-Product-Lines-Balbino-Almeida/2fa671fd0d418f3ae4bbc00a26f19d55f432733a
 http://doi.acm.org/10.1145/2362536.2362573
 https://ieeexplore.ieee.org/abstract/document/839882/
 http://dl.acm.org/citation.cfm?id=645416.652056/
 http://dl.acm.org/citation.cfm?id=645416.652056/
 https://hal.inria.fr/hal-00874867/
https://cacm.acm.org/magazines/2006/12/5762-the-challenges-of-broadening-the-scope-of-software-product-families/fulltext
https://cacm.acm.org/magazines/2006/12/5762-the-challenges-of-broadening-the-scope-of-software-product-families/fulltext

Bibliography 121

BOSCH, J. From software product lines to software ecosystems. In: Proceedings
of the 13th International Software Product Line Conference. USA:
Carnegie Mellon University, 2009. (SPLC ’09), p. 111–119. Available in: <https:
//pdfs.semanticscholar.org/7693/a20d5e97d0fe40c93ead285d2c3625a7d650.pdf>. Access
in: 18 jun 2020. Cited at page 33.

BREIVOLD, H. P.; LARSSON, S.; LAND, R. Migrating industrial systems
towards software product lines: Experiences and observations through case
studies. In: 2008 34th Euromicro Conference Software Engineering
and Advanced Applications. [S.l.: s.n.], 2008. p. 232–239. Available in:
<https://ieeexplore.ieee.org/abstract/document/4725727/>. Access in: 4 may 2020.
Cited 5 times at pages 12, 94, 101, 102, and 103.

CARBON, R. et al. Providing feedback from application to family engineering -
the product line planning game at the testo ag. In: 2008 12th International
Software Product Line Conference. [S.l.: s.n.], 2008. p. 180–189. Available in:
<https://ieeexplore.ieee.org/document/4626852>. Access in: 18 jun 2020. Cited 6
times at pages 42, 49, 55, 59, 63, and 64.

CAVALCANTI, Y. a. C. et al. Towards metamodel support for variability and
traceability in software product lines. In: Proceedings of the 5th Workshop
on Variability Modeling of Software-Intensive Systems. New York, NY,
USA: ACM, 2011. (VaMoS ’11), p. 49–57. ISBN 978-1-4503-0570-9. Available in:
<http://doi.acm.org/10.1145/1944892.1944898>. Access in: 10 jun 2020. Cited 6 times
at pages 43, 50, 55, 57, 61, and 63.

CHEN, K. et al. An approach to constructing feature models based on requirements
clustering. In: Requirements Engineering, 2005. Proceedings. 13th IEEE
International Conference on. [S.l.]: IEEE, 2005. p. 31–40. Available in:
<https://ieeexplore.ieee.org/abstract/document/1531025/>. Access in: 16 april 2020.
Cited 7 times at pages 12, 94, 99, 101, 103, 104, and 107.

CHIKOFSKY, E.; CROSS, J. Reverse engineering and design recovery: A
taxonomy. IEEE software, IEEE, v. 7, n. 1, p. 13–17, 1990. Available in:
<https://ieeexplore.ieee.org/abstract/document/43044>. Access in: 10 jun 2020. Cited
at page 28.

CHRISTENSEN, A.; MØLLER, A.; SCHWARTZBACH, M. Precise analysis of
string expressions. Static Analysis, Springer, p. 1076–1076, 2003. Available in:
<https://link.springer.com/chapter/10.1007/3-540-44898-5_1>. Access in: 10 jun 2020.
Cited at page 29.

CLEMENTS, P.; NORTHROP, L. Software product lines. [S.l.]: Addison-Wesley„
2002. Cited 2 times at pages 25 and 30.

CRUZ, J. et al. Toward a hybrid approach to generate software product line portfolios.
In: 2013 IEEE Congress on Evolutionary Computation. [S.l.: s.n.], 2013. p. 2229–
2236. ISSN 1089-778X. Available in: <https://ieeexplore.ieee.org/document/6557834/>.
Access in: 10 jun 2020. Cited 7 times at pages 44, 51, 56, 60, 61, 63, and 64.

CZARNECKI, K.; EISENECKER, U. W. Components and generative programming.
In: SPRINGER-VERLAG. ACM SIGSOFT Software Engineering Notes. [S.l.],

https://pdfs.semanticscholar.org/7693/a20d5e97d0fe40c93ead285d2c3625a7d650.pdf
https://pdfs.semanticscholar.org/7693/a20d5e97d0fe40c93ead285d2c3625a7d650.pdf
https://ieeexplore.ieee.org/abstract/document/4725727/
https://ieeexplore.ieee.org/document/4626852
http://doi.acm.org/10.1145/1944892.1944898
https://ieeexplore.ieee.org/abstract/document/1531025/
https://ieeexplore.ieee.org/abstract/document/43044
https://link.springer.com/chapter/10.1007/3-540-44898-5_1
https://ieeexplore.ieee.org/document/6557834/

122 Bibliography

1999. v. 24, n. 6, p. 2–19. Available in: <https://link.springer.com/chapter/10.1007/
3-540-48166-4_2>. Access in: 10 jun 2020. Cited 4 times at pages 31, 32, 74, and 82.

DAVIS, S. From “future perfect”: Mass customizing. Planning review, MCB UP Ltd,
v. 17, n. 2, p. 16–21, 1989. Available in: <https://doi.org/10.1108/eb054249>. Access
in: 10 jun 2020. Cited at page 26.

DEBAUD, J.; SCHMID, K. A systematic approach to derive the scope of software
product lines. In: Proceedings of the 1999 International Conference on Software
Engineering (IEEE Cat. No.99CB37002). [S.l.: s.n.], 1999. p. 34–43. ISSN
0270-5257. Available in: <https://ieeexplore.ieee.org/abstract/document/840993/>.
Access in: 10 jun 2020. Cited 7 times at pages 42, 47, 48, 55, 57, 64, and 112.

DUMAIS, S. Latent semantic analysis. Annual review of information science
and technology, Wiley Online Library, v. 38, n. 1, p. 188–230, 2004. Available in:
<https://asistdl.onlinelibrary.wiley.com/doi/full/10.1002/aris.1440380105>. Access in:
10 jun 2020. Cited at page 30.

ELSNER, C. et al. Multi-level product line customization. In: Japan Society for the
Promotion of Science (JSPS); SANGIKYO Co. Yokohama, Japan: [s.n.], 2010.
Available in: <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.391.969&rep=
rep1&type=pdf>. Access in: 10 jun 2020. Cited 4 times at pages 43, 50, 55, and 57.

ENGSTRöM, E.; RUNESON, P. Software product line testing - a systematic mapping
study. Inf. Softw. Technol., Butterworth-Heinemann, USA, v. 53, n. 1, p. 2–13, jan.
2011. ISSN 0950-5849. Available in: <https://www.sciencedirect.com/science/article/
abs/pii/S0950584910001709>. Access in: 26 jun 2020. Cited at page 66.

ESTUBLIER, J.; DIENG, I. A.; LEVEQUE, T. Software product line evolution:
The selecta system. In: Proceedings of the 2010 ICSE Workshop on
Product Line Approaches in Software Engineering. New York, NY, USA:
ACM, 2010. (PLEASE ’10), p. 32–39. ISBN 978-1-60558-968-8. Available in:
<https://dl.acm.org/doi/abs/10.1145/1808937.1808942>. Access in: 10 jun 2020. Cited
6 times at pages 43, 49, 55, 62, 63, and 64.

EYAL-SALMAN, H.; SERIAI, D.; DONY, C. Feature-to-code traceability in a collection
of software variants: Combining formal concept analysis and information retrieval. In:
14th International Conference on Information Reuse and Integration. [S.l.]:
IEEE, 2013. p. 209–216. Available in: <https://ieeexplore.ieee.org/abstract/document/
6642474/>. Access in: 26 april 2020. Cited 7 times at pages 11, 82, 93, 94, 95, 96,
and 103.

EYAL-SALMAN, H.; SERIAI, D.; DONY, C. Feature location in a collection of product
variants: Combining information retrieval and hierarchical clustering. In: Software
Engineering and Knowledge Engineering. [S.l.: s.n.], 2014. p. 426–430. Available
in: <https://hal-lirmm.ccsd.cnrs.fr/lirmm-01291261/>. Access in: 16 april 2020. Cited
at page 22.

FEILER, P. H.; HUMPHREY, W. S. Software process development and enactment:
Concepts and definitions. In: IEEE. Software Process, 1993. Continuous Software
Process Improvement, Second International Conference on the. [S.l.], 1993. p.
28–40. Available in: <https://ieeexplore.ieee.org/abstract/document/236824/>. Access
in: 10 april 2020. Cited at page 32.

https://link.springer.com/chapter/10.1007/3-540-48166-4_2
https://link.springer.com/chapter/10.1007/3-540-48166-4_2
https://doi.org/10.1108/eb054249
https://ieeexplore.ieee.org/abstract/document/840993/
https://asistdl.onlinelibrary.wiley.com/doi/full/10.1002/aris.1440380105
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.391.969&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.391.969&rep=rep1&type=pdf
https://www.sciencedirect.com/science/article/abs/pii/S0950584910001709
https://www.sciencedirect.com/science/article/abs/pii/S0950584910001709
https://dl.acm.org/doi/abs/10.1145/1808937.1808942
https://ieeexplore.ieee.org/abstract/document/6642474/
https://ieeexplore.ieee.org/abstract/document/6642474/
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01291261/
https://ieeexplore.ieee.org/abstract/document/236824/

Bibliography 123

FISCHER, S. et al. Enhancing clone-and-own with systematic reuse for developing
software variants. In: Software Maintenance and Evolution (ICSME), 2014
IEEE International Conference on. [S.l.]: IEEE, 2014. p. 391–400. Available in:
<https://ieeexplore.ieee.org/abstract/document/6976105/>. Access in: 26 april 2020.
Cited 2 times at pages 110 and 111.

FRAKES, W. B.; BAEZA-YATES, R. (Ed.). Information Retrieval: Data
Structures and Algorithms. USA: Prentice-Hall, Inc., 1992. ISBN 0134638379. Cited
at page 30.

FUGGETTA, A.; NITTO, E. D. Software process. In: ACM. Proceedings of
the on Future of Software Engineering. [S.l.], 2014. p. 1–12. Available in:
<https://dl.acm.org/doi/abs/10.1145/2593882.2593883>. Access in: 10 april 2020.
Cited at page 32.

GILLAIN, J. et al. Product portfolio scope optimization based on features and goals.
In: SPLC ’12 Proceedings of the 16th International Software Product Line
Conference. [S.l.]: ACM Digital Library; New York, 2012. v. 1, p. 161–170. ISBN 978
14 503 10949. Available in: <https://dl.acm.org/doi/abs/10.1145/2362536.2362559>.
Access in: 10 jun 2020. Cited 7 times at pages 43, 51, 56, 57, 60, 63, and 64.

HER, J. S. et al. A framework for evaluating reusability of core asset in product line
engineering. Information and Software Technology, v. 49, n. 7, p. 740 – 760,
2007. ISSN 0950-5849. Available in: <http://www.sciencedirect.com/science/article/pii/
S095058490600111X>. Access in: 18 jun 2020. Cited 8 times at pages 42, 48, 55, 57, 62,
63, 64, and 112.

HUBAUX, A.; HEYMANS, P.; BENAVIDES, D. Variability modeling challenges from
the trenches of an open source product line re-engineering project. In: IEEE. 12th
International Software Product Line Conference. [S.l.], 2008. p. 55–64. Available
in: <https://ieeexplore.ieee.org/abstract/document/4626840/>. Access in: 26 jun 2020.
Cited at page 33.

IANZEN, A. et al. Scoping automation in software product lines. In: Proceedings
of the 17th International Conference on Enterprise Information Systems
- Volume 2. Portugal: SCITEPRESS - Science and Technology Publications,
Lda, 2015. (ICEIS 2015), p. 82–91. ISBN 978-989-758-097-0. Available in: <http:
//dx.doi.org/10.5220/0005372400820091>. Access in: 10 jun 2020. Cited 5 times at
pages 44, 52, 56, 63, and 64.

JAIN, A. K.; DUBES, R. C. Algorithms for clustering data. [S.l.]: Prentice-Hall,
Inc., 1988. Cited at page 29.

JOHN, I. Using documentation for product line scoping. Software, IEEE, v. 27, n. 3,
p. 42–47, May 2010. Available in: <https://ieeexplore.ieee.org/abstract/document/
5416671/>. Access in: 10 jun 2020. Cited 6 times at pages 31, 43, 49, 55, 57, and 64.

JOHN, I.; EISENBARTH, M. A decade of scoping: A survey. In: Proceedings of the
13th International Software Product Line Conference. [S.l.: s.n.], 2009. (SPLC
’09), p. 31–40. Available in: <https://dl.acm.org/doi/abs/10.5555/1753235.1753241>.
Access in: 10 jun 2020. Cited 2 times at pages 31 and 67.

https://ieeexplore.ieee.org/abstract/document/6976105/
https://dl.acm.org/doi/abs/10.1145/2593882.2593883
https://dl.acm.org/doi/abs/10.1145/2362536.2362559
http://www.sciencedirect.com/science/article/pii/S095058490600111X
http://www.sciencedirect.com/science/article/pii/S095058490600111X
https://ieeexplore.ieee.org/abstract/document/4626840/
http://dx.doi.org/10.5220/0005372400820091
http://dx.doi.org/10.5220/0005372400820091
https://ieeexplore.ieee.org/abstract/document/5416671/
https://ieeexplore.ieee.org/abstract/document/5416671/
https://dl.acm.org/doi/abs/10.5555/1753235.1753241

124 Bibliography

JOHN, I. et al. A practical guide to product line scoping. In: 10th International
Software Product Line Conference (SPLC’06). [S.l.: s.n.], 2006. p. 3–12. Available
in: <https://ieeexplore.ieee.org/abstract/document/1691572/>. Access in: 10 jun 2020.
Cited 6 times at pages 42, 47, 55, 57, 62, and 64.

KANG, K. et al. Feature-oriented domain analysis (FODA) feasibility study.
[S.l.], 1990. Available in: <https://resources.sei.cmu.edu/library/asset-view.cfm?
assetid=11231>. Access in: 10 jun 2020. Cited 3 times at pages 25, 30, and 31.

KANG, K. et al. Feature-oriented re-engineering of legacy systems into product line
assets–a case study. In: International Conference on Software Product Lines.
[S.l.]: Springer, 2005. p. 45–56. Available in: <https://link.springer.com/chapter/10.
1007/11554844_6>. Access in: 26 april 2020. Cited 2 times at pages 22 and 25.

KARIMPOUR, R.; RUHE, G. Evolutionary robust optimization for software
product line scoping: An explorative study. Computer Languages, Systems
and Structures, v. 47, p. 189 – 210, 2016. ISSN 1477-8424. Available in:
<http://www.sciencedirect.com/science/article/pii/S1477842416301063>. Access in: 10
jun 2020. Cited 5 times at pages 44, 53, 56, 60, and 64.

KASTNER, C. et al. Featureide: A tool framework for feature-oriented software
development. In: IEEE. 2009 IEEE 31st International Conference on Software
Engineering. [S.l.], 2009. p. 611–614. Available in: <https://ieeexplore.ieee.org/
abstract/document/5070568/>. Access in: 4 may 2020. Cited at page 84.

KHTIRA, A.; BENLARABI, A.; ASRI, B. E. Towards a requirement-based approach to
support early decisions in software product line engineering. In: 2014 Second World
Conference on Complex Systems (WCCS). [S.l.: s.n.], 2014. p. 152–157. Available
in: <https://ieeexplore.ieee.org/abstract/document/7060993/>. Access in: 10 jun 2020.
Cited 6 times at pages 44, 52, 56, 61, 63, and 64.

KHURUM, M.; GORSCHEK, T. A systematic review of domain analysis solutions
for product lines. Journal of Systems and Software, Elsevier Science Inc.,
USA, v. 82, n. 12, p. 1982–2003, dez. 2009. ISSN 0164-1212. Available in:
<https://dl.acm.org/doi/abs/10.1016/j.jss.2009.06.048>. Access in: 26 jun 2020. Cited
at page 66.

KIM, J.; PARK, S.; SUGUMARAN, V. Drama: A framework for domain requirements
analysis and modeling architectures in software product lines. Journal of Systems
and Software, v. 81, n. 1, p. 37 – 55, 2008. ISSN 0164-1212. Available in:
<http://www.sciencedirect.com/science/article/pii/S016412120700088X>. Access in: 18
jun 2020. Cited 5 times at pages 42, 49, 55, 63, and 64.

KISHI, T.; NODA, N.; KATAYAMA, T. A method for product line scoping based on a
decision-making framework. In: CHASTEK, G. J. (Ed.). Software Product Lines.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. p. 348–365. ISBN 978-3-540-45652-0.
Available in: <http://www.sciencedirect.com/science/article/pii/S016412120700088X>.
Access in: 10 jun 2020. Cited 5 times at pages 42, 48, 55, 60, and 61.

KITCHENHAM, B. et al. Systematic literature reviews in software engineering - a
systematic literature review. Information and Software Technology, v. 51, n. 1, p.
7 – 15, 2009. ISSN 0950-5849. Available in: <https://www.sciencedirect.com/science/
article/pii/S0950584908001390>. Access in: 10 jun 2020. Cited at page 37.

https://ieeexplore.ieee.org/abstract/document/1691572/
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=11231
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=11231
https://link.springer.com/chapter/10.1007/11554844_6
https://link.springer.com/chapter/10.1007/11554844_6
http://www.sciencedirect.com/science/article/pii/S1477842416301063
https://ieeexplore.ieee.org/abstract/document/5070568/
https://ieeexplore.ieee.org/abstract/document/5070568/
https://ieeexplore.ieee.org/abstract/document/7060993/
https://dl.acm.org/doi/abs/10.1016/j.jss.2009.06.048
http://www.sciencedirect.com/science/article/pii/S016412120700088X
http://www.sciencedirect.com/science/article/pii/S016412120700088X
https://www.sciencedirect.com/science/article/pii/S0950584908001390
https://www.sciencedirect.com/science/article/pii/S0950584908001390

Bibliography 125

KITCHENHAM, B. et al. Systematic literature reviews in software engineering – a
tertiary study. Information and Software Technology, v. 52, n. 8, p. 792 – 805,
2010. ISSN 0950-5849. Available in: <http://www.sciencedirect.com/science/article/pii/
S0950584910000467>. Access in: 10 jun 2020. Cited 2 times at pages 36 and 66.

KLATT, B.; KROGMANN, K.; SEIDL, C. Program dependency analysis for
consolidating customized product copies. In: IEEE International Conference on
Software Maintenance and Evolution. [S.l.]: IEEE, 2014. p. 496–500. Available in:
<https://ieeexplore.ieee.org/abstract/document/6976125/>. Access in: 26 april 2020.
Cited at page 29.

KNAUBER, P. et al. Applying product line concepts in small and medium-
sized companies. IEEE Software, IEEE Computer Society, Los Alamitos,
CA, USA, v. 17, n. 05, p. 88–95, sep 2000. ISSN 0740-7459. Available in:
<https://ieeexplore.ieee.org/abstract/document/6156717/>. Access in: 10 jun 2020.
Cited 5 times at pages 42, 47, 55, 57, and 63.

KRUCHTEN, P. The rational unified process: an introduction. [S.l.]:
Addison-Wesley Professional, 2004. Cited at page 32.

KRUEGER, C. Easing the transition to software mass customization. In: SPRINGER.
International Workshop on Software Product-Family Engineering. [S.l.], 2001. p.
282–293. Available in: <https://link.springer.com/chapter/10.1007/3-540-47833-7_25>.
Access in: 4 may 2020. Cited 3 times at pages 22, 28, and 64.

KRUEGER, C. W. Software reuse. ACM Comput. Surv., Association for Computing
Machinery, New York, NY, USA, v. 24, n. 2, p. 131–183, jun. 1992. ISSN 0360-0300.
Available in: <https://doi.org/10.1145/130844.130856>. Access in: 18 jun 2020. Cited
at page 21.

LAGUNA, M. A.; CRESPO, Y. A systematic mapping study on software product line
evolution: From legacy system reengineering to product line refactoring. Science of
Computer Programming, Elsevier, v. 78, n. 8, p. 1010–1034, 2013. Available in:
<https://www.sciencedirect.com/science/article/pii/S0167642312000895>. Access in:
26 jun 2020. Cited at page 66.

LEE, J.; KANG, S.; LEE, D. A comparison of software product line scoping
approaches. International Journal of Software Engineering and Knowledge
Engineering, v. 20, n. 05, p. 637–663, 2010. Available in: <https://doi.org/10.1142/
S021819401000489X>. Access in: 10 jun 2020. Cited at page 68.

LINDEN, F. Van der; SCHMID, K.; ROMMES, E. Software product lines in action:
the best industrial practice in product line engineering. [S.l.]: Springer Science
& Business Media, 2007. Cited 4 times at pages 21, 22, 25, and 26.

LOBATO, L. L. et al. Risk management in software product lines: An industrial case
study. In: 2012 International Conference on Software and System Process
(ICSSP). [S.l.: s.n.], 2012. p. 180–189. Available in: <https://ieeexplore.ieee.org/
document/6225963/>. Access in: 18 jun 2020. Cited 6 times at pages 43, 50, 56, 59, 61,
and 63.

http://www.sciencedirect.com/science/article/pii/S0950584910000467
http://www.sciencedirect.com/science/article/pii/S0950584910000467
https://ieeexplore.ieee.org/abstract/document/6976125/
https://ieeexplore.ieee.org/abstract/document/6156717/
 https://link.springer.com/chapter/10.1007/3-540-47833-7_25
https://doi.org/10.1145/130844.130856
https://www.sciencedirect.com/science/article/pii/S0167642312000895
 https://doi.org/10.1142/S021819401000489X
 https://doi.org/10.1142/S021819401000489X
 https://ieeexplore.ieee.org/document/6225963/
 https://ieeexplore.ieee.org/document/6225963/

126 Bibliography

MACHADO, I. D. C. et al. On strategies for testing software product lines: A
systematic literature review. Information and Software Technology, Butterworth-
Heinemann, USA, v. 56, n. 10, p. 1183–1199, out. 2014. ISSN 0950-5849. Available in:
<https://www.sciencedirect.com/science/article/abs/pii/S0950584914000834>. Access
in: 26 jun 2020. Cited at page 66.

MÆRSK-MØLLER, H. M.; JØRGENSEN, B. N. Experiences initiating software
product line engineering in small teams with pulse. PuLSE, v. 7, p. 9, 2010. Available
in: <https://www.researchgate.net/profile/Bo_Jorgensen3/publication/253650939_
Experiences_Initiating_Software_Product_Line_Engineering_in_Small_Teams_
with_Pulse/links/53f325990cf256ab87b07a22.pdf>. Access in: 18 jun 2020. Cited 7
times at pages 43, 47, 55, 57, 59, 63, and 64.

MARCHEZAN, L. et al. Thoth: A web-based tool to support systematic reviews.
In: 2019 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). [S.l.: s.n.], 2019. p. 1–6. Available in:
<https://ieeexplore.ieee.org/document/8870160>. Access in: 4 may 2020. Cited at
page 37.

MARCHEZAN, L. et al. Towards a generic process for spl re-engineering. In: Escola
Regional de Engenharia de Software (ERES) 1 (1). [S.l.]: SBC, 2017. p. 15–22.
Cited 2 times at pages 35 and 36.

MARCHEZAN, L. et al. A customizable spl scoping process for spl reengineering. In:
Anais da III Escola Regional de Engenharia de Software. Porto Alegre, RS,
Brasil: SBC, 2019. p. 137–146. Available in: <https://sol.sbc.org.br/index.php/eres/
article/view/8506>. Access in: 10 april 2020. Cited at page 116.

MARCHEZAN, L. et al. Paxspl: A feature retrieval process for software product line
reengineering. Software: Practice and Experience, v. 49, n. 8, p. 1278–1306, 2019.
Available in: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2707>. Access in:
10 april 2020. Cited 9 times at pages 22, 23, 36, 37, 69, 79, 111, 115, and 116.

MARIMUTHU, C.; CHANDRASEKARAN, K. Systematic studies in software
product lines: A tertiary study. In: 21st International Systems and Software
Product Line Conference - Volume A. New York, NY, USA: Association for
Computing Machinery, 2017. (SPLC ’17), p. 143–152. ISBN 9781450352215. Available
in: <https://dl.acm.org/doi/10.1145/3106195.3106212>. Access in: 26 jun 2020. Cited
at page 66.

MARTIN, R. C. Agile software development: principles, patterns, and
practices. [S.l.]: Prentice Hall, 2002. Cited at page 32.

MARTINEZ, J.; ASSUNçãO, W. K. G.; ZIADI, T. Espla: A catalog of extractive
spl adoption case studies. In: Proceedings of the 21st International Systems
and Software Product Line Conference - Volume B. New York, NY,
USA: ACM, 2017. (SPLC ’17), p. 38–41. ISBN 978-1-4503-5119-5. Available in:
<https://dl.acm.org/doi/10.1145/3109729.3109748>. Access in: 4 may 2020. Cited 4
times at pages 91, 92, 102, and 115.

MARTINEZ, J. et al. Bottom-up adoption of software product lines: a generic
and extensible approach. In: ACM. Proceedings of the 19th International

https://www.sciencedirect.com/science/article/abs/pii/S0950584914000834
https://www.researchgate.net/profile/Bo_Jorgensen3/publication/253650939_Experiences_Initiating_Software_Product_Line_Engineering_in_Small_Teams_with_Pulse/links/53f325990cf256ab87b07a22.pdf
https://www.researchgate.net/profile/Bo_Jorgensen3/publication/253650939_Experiences_Initiating_Software_Product_Line_Engineering_in_Small_Teams_with_Pulse/links/53f325990cf256ab87b07a22.pdf
https://www.researchgate.net/profile/Bo_Jorgensen3/publication/253650939_Experiences_Initiating_Software_Product_Line_Engineering_in_Small_Teams_with_Pulse/links/53f325990cf256ab87b07a22.pdf
https://ieeexplore.ieee.org/document/8870160
https://sol.sbc.org.br/index.php/eres/article/view/8506
https://sol.sbc.org.br/index.php/eres/article/view/8506
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2707
https://dl.acm.org/doi/10.1145/3106195.3106212
https://dl.acm.org/doi/10.1145/3109729.3109748

Bibliography 127

Conference on Software Product Line. [S.l.], 2015. p. 101–110. Available in:
<https://dl.acm.org/doi/abs/10.1145/2791060.2791086>. Access in: 10 jun 2020. Cited
5 times at pages 22, 25, 109, 110, and 111.

MONTAGUD, S.; ABRAHÃO, S.; INSFRAN, E. A systematic review of quality
attributes and measures for software product lines. Software Quality Journal,
Springer, v. 20, n. 3-4, p. 425–486, 2012. Available in: <https://link.springer.com/
article/10.1007/s11219-011-9146-7>. Access in: 26 jun 2020. Cited at page 66.

MORAES, M. B. S. de; ALMEIDA, E. S. de; ROMERO, S. A systematic review on
software product lines scoping. In: CITESEER. Proceedings of 6th Experimental
Software Engineering Latin American Workshop (ESELAW 2009). [S.l.], 2009.
p. 63. Available in: <shorturl.at/ruOW7>. Access in: 10 jun 2020. Cited at page 67.

MU, Y.; WANG, Y.; GUO, J. Extracting software functional requirements from
free text documents. In: Information and Multimedia Technology, 2009.
ICIMT’09. International Conference on. [S.l.]: IEEE, 2009. p. 194–198. Available
in: <https://ieeexplore.ieee.org/abstract/document/5381217/>. Access in: 26 april
2020. Cited at page 30.

MULLER, J. Value-based portfolio optimization for software product lines. In: 2011
15th International Software Product Line Conference. [S.l.: s.n.], 2011. p. 15–24.
Available in: <https://ieeexplore.ieee.org/document/6030042>. Access in: 18 jun 2020.
Cited 6 times at pages 43, 50, 56, 60, 63, and 64.

NETO, P. A. da M. S. et al. A systematic mapping study of software product
lines testing. Information and Software Technology, Butterworth-Heinemann,
USA, v. 53, n. 5, p. 407–423, maio 2011. ISSN 0950-5849. Available in: <https:
//www.sciencedirect.com/science/article/pii/S0950584910002193>. Access in: 26 jun
2020. Cited at page 66.

NETO, P. A. S. et al. A hybrid approach to suggest software product line portfolios.
Applied Soft Computing, v. 49, p. 1243 – 1255, 2016. ISSN 1568-4946. Available in:
<http://www.sciencedirect.com/science/article/pii/S1568494616304185>. Access in: 10
jun 2020. Cited 8 times at pages 44, 53, 56, 57, 60, 61, 63, and 64.

NÖBAUER, M.; SEYFF, N.; GROHER, I. Similarity analysis within product
line scoping: An evaluation of a semi-automatic approach. In: JARKE, M. et
al. (Ed.). Advanced Information Systems Engineering. Cham: Springer
International Publishing, 2014. p. 165–179. ISBN 978-3-319-07881-6. Available in:
<https://link.springer.com/chapter/10.1007/978-3-319-07881-6_12>. Access in: 18 jun
2020. Cited 4 times at pages 22, 44, 52, and 56.

NOOR, M. A.; GRüNBACHER, P.; BRIGGS, R. O. A collaborative approach for
product line scoping: A case study in collaboration engineering. In: Proceedings of
the 25th Conference on IASTED International Multi-Conference: Software
Engineering. Anaheim, CA, USA: ACTA Press, 2007. (SE’07), p. 216–223. Available in:
<http://dl.acm.org/citation.cfm?id=1332044.1332079>. Access in: 10 jun 2020. Cited
7 times at pages 42, 48, 55, 59, 60, 61, and 64.

NOOR, M. A.; GRÜNBACHER, P.; HOYER, C. A collaborative method for
reuse potential assessment in reengineering-based product line adoption. In:

https://dl.acm.org/doi/abs/10.1145/2791060.2791086
https://link.springer.com/article/10.1007/s11219-011-9146-7
https://link.springer.com/article/10.1007/s11219-011-9146-7
shorturl.at/ruOW7
https://ieeexplore.ieee.org/abstract/document/5381217/
https://ieeexplore.ieee.org/document/6030042
https://www.sciencedirect.com/science/article/pii/S0950584910002193
https://www.sciencedirect.com/science/article/pii/S0950584910002193
http://www.sciencedirect.com/science/article/pii/S1568494616304185
https://link.springer.com/chapter/10.1007/978-3-319-07881-6_12
http://dl.acm.org/citation.cfm?id=1332044.1332079

128 Bibliography

Balancing Agility and Formalism in Software Engineering. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008. p. 69–83. ISBN 978-3-540-85279-7. Available in:
<https://link.springer.com/chapter/10.1007/978-3-540-85279-7_6>. Access in: 10 jun
2020. Cited 10 times at pages 42, 48, 55, 59, 60, 61, 63, 64, 112, and 114.

OJEDA, M. C. C. et al. A collaborative method for a tangible software product line
scoping. In: 2018 ICAI Workshops (ICAIW). [S.l.: s.n.], 2018. p. 1–6. Available
in: <https://ieeexplore.ieee.org/document/8554999>. Access in: 10 jun 2020. Cited 5
times at pages 44, 53, 56, 57, and 112.

OJEDA, M. C. C.; RODRIGUEZ, F. A.; COLLAZOS, C. A. Identifying collaborative
aspects during software product lines scoping. In: Proceedings of the 23rd
International Systems and Software Product Line Conference - Volume B.
New York, NY, USA: ACM, 2019. (SPLC ’19), p. 98–105. ISBN 978-1-4503-6668-7.
Available in: <http://doi.acm.org/10.1145/3307630.3342420>. Access in: 18 jun 2020.
Cited 6 times at pages 45, 53, 56, 59, 63, and 64.

O’LEARY, P.; RICHARDSON, I. Process reference model construction: implementing
an evolutionary multi-method research approach. IET Software, v. 6, n. 5, p. 423–430,
2012. Available in: <https://digital-library.theiet.org/content/journals/10.1049/iet-sen.
2011.0195>. Access in: 10 april 2020. Cited at page 35.

OTSUKA, J. et al. Small inexpensive core asset construction for large gainful product
line development: developing a communication system firmware product line. In: 15th
International Software Product Line Conference, Volume 2. [S.l.]: ACM, 2011.
p. 20. Available in: <https://dl.acm.org/doi/abs/10.1145/2019136.2019159>. Access in:
26 april 2020. Cited 2 times at pages 22 and 25.

O’LEARY, P.; ALMEIDA, E. S. de; RICHARDSON, I. The pro-pd process model
for product derivation within software product lines. Information and Software
Technology, v. 54, n. 9, p. 1014 – 1028, 2012. ISSN 0950-5849. Available in:
<http://www.sciencedirect.com/science/article/pii/S0950584912000572>. Access in: 18
jun 2020. Cited 4 times at pages 43, 51, 56, and 60.

PARK, S. Y.; KIM, S. D. A systematic method for scoping core assets in product
line engineering. In: 12th Asia-Pacific Software Engineering Conference
(APSEC’05). [S.l.: s.n.], 2005. v. 1, p. 8 pp.–. ISSN 1530-1362. Available in:
<https://ieeexplore.ieee.org/document/1607187>. Access in: 18 jun 2020. Cited 7
times at pages 42, 48, 55, 61, 62, 64, and 112.

PAŠKEVIČIUS, P. et al. Automatic extraction of features and generation of feature
models from java programs. Information Technology And Control, v. 41, n. 4, p.
376–384, 2012. Available in: <https://ieeexplore.ieee.org/document/1607187>. Access
in: 26 april 2020. Cited 5 times at pages 12, 94, 100, 101, and 103.

POHL, K.; BÖCKLE, G.; LINDEN, F. van D. Software product line engineering:
foundations, principles and techniques. [S.l.]: Springer Science & Business Media,
2005. Cited 3 times at pages 21, 25, and 26.

PRESSMAN, R. S. Software engineering: a practitioner’s approach. [S.l.]:
Palgrave Macmillan, 2005. Cited at page 32.

https://link.springer.com/chapter/10.1007/978-3-540-85279-7_6
https://ieeexplore.ieee.org/document/8554999
http://doi.acm.org/10.1145/3307630.3342420
https://digital-library.theiet.org/content/journals/10.1049/iet-sen.2011.0195
https://digital-library.theiet.org/content/journals/10.1049/iet-sen.2011.0195
https://dl.acm.org/doi/abs/10.1145/2019136.2019159
http://www.sciencedirect.com/science/article/pii/S0950584912000572
https://ieeexplore.ieee.org/document/1607187
https://ieeexplore.ieee.org/document/1607187

Bibliography 129

RAMACHANDRAN, M.; ALLEN, P. Commonality and variability analysis in industrial
practice for product line improvement. Software Process: Improvement and
Practice, v. 10, n. 1, p. 31–40, 2005. Available in: <https://onlinelibrary.wiley.com/
doi/pdf/10.1002/spip.212>. Access in: 18 jun 2020. Cited 4 times at pages 42, 48, 55,
and 61.

RUBIN, J.; CHECHIK, M. Locating distinguishing features using diff sets. In: 27th
IEEE/ACM International Conference on Automated Software Engineering.
[S.l.]: ACM, 2012. p. 242–245. Available in: <https://ieeexplore.ieee.org/abstract/
document/6494926>. Access in: 10 april 2020. Cited at page 30.

RYSSEL, U.; PLOENNIGS, J.; KABITZSCH, K. Extraction of feature models from
formal contexts. In: 15th International Software Product Line Conference. [S.l.]:
ACM, 2011. p. 4. Available in: <https://dl.acm.org/doi/10.1145/2019136.2019141>.
Access in: 16 april 2020. Cited at page 30.

SALTON, G.; WONG, A.; YANG, C.-S. A vector space model for automatic indexing.
Communications of the ACM, ACM, v. 18, n. 11, p. 613–620, 1975. Available in:
<https://dl.acm.org/doi/abs/10.1145/361219.361220>. Access in: 10 jun 2020. Cited
at page 30.

SANTOS, A. et al. Test-based spl extraction: an exploratory study. In: 28th Annual
ACM Symposium on Applied Computing. [S.l.]: ACM, 2013. p. 1031–1036.
Available in: <https://dl.acm.org/doi/abs/10.1145/2480362.2480559>. Access in: 26
april 2020. Cited 2 times at pages 110 and 111.

SCHMID, K. Scoping software product lines: An analysis of an emerging technology. In:
Proceedings of the First Conference on Software Product Lines : Experience
and Research Directions: Experience and Research Directions. Norwell, MA,
USA: Kluwer Academic Publishers, 2000. p. 513–532. ISBN 0-79237-940-3. Available in:
<http://dl.acm.org/citation.cfm?id=355461.357568>. Access in: 10 jun 2020. Cited 8
times at pages 42, 47, 55, 57, 63, 64, 66, and 67.

SCHMID, K. A comprehensive product line scoping approach and its validation. In:
Proceedings of the 24th International Conference on Software Engineering.
New York, NY, USA: ACM, 2002. (ICSE ’02), p. 593–603. ISBN 1-58113-472-X.
Available in: <https://dl.acm.org/doi/abs/10.1145/581339.581415>. Access in: 10 jun
2020. Cited 6 times at pages 42, 47, 55, 57, 63, and 112.

SCHMID, K. et al. Introducing the pulse approach to an embedded system population
at testo ag. In: Proceedings. 27th International Conference on Software
Engineering, 2005. ICSE 2005. [S.l.: s.n.], 2005. p. 544–552. ISSN 1558-1225.
Available in: <https://ieeexplore.ieee.org/abstract/document/1553600/>. Access in: 18
jun 2020. Cited 4 times at pages 42, 47, 55, and 57.

SCHWABER, K.; BEEDLE, M. Agile software development with Scrum. [S.l.]:
Prentice Hall Upper Saddle River, 2002. v. 1. Cited at page 32.

SEIDL, C.; WINKELMANN, T.; SCHAEFER, I. A software product line of feature
modeling notations and cross-tree constraint languages. In: Modellierung. [S.l.: s.n.],
2016. p. 157–172. Available in: <https://dl.gi.de/handle/20.500.12116/821>. Access in:
10 jun 2020. Cited 2 times at pages 45 and 82.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/spip.212
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spip.212
https://ieeexplore.ieee.org/abstract/document/6494926
https://ieeexplore.ieee.org/abstract/document/6494926
https://dl.acm.org/doi/10.1145/2019136.2019141
https://dl.acm.org/doi/abs/10.1145/361219.361220
https://dl.acm.org/doi/abs/10.1145/2480362.2480559
http://dl.acm.org/citation.cfm?id=355461.357568
https://dl.acm.org/doi/abs/10.1145/581339.581415
https://ieeexplore.ieee.org/abstract/document/1553600/
https://dl.gi.de/handle/20.500.12116/821

130 Bibliography

SEPÚLVEDA, S.; CRAVERO, A.; CACHERO, C. Requirements modeling
languages for software product lines: A systematic literature review. Information
and Software Technology, Elsevier, v. 69, p. 16–36, 2016. Available in:
<https://www.sciencedirect.com/science/article/pii/S0950584915001494>. Access in:
26 jun 2020. Cited at page 66.

SHATNAWI, A.; SERIAI, A.; SAHRAOUI, H. Recovering architectural variability of
a family of product variants. In: SCHAEFER, I.; STAMELOS, I. (Ed.). Software
Reuse for Dynamic Systems in the Cloud and Beyond. Cham: Springer
International Publishing, 2014. p. 17–33. ISBN 978-3-319-14130-5. Available in:
<https://link.springer.com/chapter/10.1007/978-3-319-14130-5_2>. Access in: 4 may
2020. Cited 5 times at pages 12, 94, 98, 100, and 103.

SIERSZECKI, K. et al. Extending variability management to the next level. In:
Proceedings of the 18th International Software Product Line Conference
- Volume 1. New York, NY, USA: ACM, 2014. (SPLC ’14), p. 320–329. ISBN
978-1-4503-2740-4. Available in: <http://doi.acm.org/10.1145/2648511.2648548>.
Access in: 18 jun 2020. Cited 5 times at pages 44, 52, 56, 63, and 64.

SILVA, I. F. da et al. Software product line scoping and requirements engineering
in a small and medium-sized enterprise: An industrial case study. Journal of
Systems and Software, v. 88, p. 189 – 206, 2014. ISSN 0164-1212. Available in:
<http://www.sciencedirect.com/science/article/pii/S0164121213002598>. Access in: 11
jun 2020. Cited 7 times at pages 44, 50, 56, 59, 61, 63, and 64.

SILVA, J. a. P. S. da et al. A systematic literature review of uml-based domain-
specific modeling languages for self-adaptive systems. In: Proceedings of the
13th International Conference on Software Engineering for Adaptive
and Self-Managing Systems. New York, NY, USA: Association for Computing
Machinery, 2018. (SEAMS ’18), p. 87–93. ISBN 9781450357159. Available in:
<https://doi.org/10.1145/3194133.3194136>. Access in: 18 jun 2020. Cited at page
114.

SOUZA, I. S. et al. Evidence of software inspection on feature specification for software
product lines. Journal of Systems and Software, v. 86, n. 5, p. 1172 – 1190, 2013.
ISSN 0164-1212. Available in: <http://www.sciencedirect.com/science/article/pii/
S0164121212003251>. Access in: 18 jun 2020. Cited 6 times at pages 44, 51, 54, 56, 63,
and 64.

STOERMER, C.; O’BRIEN, L. Map-mining architectures for product line evaluations.
In: IEEE. Software Architecture, 2001. Proc.. Working IEEE/IFIP Conference
on. [S.l.], 2001. p. 35–44. Available in: <https://ieeexplore.ieee.org/document/948405>.
Access in: 10 jun 2020. Cited 2 times at pages 22 and 25.

STUMME, G. Formal concept analysis. In: Handbook on ontologies. [S.l.]:
Springer, 2009. p. 177–199. Available in: <https://link.springer.com/chapter/10.1007/
978-3-540-92673-3_8>. Access in: 10 jun 2020. Cited at page 30.

ULLAH, M. I.; RUHE, G.; GAROUSI, V. Decision support for moving from a single
product to a product portfolio in evolving software systems. Journal of Systems
and Software, v. 83, n. 12, p. 2496 – 2512, 2010. ISSN 0164-1212. Available in:

https://www.sciencedirect.com/science/article/pii/S0950584915001494
https://link.springer.com/chapter/10.1007/978-3-319-14130-5_2
http://doi.acm.org/10.1145/2648511.2648548
http://www.sciencedirect.com/science/article/pii/S0164121213002598
https://doi.org/10.1145/3194133.3194136
http://www.sciencedirect.com/science/article/pii/S0164121212003251
http://www.sciencedirect.com/science/article/pii/S0164121212003251
https://ieeexplore.ieee.org/document/948405
https://link.springer.com/chapter/10.1007/978-3-540-92673-3_8
https://link.springer.com/chapter/10.1007/978-3-540-92673-3_8

Bibliography 131

<http://www.sciencedirect.com/science/article/pii/S0164121210002062>. Access in: 18
jun 2020. Cited 6 times at pages 43, 49, 55, 57, 62, and 64.

VILLELA, K.; DÖRR, J.; JOHN, I. Evaluation of a method for proactively managing
the evolving scope of a software product line. In: WIERINGA, R.; PERSSON, A.
(Ed.). Requirements Engineering: Foundation for Software Quality. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010. p. 113–127. ISBN 978-3-642-14192-8.
Available in: <https://link.springer.com/chapter/10.1007/978-3-642-14192-8_13>.
Access in: 10 jun 2020. Cited 7 times at pages 43, 50, 55, 57, 63, 64, and 112.

WOHLIN, C. Guidelines for snowballing in systematic literature studies and a replication
in software engineering. In: Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering. New York, NY,
USA: ACM, 2014. (EASE ’14), p. 38:1–38:10. ISBN 978-1-4503-2476-2. Available in:
<http://doi.acm.org/10.1145/2601248.2601268>. Access in: 18 jun 2020. Cited at page
41.

WOHLIN, C. et al. Experimentation in software engineering. [S.l.]: Springer
Science & Business Media, 2012. v. 1. Cited 2 times at pages 38 and 65.

YU, Y. et al. Mining and recommending software features across multiple web
repositories. In: 5th Asia-Pacific Symposium on Internetware. [S.l.]: ACM, 2013.
p. 9. Available in: <https://dl.acm.org/doi/abs/10.1145/2532443.2532453>. Access in:
26 april 2020. Cited at page 22.

ZIADI, T. et al. Feature identification from the source code of product variants. In:
16th European Conference on Software Maintenance and Reengineering. [S.l.]:
IEEE, 2012. p. 417–422. Available in: <https://ieeexplore.ieee.org/document/6178889>.
Access in: 10 april 2020. Cited 2 times at pages 22 and 25.

http://www.sciencedirect.com/science/article/pii/S0164121210002062
https://link.springer.com/chapter/10.1007/978-3-642-14192-8_13
http://doi.acm.org/10.1145/2601248.2601268
https://dl.acm.org/doi/abs/10.1145/2532443.2532453
https://ieeexplore.ieee.org/document/6178889

133

ANNEX A – REPORTS FROM PAXSPL TOOL

134 ANNEX A. Reports from PAxSPL Tool

Figure 47 – Team Information Report Generated by PAxSPL Tool

Source: Author.

135

Figure 48 – Artifacts Information Report Generated by PAxSPL Tool

Source: Author.

136 ANNEX A. Reports from PAxSPL Tool

Figure 49 – Retrieval Techniques Report Generated by PAxSPL Tool

Source: Author.

137

INDEX

BPMN, 76, 81, 82, 84, 95, 96, 104

DD, 80–82, 84, 87, 115

FCA, 22, 30, 33, 74, 97, 102
FM, 28, 82, 97, 99–101, 104, 111
FODA, 30, 31

LSI, 30, 74, 95, 97, 102

PAxSPL, 29, 35–37, 68, 69, 72, 73, 75–
77, 79–83, 87, 91–94, 97, 99, 100,
102–104, 107–116

PS, 103–105

RQ, 37, 91–93, 102, 103, 108

SLR, 36, 37, 68, 112, 115
SMS, 35, 79
SPL, 21–23, 25–28, 30–33, 36, 37, 45–54,

57–60, 68–70, 73, 75–77, 82, 87,
91, 99, 104, 109, 110, 112–116

SPLA, 27
SPLE, 21, 22, 25, 26, 33, 49, 51, 60, 109

UC, 79–81, 115
UML, 22

VSM, 30, 74

	Title page
	Approval
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of acronyms
	List of symbols
	Table of Contents
	Introduction
	Context
	Motivation
	Objectives
	Organization

	Background
	Software Product Line
	Software Product Line Engineering
	Domain Engineering
	Application Engineering

	Software Product Line Reengineering
	Feature Retrieval Techniques
	Feature Model
	SPL Scoping

	Software Process
	Organizational Scenarios
	Chapter Lessons

	Methodology
	Establishing Relevance
	PAxSPL First Evaluation
	Steps for Improvement
	New Evaluation

	A Systematic Literature Review on SPL Scoping
	SLR Design and Execution
	Results and RQ Answers
	RQ1. What are the similarities and differences among the approaches?
	Approach Similarities and Differences
	Approach Activities
	Types of Scoping
	Adaptation

	RQ.2 How are existing scoping approaches evaluated?
	Evaluations Applied
	Evaluation Domains

	RQ.3 How is the decision making during the process of SPL scope definition?
	Cost Models
	Metrics for Scoping

	RQ.4. What are the open research gaps and opportunities for new studies on the topic of SPL scoping?
	Threats to Validity

	Related Work
	Chapter Lessons

	PAxSPL
	PAxSPL Process
	Prepare
	Assemble
	Execute

	Customization for Different Scenarios
	Customization for Feature Retrieval
	Customization for SPL Scoping

	Guidelines
	Support Checklist
	Retrieval Techniques Tool Support

	PAxSPL Tool
	Requirements
	Design
	Running Example

	Chapter Lessons

	Evaluation
	Design
	Data Set
	Procedure

	Execution
	Results
	Discussion
	How does PAxSPL suit different scenarios?
	What challenges are observed by customizing PAxSPL?

	Improvements
	Modifications in the Generic Process
	Modifications in the Guidelines and Documentation
	Modification in the PAxSPL Process

	Chapter Lessons

	Related Work
	SPL Reeenginering
	Studies Main Contribution
	Artifacts and Strategies for Feature Retrieval

	SPL Scoping
	Guidelines to Support SPL Scoping
	Customization for Different Scenarios
	Approaches Domains

	Chapter Lessons

	Conclusion
	Bibliography
	Reports from PAxSPL Tool
	Index

