UNIVERSIDADE FEDERAL DO PAMPA

MATHEUS FERNANDES FERREIRA

TRANSFERÊNCIA HORIZONTAL DE GENES: AVALIANDO PADRÕES

MATHEUS FERNADNES FERREIRA

TRANSFÊRENCIA HORIZONTAL DE GENES: AVALIANDO PADRÕES

Trabalho de Conclusão de Curso apresentado ao Curso de Biotecnologia da Universidade Federal do Pampa, como requisito parcial para obtenção do Título de Bacharel em Biotecnologia.

Orientador: Paulo Marcos Pinto

Coorientador: Gabriel da Luz Wallau

MATHEUS FERNANDES FERREIRA

TRANSFÊRENCIA HORIZONTAL DE GENES: AVALIANDO PADRÕES

Trabalho de Conclusão de Curso apresentado ao Curso de Biotecnologia da Universidade Federal do Pampa, como requisito parcial para obtenção do Título de Bacharel em Biotecnologia.

Trabalho de Conclusão de Curso defendido e aprovado em: 21 de maio de 15.

Banca examinadora:

Prof. Dr. Paulo Marcos Pinto Orientador UNIPAMPA

Prof. Dr. Juliano Tomazzoni Boldo

M. Sc. Evelise Leis Carvalho UNIPAMPA

UNIPAMPA

AGRADECIMENTOS

Agradeço ao professor Paulo por sua orientação, ajuda e ensinamentos durante todo o período da minha graduação. Da mesma forma, ao professor Gabriel que muito me auxiliou e ensinou na execução deste trabalho.

Aos meus amigos e colegas de laboratório que contribuíram para meu crescimento pessoal e acadêmico. Em especial, aos meus amigos Jhulimar, Lucas e Thamiris que foram meu "muro das lamentações" particular, que sobreviveram a tantos incômodos com paciência e parceria.

Agradecimento, mais que necessário, aos meus pais que, mesmo estando longe, me apoiaram, aconselharam e incentivaram de forma incondicional, me dando motivação para seguir em frente e superar os momentos de desespero.

"Você está aí para isso...ânimo que falta pouco". Cristina e Sanábio Ferreira

RESUMO

O termo transferência horizontal de genes (THG), ou transferência lateral de genes (TLG), é utilizado para referir-se ao movimento da informação genética entre organismos distantemente relacionados, indo além da barreira natural do acasalamento e transmissão de genes de pais para filhos, conhecida como transferência vertical de genes (TVG). Assim, a troca de genes entre os organismos tem sido associada com a aquisição de novas características que conferem ao receptor uma vantagem seletiva sobre a população em que se encontra. No entanto, os efeitos de um evento de transferência gênica podem ser, além de benéficos, deletérios ou neutros. A THG pode ser identificada presença de um gene similar em organismos distantemente relacionados. A transferência horizontal é um evento comum em bactérias e sua importância na evolução desses organismos é bem esclarecido. Por outro lado, em eucariotos isso ainda não está totalmente claro devido à falta de dados sobre o genoma de eucariotos. Contudo, nos últimos anos, tem havido um crescente número de genomas de eucariotos sequenciados, tanto unicelulares quanto multicelulares. Por isso é necessário reunir esses dados e organiza-los de modo que facilite a visualização desses eventos nos eucariotos de forma ampla. O objetivo deste trabalho foi revisar a bibliografia para criação de um banco de dados de genes horizontalmente transferidos com eucariotos como organismo receptor e analisar parâmetros que esclareçam a natureza destes eventos. Foram feitas várias pesquisas no PubMed e Google Acadêmico. Buscou-se, na literatura, genes horizontalmente transferidos. Estes foram organizados por seus IDs e por seus possíveis doadores. Os lds dos genes foram utilizados para fazer análise de anotação de função dos genes na plataforma KOBAS 2.0. Foram reunidos 447 genes transferidos para 4 espécies (Homo sapiens, Caenorhabditis elegans, Drosophila melanogaster e Physcomitrella patens). Dentre estes, observou-se maior ocorrência de genes transferidos a partir de organismos procariotos (199 genes) e a partir de eucariotos unicelulares (protistas, com 140 genes encontrados). Os demais genes estão divididos entre plantas, fungos e Archeas. A maior associação dos organismos eucariotos com procariotos e a maior amostragem taxonômica de sequências genômicas bacterianas são propostas para explicar tais resultados. A análise de predição de função dos genes mostrou uma tendência na transferência de genes que atuam no metabolismo de açúcar, aminoácido, nucleotídeo e metabolismo secundário,

transmitindo uma ampla diversidade de funções metabólicas, sugerindo que a THG tem desempenhado um importante papel na expansão e reconfigurando o núcleo metabólico e a capacidade de processamento de nutrientes, além de permitir a adaptação desses organismos a condições desfavoráveis. Este trabalho traz a reunião de informações sobre genes horizontalmente transferidos cumprindo uma primeira etapa para a criação de um banco de dados público.

Palavras-Chave: Transferência lateral de genes, Evolução, Adaptação, Eucariotos, Transferencia endossimbiótica de genes.

ABSTRACT

The term horizontal gene transfer (HGT), or lateral gene transfer (LGT) is used to refer to the movement of genetic information between distantly related organisms beyond the natural barrier and mating transmission from parent to offspring known as vertical gene transfer (VGT). Thus, the exchange of genes between organisms have been associated with the acquisition of new features that give the recipient a selective advantage on the population where it currently is. However, the effects of gene transfer events also may be neutral or detrimental for the receptor genome. The HGT can be identified by the presence of a similar gene in distantly related organisms. The horizontal transfer is a common event in bacteria and its importance in the evolution of these organisms is very clear. On the other hand, in eukaryotes this phenomenon is not yet entirely understood because of lack of research and data. However, in recent years there has been an increasing number of sequenced eukaryotic genomes and investigation of HGT events, both in unicellular and multicellular organisms. So it became necessary to sum up this data and organize it in order to visualize these events in a broadly perspective. The main goal of this study was to review the literature about HGT and to create a database of horizontally transferred genes having eukaryotes as recipient organism. In addition we also analyzed parameters to clarify processes that may govern such events in nature. Several rounds of literature search were performed in PubMed and Google Schollar. The information about the genes were extracted as their gene IDs and their potential donors. The IDs of genes have been submitted to Kobas 2.0 platform in order to make its fucntional annotation. 447 genes were transferred to four species (Homo sapiens, Caenorhabditis elegans, Drosophila melanogaster and Physcomitrella patens). Among these, there was a higher occurrence of transferred genes from prokaryotic organisms (199 genes) and from unicellular eukaryotes (protists, with 140 genes found) to multicellular eukaryotes. The remaining genes are divided between plants, fungi and Archeas. The largest association of eukaryotic organisms with prokaryotes and higher taxon sampling of bacterial genomic sequences are proposed to explain these results. The gene function prediction analysis showed a trend in the transfer of genes that act in sugar metabolism, amino acid, nucleotide and secondary metabolism, transmitting a wide variety of metabolic functions, suggesting that HGT has played an important role in expanding and reconfiguring metabolic core and nutrient processing capacity and

enables the adaptation of these organisms to unfavorable conditions. This work brings together, for the first time, the information about horizontally transferred genes fulfilling a first step towards the creation of a public database

Keywords: Lateral gene transfer, Evolution, Adaptation, Eukaryota, Endosymbiotic gene transfer.

LISTA DE FIGURAS

Figura 1 – - A transformação natural de bactérias	17
Figura 2 – Conjugação e elementos conjugativos na THG	20
Figura 3 – Frequência de organismos doadores nos eventos de THG	26

LISTA DE TABELAS

Tabela 1 – Categorias funcionais dos genes transferidos para <i>C. elegans</i>	29
Tabela 2 – Categorias funcionais dos genes transferidos para <i>D. melanogaster</i>	30
Tabela 3 – Categorias funcionais dos genes transferidos para <i>H. sapiens</i>	. 30

Sumário

1 Intr	odução	13
1.1 N	Aecanismos de THG em procariotos	15
	A transformação	
	Pacteriófagos	
	Conjugação e elementos conjugativos	
	Elementos transponíveis (ETs)	
	ransferência Horizontal de genes em eucariotos	
	tificativa	
	etivos	
_		
3.1	Objetivo geral	24
3.2	Objetivos específicos	24
4 Mat	eriais e métodos	24
5 Res	ultados e discussão	25
5.1 F	requência de organismos doadores	25
	Categorias funcionais dos genes	
	siderações finais	
7 Per	spectivas futuras	33
	cias	
ANEXO 1		38

1 Introdução

A endossimbiose era uma hipótese, muito discutida, relacionada com a origem das células eucarióticas que tomou maior visibilidade e maior aceitação após a descoberta de que a mitocôndria possui seu próprio DNA e sistema de tradução de proteínas. Essas evidencias sugeriram que as mitocôndrias e plastídios evoluíram a partir de alfa-proteobactérias e uma cianobactéria. E alguns eventos podem ter moldado o genoma desses organismos: o primeiro envolve a perda de genes da mitocôndria pela renovação da pressão de seleção sobre genes que não são mais necessários para uma organela especializada (por exemplo, a biossíntese de amino ácidos). Outro processo envolve a troca de função de um gene da mitocôndria por um gene nuclear após a perda deste pela mitocôndria. E o terceiro processo é a transferência endosimbiótica de genes (TEG), ou seja, a transferência de genes da mitocôndria para o núcleo.

A ideia de que organismos poderiam trocar genes entre si surgiu após o reconhecimento de que determinantes de virulência poderiam ser transferidos entre pneumococci em camundongos infectados. Um processo mediado pela captação de material genético que ficou conhecido como transformação (Griffith, 1928). Foi demonstrado que tal processo de transferência de DNA entre bactérias, estreitamente relacionadas, é mediado por proteínas codificadas pelo cromossomo de algumas bactérias que são naturalmente capazes de realizar a transformação (FROST et al., 2005).

Posteriormente, Tatum e Lederberg (1946) demonstraram que existia uma nova forma de transmissão de genes a qual não obedecia a reprodução clonal das bactérias, nem ao princípio transformante postulado por Griffith e, de alguma forma, também não estava dentro dos padrões mendelianos. Neste estudo, eles utilizaram modelos bacterianos duplo mutantes para requisito nutricionais e para resistência a vírus. Após o cultivo de uma linhagem de *Escherichia. coli* mutante que não produz determinado nutriente juntamente com uma linhagem de *E. coli* não mutante para esse nutriente, ou seja, que produz esse nutriente, foi observado a predominância de bactérias prototróficas, sugerindo a transmissão dos genes da linhagem parental não mutante que são necessários para sintetizar tal nutriente por algum processo citoplasmático, que hoje é conhecido como conjugação.

Anos mais tarde, iniciou-se os primeiros estudos que identificaram a transferência gênica interespecífica, ou transferência horizontal de genes (THG) com a identificação da transferência de genes mediada por plasmídeos, vírus e elementos transponíveis. Tomoichiro Akiba e Kunitaro Ochia (1959) mostraram a troca de genes (plasmídeos) de múltipla resistência a drogas em bactérias, e em 1964 foi demonstrado que no intestino humano, se bactérias doadoras e receptoras multiplicassem juntas, os fatores de resistências também seriam transferidos (KASUYA, 1964). Essas descobertas tiveram grandes impactos no campo da engenharia genética e até mesmo na própria teoria da evolução (SYVANEN e KADO, 2002). O termo transferência horizontal de genes (THG), ou transferência lateral de genes (TLG), é utilizado para referir-se ao movimento da informação genética entre organismos distantemente relacionados, indo além da barreira natural do acasalamento e transmissão de genes de pais para filhos, conhecida como transferência vertical de genes (TVG) (KEELING; PALMER, 2008)

A partir da década de 1970, começaram a surgir os primeiros trabalhos das implicações teóricas da transferência horizontal de genes, introduzindo o pensamento dos impactos da THG no reino animal e nos eventos de especiação. Foi surpreendente que a direção da THG pode ser dominante em uma direção, mas também pode ocorrer na direção oposta (SYVANEN e KADO, 2002), ou seja, genes de organismos eucariotos poderem ser introduzidos e expressos em procariotos e, da mesma forma, genes de procariotos expressos em eucariotos (Struhl, 1976; DAVIES E JIMENEZ, 1980). Muitos outros trabalhos corroboraram para a ideia de que os genes podem atravessar as barreiras naturais das espécies, no entanto o que fica em aberto é se esses eventos acontecem em uma velocidade suficiente para modificar significativamente a evolução desses organismos. Por muito tempo, a troca de genes entre organismos não foi considerada um importante mecanismo evolutivo e, até recentemente, as altas taxas de ocorrência desse fenômeno não eram observadas.

Este cenário tem mudado com o desenvolvimento da era Genômica. A comparação de muitos genomas procarióticos, que tem sido permitido pelo rápido sequenciamento de genomas, tem sugerido a ideia de que em um período antes da diferenciação dos organismos nos três principais reinos, uma transferência horizontal de genes esteve presente, indo além da TVG (DOOLITTLE, 2003). Desta forma, fundamentando que cada um dos três principais reinos pode ter descendido de uma

comunidade de organismos heterodispersos e não apenas de um único ancestral comum.

A ocorrência da THG em bactérias tem sido observada a muito tempo, e uma das principais ocorrências é a transmissão de fatores de virulência. Também ocorre frequentemente a transmissão de grandes clusters de genes, como por exemplo, as ilhas de patogenicidade, que transformam cepas não virulentas em virulentas (DAVIES; DAVIES, 2010)

Atualmente, muitos estudos têm direcionado à conclusão da relevância da THG no processo evolutivo dos organismos (CRISP et al., 2015; NEDELCU; BLAKNEY; LOGUE, 2009), pois uma proporção significativa de genes (81%), pelo menos em procariotos, foi sujeita a transferência horizontal (KOONIN et al., 2002). Muitos genes adquiridos horizontalmente podem ter efeitos deletérios ao cromossomo bacteriano receptor. Portanto, essas bactérias serão perdidas da população ao longo do tempo da mesma forma que são perdidas pelos efeitos deletérios das mutações. Por outro lado, a aquisição de novos genes pode conferir ao receptor uma vantagem seletiva, como uma adaptação especializada a um novo nicho ecológico (como um ambiente anaeróbio, ambientes ricos em acúcar ou adaptar-se ao solo), também permite um novo estilo de vida (como parasitismo), ou, ainda, pode ter um impacto neutro no receptor (NEDELCU; BLAKNEY; LOGUE, 2009; THOMAS; NIELSEN, 2005). Porém, a fixação e retenção a longo prazo desses genes horizontalmente transferidos na maioria das vezes não é compreendida. O único caso em que o impacto da THG tem sido claramente reconhecido é no aparente fluxo massivo de genes do genoma de organelas endosimbióticas (mitocôndria para todos os eucariotos e cloroplastos em plantas) para o genoma nuclear (BEVEN; LANG, 2004; GRAY, 2012; MARTIN; HERRMANN, 1998)

1.1 Mecanismos de THG em procariotos

1.1.1 A transformação

A transformação - a absorção estável, integração e expressão funcional de DNA extracelular (plasmídeos ou DNA cromossômico) que pode ocorrer sob condições naturais do crescimento bacteriano – é um mecanismo de transferência horizontal de genes que depende da função de muitos genes localizados no

cromossomo bacteriano. Para que esse fenômeno ocorra, as células bacterianas devem primeiro desenvolver um estado fisiológico regulado de competência, que tem sido demonstrado o envolvimento de aproximadamente 20 a 50 proteínas (THOMAS; NIELSEN, 2005).

As bactérias mais naturalmente transformáveis desenvolvem a competência em respostas a condições ambientais específicas, como alteração nas condições de crescimento, acesso a nutrientes, densidade celular, falta de nutrientes, presença de cálcio no meio, etc. A proporção de bactérias que são naturalmente transformáveis é de 1 % das espécies de bactérias validamente descritas (LORENZ; WACKERNAGEL, 1994). Para que ocorra a transformação naturalmente, deve haver a liberação e persistência do DNA extracelular (a partir de células em decomposição, células rompidas ou partículas virais), presença de células bacterianas competentes e a habilidade do DNA cromossômico transferido em ser estabilizado pela integração no genoma ou a habilidade do plasmídeo translocado em se integrar ou recircularizar em um plasmídeo autorreplicaste (Figura 1).

Biologicamente, a transformação tem se mantido nas bactérias como uma estratégia geneticamente vantajosa como mecanismo de adaptação a ambientes em mudança, neutralizando uma adaptação genética especifica de uma espécie prevalecente pelas condições do habitat. No entanto a absorção de DNA sem probabilidades de conferir alguma característica benéfica ao receptor (seja porque a informação genética já está presente ou porque o DNA não pode ser integrado no cromossomo) também pode ser vantajoso para a célula receptora caso o DNA seja utilizado para outros fins como:

Regulação da expressão gênica que pode ser exemplificado pelas variações nas propriedades antigênicas, tais como variações na produção de pili (estratégia invasiva de bactérias patogênicas) que é regulado pela recombinação ou integração de um gene de pili.

Fornecimento de nutrientes; uma vez que o DNA absorvido não seja incorporado no cromossomo como resultada de homologia insuficiente, esse material genético será degradado e servirá à bactéria como fonte de nucleotídeos para replicação, fonte de carbono, nitrogênio e fosforo para o metabolismo geral (LORENZ; WACKERNAGEL, 1994).

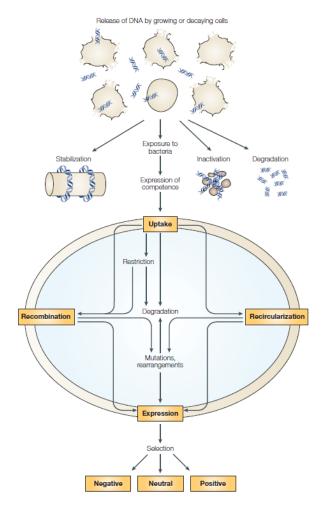


Figura 1- A transformação natural de bactérias. O processo de transformação inclui a liberação de DNA no meio extracelular, a absorção do DNA para o citoplasma da célula receptora que deve ter desenvolvido um estado fisiológico de competência. Após a absorção, para o DNA transferido persistir ele deve se integrar no genoma do receptor. Fonte: THOMAS, 2005

1.1.2 Bacteriófagos

A transferência horizontal de genes em bacteriófagos foi demonstrada primeiramente em 1959, quando Denise Cohen infectou uma cepa de *E. coli* com o fago P2 e recuperou um fago com uma especificidade imunitária diferente derivado de um fago defectivo (COHEN, 1959). Os bacteriófagos foram os primeiros organismos a serem explorados para uso na biologia molecular e genômica. Os fagos são os mais abundantes e os que se multiplicam mais rapidamente, possuem também uma diversidade genética enorme. O genoma de fagos pode ser composto de fita simples ou dupla, de DNA ou RNA. Tem como característica, a presença de genes essenciais, que compreendem replicases especificas, genes que codificam os componentes do fago que irão "sequestrar" a maquinaria replicativa da célula

hospedeira e genes que codificam as proteínas do capsídeo que irão empacotar o DNA (FIERS et al., 1976; FROST et al., 2005). Bacteriófagos virulentos replicam-se vigorosamente e lisam a célula hospedeira, enquanto outros, são moderados e possuem um crescimento alternativo, quiescente que não lisa a célula, chamado lisogênico. Na maioria dos casos de bacteriófagos com ciclo lisogênico, seu genoma se integra ao cromossomo bacteriano e se replica como um pró-fago, mas em outros casos, o genoma do fago se replica autonomamente como um plasmídeo circular ou linear.

O ciclo lisogênico pode ser alterado devido a alguns estímulos ambientais, tais como agentes que danificam o DNA, levando a troca do estado quiescente para a fase virulenta (citolítica). Durante esse o processo de lise celular, parte do DNA do hospedeiro pode ser empacotado e injetado em um novo hospedeiro. A este processo da-se o nome transdução. O DNA cromossômico transduzido deve ser capaz de recombinar com o hospedeiro receptor para que sobreviva. No entanto, assim como na transformação, os eventos de transferência horizontal de genes mediados por transdução são restritos a algumas espécies de bactérias.

1.1.3 Conjugação e elementos conjugativos

A conjugação representa um importante mecanismo responsável por manter funções como virulência, resistência a antibióticos entre outros fenótipos. Além disso, também está relacionado com a translocação de proteínas e outras macromoléculas. A conjugação requer plasmídeos conjugativos, que são elementos com capacidade de se replicar independentemente. Estes elementos também são conhecidos como elementos conjugativos integrados (ECI) e incluem também os transposons conjugativos. Esses elementos codificam proteínas que facilitam sua própria transferência e, ocasionalmente, a transferência de outras sequências de DNA da célula doadora pra a célula receptora que não possui o ECI (THOMAS; NIELSEN, 2005). Esse transporte do material genético é realizado pelo estabelecimento de um acoplamento estável entre as células (junção célula-célula) através de um poro de transferência especializado. Esse sistema de acoplamento é mantido por proteínas que interagem com a membrana citoplasmática e está responsável pela passagem do DNA (Figura 2).

A importância da transferência de plasmídeos na THG é o fato de que muitos plasmídeos ou ECI efetuam a transferência de outros elementos genéticos ou até mesmo do cromossomo. Isso pode ser exemplificado pela alta frequência de recombinação de plasmídeos F, e pela capacidade desses plasmídeos na mobilização do cromossomo em espécies de Streptomyces (FROST et al., 2005). Tais elementos conjugativos integram-se no genoma do hospedeiro e transfere grande parte do elemento conjugativo para a célula receptora.

O transporte de DNA adicional se dá pela seleção de genes que esses elementos irão carregar posteriormente ou pela integração com outro elemento. Os elementos transponíveis são os mais conhecidos facilitadores da interação entre elementos conjugativos e outros ECI.

Transferências conjugativas são um conjunto diversificado de processos. Os sistemas mais complexos são os codificados pelos grandes plasmídeos autotransmissíveis de bactérias Gram-negativas que utilizam um aparelho de secreção para produzir um pilus (formação do par de acoplamento). Esta estrutura medeia o contato célula-célula para gerar uma junção entre a bactérias e um poro através do qual o DNA do plasmídeo e algumas proteínas codificadas pelo doador podem ser transportados para o receptor (CASCALES; CHRISTIE, 2003).

Em bactérias Gram-positivas, o sistema de transferência é ainda mais diverso. Uma classe de aparelho de transferência, bem estudado, que é codificado pelo plasmídeo de um Enterococcus Gram-positivo só é ligado em resposta a um destinatário apropriado através da produção de feromônios. A maioria das cepas de Enterococcus produz múltiplos peptídeos hidrofóbicos pequenos que atuam como sinais para comunicação interbacteriana. O resultado da ativação dos genes de transferência é a produção de uma proteína de membrana que promove a agregação dos doadores e receptores. Cada um dos diferentes sistemas de transferência é ativado por um feromônio diferente, mas como as bactérias hospedeiras poderiam potencialmente ativar-se, o plasmídeo residente não só suprime a produção e liberação da molécula cognato mas também produz um peptídeo antagonista daquele com efeito ativador, o resultado é um sistema fortemente regulado(DUNNY, 2001; THOMAS; NIELSEN, 2005).

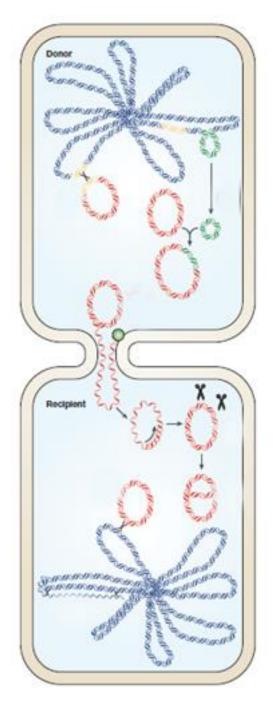


Figura 2 – **Conjugação e elementos conjugativos na THG.** A transferencia do material genético é realizado pelo estabelecimento de uma junção célula-célula através de um poro de transferência especializado. Esse sistema de acoplamento é mantido por proteínas que interagem com a membrana citoplasmática e está responsável pela passagem do DNA. Fonte: THOMAS, 2005

1.1.4 Elementos transponíveis (ETs)

Elementos transponíveis são sequências de DNA (normalmente < 10 Kb) com a habilidade de se replicar no genoma de seu hospedeiro (procariotos ou eucariotos), comportando-se como parasitos genéticos por utilizar a maquinaria molecular do

hospedeiro para sua própria replicação, podendo causar mutações no genoma do hospedeiro ou danificá-lo. Porém, podem ser benéficos pois sua mobilidade é uma fonte de variabilidade no genoma do hospedeiro (CASSE et al., 2006).

Os elementos transponíveis são divididos em duas classes principais de acordo com sua estrutura e mecanismo de transposição. A classe I, também chamados de retrotransposons, inclui elementos que utilizam uma molécula de RNA como intermediário na transposição, ou seja, uma cópia deste elemento na forma de RNA ira se integrar no genoma por meio de uma transcriptase reversa. Já a classe II, conhecida como transposons, inclui os elementos que utilizam o DNA como intermediário para sua transposição. Estes elementos codificam uma enzima (transposase) que é responsável por sua mobilização por um mecanismo a de excisão do sitio original e reinserção em outro ponto do genoma ou em outro genoma (CAPY et al., 1996).

Os elementos genéticos móveis estão presentes em todos os eucariotos, e sua existência foi reconhecida há mais de 75 anos. Porém, evidencias do papel desses elementos na evolução dos eucariotos tem emergido mais recentemente. Assim, a grande diversidade e expansão de elementos genéticos moveis está associada com eventos de especiação como resultado das mutações induzidas por elementos transponíveis levando uma espécie a escapar de sua estase evolutiva (DIMITRI; JUNAKOVIC, 1999)

Por causa de sua habilidade de reestruturar o genoma, os ETs podem ter sido importantes no design do genoma de eucariotos. A reestruturação de um cromossomo é o resultado de uma recombinação ectópica de sequências homólogas de elementos transponíveis dispersas pelo genoma induzindo inversões e translocações de segmentos do cromossomo (HURST; WERREN, 2001).

1.2 Transferência Horizontal de genes em eucariotos

Eucariotos existentes surgiram por THG na endosimbiose e subsequente integração genética de organismos inteiros que deram origem à mitocôndria e ao cloroplasto. No entanto, a importância da THG no curso da evolução de eucariotos tem sido subestimada desde o início da era genômica. O fato de que tem havido uma maior disponibilidade de dados de sequências do genoma de procariotos e o

reconhecimento das limitações do processo de THG, tem feito com que as pesquisas sobre THG tenham se concentrado mais nas transferências gênicas entre procariotos do que entre eucariotos (YUE et al., 2012a). Porém, atualmente, tem crescido rapidamente o número de sequências genômicas de diversas linhagens de eucariotos e as análises dessas sequencias tem sugerido que os eventos de transferência horizontal de genes têm uma potencial importância na evolução dos organismos eucariontes.

A THG em eucariotos é um evento que pode ser identificado por suas consequências — a presença de um gene similar em organismos distantemente relacionado - e é bastante problemático identificar o exato mecanismo pelo qual um gene foi transferido. É necessário entender os passos para um evento de transferência gênica bem-sucedido para compreender tais mecanismos. Para isso, o material genético deve entrar na célula na forma de DNA livre, ou junto com a célula que carrega o gene. Uma vez que esteja dentro, o gene deve ser incorporado no núcleo do hospedeiro e expressar como uma proteína funcional. Para que seja mantido, o gene deve proporcionar alguma vantagem seletiva na população (ANDERSSON, 2005).

O ponto crítico para THG em eucariotos provavelmente é a absorção do DNA para dentro da célula, uma vez que, em procariotos, esse processo é mediado pela transformação, transdução e conjugação, em eucariotos os mecanismos de absorção do DNA são mais ilusórios. No entanto, alguns estudos tem mostrado que o estilo de vida do doador e do receptor pode mostrar como e onde as transferências tem ocorrido. Ford Doolittle, (1998) descreve em seu trabalho que organismos endosimbiontes ou fago tróficos, ao terem suas células lisadas (ocasionalmente, ou para adquirir alimentos) pode liberar seu DNA, que estará sujeito a incorporação no genoma de seu hospedeiro, e este pode ser fixado de forma seletiva. Contudo, outros mecanismos também têm sido sugeridos como forma de incorporação de genes no genoma de eucariotos, por exemplo, a transfecção de um vírus e outra espécie não relacionada, o contato físico entre organismos simbióticos e a relação parasito-hospedeiro (ANDERSSON, 2005).

Recentemente muitos estudos tem avaliado os impactos da THG em fungos, onde tem tido importante significância na especificação de nichos ecológicos, emergência de doenças e mudanças nas capacidades metabólicas. Por exemplo, a aquisição da glicosil hidrolase (GH) a partir de um procarioto. GH permitiu que fungos

se estabelecessem no rúmen de mamíferos herbívoros como nicho, onde celulose e hemicelulose são as principais fontes de carbono (GARCIA-VALLVE; ROMEU; PALAU, 2000). Similarmente, fungos entomopatógenos (*Metarhizium anisopliae*) adquiriram uma fosfoquetolase de uma fonte bacteriana. Esta é uma enzima necessária para a virulência do fungo e é altamente expressa na hemolinfa rica em trealose dos insetos, desempenhando assim um importante papel na adaptação ao nicho para esses fungos na hemocele dos insetos (FITZPATRICK, 2012).

Em contrapartida, a transferência horizontal tem sido um campo controverso, as fontes de falsa identificação de genes transferidos variam de questões técnicas como a colocação descuidada de sequências de DNA em bancos de dados errados, PCR (Reação em cadeia da polimerase) errôneas ou contaminadas, dados de sequências incompletas, até questões metodológicas envolvendo perda de genes, amostragem de espécies incompleta ou filogenias mal embasadas (LISCH, 2008). Algo que foi bem exemplificado no relatório de Stanhope et al. (2001) que demonstra a identificação errônea de frequente THG de bactérias para humanos publicado após o sequenciamento do genoma humano.

2 Justificativa

A transferência horizontal é um evento comum em bactérias e sua importância na evolução desses organismos é bem esclarecido. Por outro lado, em eucariotos isso ainda não está totalmente claro devido à falta de dados sobre o genoma de eucariotos. Contudo, nos últimos anos, tem havido um crescente número de genomas de eucariotos sequenciados, tanto unicelulares quanto multicelulares, como resultado do advento do desenvolvimento das técnicas de clonagem gênica e rápido sequenciamento de DNA, propiciando a investigação de casos de transferência horizontal nesses organismos. Assim, muitos estudos têm evidenciado a presença desse fenômeno em eucariotos, mas normalmente os relatos de THG em animais são limitados a descrição de apenas um ou poucos genes, dificultando a visualização da extensão desses eventos em organismos eucariontes.

Diante disso, se faz necessário reunir esses dados e organizá-los de modo que facilite a visualização desses eventos nos eucariotos de forma ampla. Assim algumas questões, como a frequência desses eventos, principais genes envolvidos, quais

organismos, mecanismos de transferência e qual o papel da THG na evolução dos eucariotos pode ser melhor compreendido (NAKAMURA et al., 2004),

3 Objetivos

3.1 Objetivo geral

Este trabalho teve como objetivo revisão bibliográfica e criação de um banco de dados de genes horizontalmente transferidos com eucariotos como organismo receptor.

3.2 Objetivos específicos

- Quantificar a frequência de organismos doadores de genes;
- Realizar análise de predição automática de função dos genes;
- Discutir as relações ecológicas entre os organismos.

4 Materiais e métodos

Este trabalho baseou-se em revisão bibliográfica para coletar dados a respeito dos genes horizontalmente transferidos. Buscou-se no PubMed (disponível em http://www.ncbi.nlm.nih.gov/pubmed) e Google Acadêmico (disponível em https://scholar.google.com.br/) genes em que eucariotos eram organismos receptores. A fim de elaborar um modelo para criação de um banco de dados, procurou-se extrair 1) informações do gene transferido (gene ID, nome etc.) 2) informações dos organismos doadores e receptores dos genes 3) informações a respeito das relações ecológicas entre os organismos envolvidos.

Aqui, considerou-se os genes encontrados de 4 espécies: *Homo sapiens*, *Caenorhabditis elegans*, *Drosophila melanogaster e Physcomitrella patens* (musgo). Para padronizar um formato, todos os genes ID foram convertidos ao formato Entrez ID (NCBI) utilizando a ferramenta de conversão online EnsemblBiomart disponível em http://www.ensembl.org/biomart/martview/a87f634786f14d039e22a01a39a4aac5. As análises de anotação de função dos genes foram realizadas através da ferramenta

online KOBAS 2.0 disponível em

http://kobas.cbi.pku.edu.cn/program.inputForm.do?program=Run. As análises foram feitas separadamente por espécies marcando apenas KEGG PATHWAY como banco de dados para anotação das categorias funcionais e aplicando teste estatístico hipergeométrico, aceitando resultados com P-value ≤ 0,2.

5 Resultados e discussão

O crescente número de publicações reportando THG gera muitas informações a respeito desse fenômeno nos organismos eucariontes, porém o fato de esses dados estarem espalhados, obscurece o entendimento da magnitude desses eventos. Assim, a organização e gerenciamento dessas informações em um banco de dados pode minimizar este problema. No entanto, a criação de um banco de dados público envolve, em uma primeira etapa, a reunião de dados que devem ser coletados de diversas fontes e convertidos em um formato apropriado que possibilite sua análise. Assim este trabalho baseou-se em revisão bibliográfica para coletar dados importantes para propor a elaboração de um modelo para banco de dados de transferência horizontal de genes.

5.1 Frequência de organismos doadores

Foram encontrados 447 genes horizontalmente transferidos em *Homo sapiens* (145), *Caenorhabditis elegans* (139), *Drosophila melanogaster* (41) e *Physcomitrella patens* (122), possivelmente originados de bactérias, protistas, planta, fungos ou Archeas (Anexo 1). A maioria dos casos de transferências de genes afetando organismos eucariotos são transferências a partir de procariotos (interdomínio), totalizando 199 genes transferidos. Em seguida, transferências a partir de eucariotos unicelulares (protistas) com 140 genes encontrados. Transferências a partir de eucariotos multicelulares como plantas e fungos somaram 103 genes (35 e 68 genes respectivamente) e por último, Archeas com 5 genes (Figura 3).

Para que um gene transferido seja mantido na população, este deve expressar um produto funcional. Os eucariotos apresentam mecanismos de expressão gênica diferentes dos procariotos, assim espera-se que a probabilidade de genes adquiridos de eucariotos seja expressa com sucesso é maior do que os genes adquiridos de

procariotos. No entanto, os resultados mostram que a tendência das transferências de procariotos para eucariotos pode não seguir o padrão biológico esperado. A grande amostragem taxonômica de sequências de procariotos facilita a detecção de transferências entre domínios, pois o alinhamento de sequências eucarióticas com sequencias procarióticas é um forte sinal de um evento de transferências (ANDERSSON, 2005).

Os eucariotos unicelulares, principalmente os fagotróficos como muitos ciliados e dinoflagelados, tem sido amplamente presente nos estudos de THG, tanto como doadores quanto receptores de novos genes, sugerindo que a aquisição de novos genes por fagocitose, bem como a presença desses eventos em eucariotos tenham importantes papeis nas linhagens de eucariotos (ANDERSSON; ROGER, 2003; ANDERSSON; SARCHFIELD; ROGER, 2005). Isso também tem sido mostrado no grupo de protozoários Apicomplex, onde estudos filogenéticos têm recriado a história evolutiva desses organismos. Tem-se demonstrado a presença de genes *plant-like* no genoma nuclear desses organismos, além de um plastídio especializado denominado apicoplasto. Juntos, os dados indicam que a célula de um Apicomplex é o resultado de uma endossimbiose de uma alga com um eucarioto ancestral, onde subsequente houve uma massiva transferência de genes para o núcleo do eucarioto receptor e posteriormente houve a perda de muitos genes e características da célula da alga e de suas organelas acessórias (HUANG et al., 2004; YUE et al., 2012b)

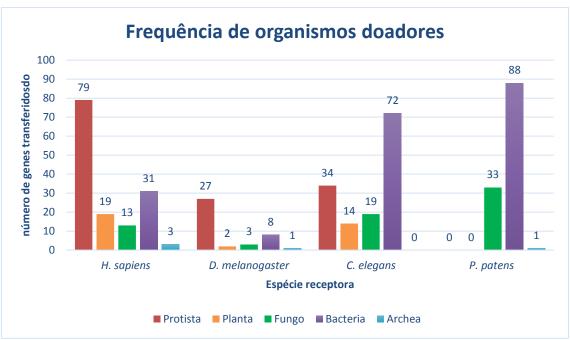


Figura 3- Frequência de organismos doadores nos eventos de THG. Número de genes transferidos para *H. sapiens, D. melanogaster, C. elegans e P. patens*

A incidência de outros organismos não fagotróficos sugere que a fagocitose e a endosimbiose não são os únicos mecanismos de transferência horizontal de genes. Dessa forma, mecanismos como atividade biológica de terceiros ou vetores (como vírus) e elementos transponíveis tem sido associado com transferência gênica de plantas para humanos por exemplo (DIAO; FREELING; LISCH, 2006; LIU et al., 2010).

Inicialmente, a maioria dos eventos de THG envolve bactérias e eucariotos unicelulares (Figura 3). Como mencionado anteriormente, isso talvez possa ser explicado pela maior amostragem taxonômica de sequências desses organismos. No entanto, existem algumas razoes biológicas de porque as transferências de procariotos para eucariotos são mais comuns do que de entre eucariotos. Uma dessas razões é que os genes de eucariotos possuem íntrons, e a estrutura e posição destes podem ser uma barreira para a THG de eucariotos-eucariotos (o que pode não ser um problema entre espécies estreitamente relacionadas onde são conservados) (STAJICH; DIETRICH; ROY, 2007). Outra observação a ser feita é que o número e a diversidade da população de bactérias é consideravelmente maior do que a população de fungos e outros eucariotos em contato com humanos, *Drosophila* e outros eucariotos, assim o *pool* de genes bacterianos disponíveis no ambiente é significativamente maior (FITZPATRICK, 2012).

A presença de um envoltório nuclear e o armazenamento do material genético em cromatina também são fatores que retardam a THG. Além disso, existe em eucariotos alguns mecanismos de proteção do genoma contra sequencias nucleotídicas estrangeiras, como o sistema de RNA de interferência e silenciamento gênico (IRELAN; SELKER, 1996). Outra importante razão a se considerar, é o fato de que os eucariotos multicelulares possuem a separação entre as linhagens de células germinativas e células somáticas, essa separação, teoricamente, limita a oportunidade transferências ocorrerem gametas de nas células de consequentemente, minimiza a taxa em que os genes transferidos tornaram-se fixos em uma linhagem evolutiva (RICHARDS et al., 2003).

5.2 Categorias funcionais dos genes

Para analisar as categorias funcionais dos genes horizontalmente transferidos que reunimos, utilizamos a ferramenta online de predição de função automática KOBAS 2.0 (utilizando o KEGG PATHWAY como banco de dados de busca). A predição automática foi realizada separadamente por espécies. Os resultados das análises mostraram que em *C. elegans* (Tabela 1) a maioria dos genes estão envolvidos com metabolismo de tirosina, cisteina, metionina etc. Outros genes estão relacionados com biossíntese e degradação de ácidos graxos. Em *D. melanogaster* (Tabela 2) as vias metabolicas dos genes relacionam-se com biossíntese de esfingolipídios e metabolismo de aminoácidos como alanina, aspartato e glutamato, além de genes envolvidos no metabolismo de açúcares.

Muitas das rotas metabólicas encontradas nas outras duas espécies analisadas (*H. sapiens* e *P patens*) também foram encontradas em humanos (tais como metabolismo de aminoácidos, digestão e absorção de lipídios, biossíntese de glicoesfingolipídios), além disso observou-se genes envolvidos com secreção biliar, proteínas transportadoras, metabolismo de nucleotídeos, regulação do citoesqueleto e genes envolvidos com o sistema complemento sanguíneo e coagulação (Tabela 3). Com relação a estes últimos, (CRISP et al., 2015) identificou genes do sistema ABO do grupo sanguíneo que teriam sido transferidos de bactérias, reforçando o mutualismo entre vertebrados e bactérias. Este autor também demonstra que 95% dos genes de bactérias adquiridos por humanos, *Drosophila* e *Caenorhabditis*

possuem íntrons sugerindo que esses genes foram domesticados, ou seja, se adaptaram à espécie receptora.

Assim, nota-se que a THG nesses organismos foi dominante para genes que possivelmente atuam no metabolismo de açúcar, aminoácido, nucleotídeo e metabolismo secundário, transmitindo uma ampla diversidade funções metabólicas, sugerindo que a THG tem desempenhado um importante papel na expansão e reconfigurando o núcleo metabólico e a capacidade de processamento de nutrientes

Tem-se sugerido que *clusters* de genes que codificam funções metabólicas ligadas, são consequências evolutivas e forças que dirigem a THG nos genomas (RICHARDS et al., 2011)(WALTON, 2000). Mais especificamente, genes que funcionam em passos sequenciais do metabolismo secundário e produzem uma gama de novos metabolitos são normalmente encontrados em *clusters* de genes, e a aquisição desses agrupamentos gênicos tem sido implicado como resultado de THG (RICHARDS et al., 2011). Muitos *clusters* gênicos, possuem também, genes responsáveis pela regulação da transcrição dos genes deste *cluster*, além de conferir resistência aos metabolitos tóxicos produzidos pela função desse mesmo *cluster* (WALTON, 2000). E isso tem sido associado também com a aquisição de atividades patogênicas em fungos, onde a transferência de clusters gênicos tem sido sugerido ser importante na evolução da virulência (VAN DER DOES; REP, 2007).

Levando-se em consideração a estrutura e organização do genoma bacteriano, onde existem operons de genes funcionalmente relacionados, seria de se esperar que a transferência de um segmento relativamente pequeno de DNA de uma bactéria para outro organismo, poderia resultar no ganho de uma via metabólica completa (FITZPATRICK, 2012). Foi identificado em fungos um padrão de transferência seriada de um *cluster* de três genes que funciona na absorção e assimilação de nitrato, o agrupamento inclui um transportador de alta afinidade ao nitrato, uma nitrato redutase, e uma nitrato redutase independente de ferredoxina (SLOT; HIBBETT, 2007).

Tabela 1- Categorias funcionais dos genes transferidos para C. elegans.

Termos	ID	Número	P-Value
		de genes	
Metabolismo do enxofre	cel00920	3	0.000855665310709
Metabolismo de retinol	cel00830	3	0.00162055472651
Metabolismo de tirosina	cel00350	3	0.00271380341832
Metabolismo de cisteina e metionina	cel00270	3	0.00656914453699
Metab. de xenobióticos-citochromo			
P450	cel00980	3	0.00712774852018
Metabolismo de drogas - cytochrome			
P450	cel00982	3	0.00963956654266
glicolise / gliconeogenese	cel00010	3	0.0118223230743
Biossíntese de ácidos graxos			
insaturados	cel01040	2	0.0156376673884
Degradação de ácidos graxos	cel00071	3	0.016046381011
Biossíntese de aminoácidos	cel01230	3	0.0467730031037
Metabolismo de cianoamino ácidos	cel00460	1	0.0774571261715
Metabolismo de carbono	cel01200	3	0.0871789025656
Metabolismo de acidos graxos	cel01212	2	0.107488791469

Tabela 2 - Categorias funcionais dos genes transferidos para *D. melanogaster*

Termos	ID	Número de genes	P-Value
Biossíntese de glicosfingolípidos - série			
ganglio	dme00604	2	0.000604337777829
Biossíntese de glicosfingolípidos - série			
globo	dme00603	2	0.000774722747723
Metabolismo de amido e sacarose	dme00500	3	0.00318306514421
Degradação de glicosaminoglicanos	dme00531	2	0.00320662102606
Degradação de outros glicanos	dme00511	2	0.00568356138974
Metabolismo de alanina, aspartato e			
glutamato	dme00250	2	0.00938122547436
Metabolismo de açucares de			
nucleotídeos e aminoácidos	dme00520	2	0.0199855799874
Lisosomo	dme04142	2	0.0707411963508
Metabolismo de butanoato	dme00650	1	0.0827461438496
Outras vias metabólicas	dme01100	7	0.12756659812

Tabela 3 - Categorias funcionais dos genes transferidos para *H. sapiens*

Termos	ID	Número de genes	P-Value
Metabolismo de butanoato	hsa00650	6	1,84E+04
Fc gama mediada por R fagocitose	hsa04666	5	0.000906359637128
Metabolismo de alanina, aspartato e			
glutamato	hsa00250	3	0.00314343921389
Outras vias metabólicas	hsa01100	19	0.00325610680995
Transportadores ABC	hsa02010	3	0.00574289957865
Lisossomo	hsa04142	4	0.0166826529742
Secreção biliar	hsa04976	3	0.0204433854603
Metabolismo de nicotinato e			
nicotinamida	hsa00760	2	0.0224357981178
Metabolismo de beta-alanina	hsa00410	2	0.0268253352974
Metabolismo de triptofano	hsa00380	2	0.0418184027038
Metabolismo da porfirina e clorofila	hsa00860	2	0.0436402510419
Digestão e absorção de gordura	hsa04975	2	0.0436402510419
Biossíntese de fenilalanina, tirosina e			
triptofano	hsa00400	1	0.0454984463587
Degradação de ácidos graxos	hsa00071	2	0.0492781032434
Metabolismo de purina	hsa00230	4	0.0514075935372
Degradação de valina, leucina e			
isoleucina	hsa00280	2	0.0551630082308
Metabolismo de ácidos graxos	hsa01212	2	0.0551630082308
Biossíntese de ubiquinona e outros			
terpenóide-quinona	hsa00130	1	0.0818364404408
Metabolismo de arginina e prolina	hsa00330	2	0.0854882607277
Regulação do citoesqueleto de actina	hsa04810	4	0.0905004936152
Metabolismo de retinol	hsa00830	2	0.0925192419458
Biossíntese de ácidos graxos	hsa00061	1	0.10297520689
Via de sinalização do PPAR	hsa03320	2	0.104591053057
Complemento e cascatas de			
coagulação	hsa04610	2	0.104591053057
Biossíntese de glicosfingolípidos -			
série globo	hsa00603	1	0.109913318459

Para *Physcomitrella patens* não foi possível fazer a classificação funcional dos genes transferidos pois o banco de dados de busca que utilizamos neste trabalho (KEGG PATHWAY) não possui dados para esta espécie. Dessa forma, as categorias funcionais para este musgo são as descritas pelo autor da fonte bibliográfica (YUE et al., 2012a). Os 122 genes horizontalmente transferidos encontrados foram

classificados em 56 famílias diferentes. Os genes estão relacionados com metabolismo essencial, planta-especifico ou processos de desenvolvimento. Muitos genes envolvidos com metabolismo de carboidratos, biossíntese de amido, degradação de celulose, germinação de sementes, biossíntese de poliaminas e hormônios, além de genes relacionados com a defesa da planta e tolerância a estresse e muitas outras categorias.

A aquisição de genes por este musgo pode ser um reflexo das necessidades deste organismo em se adaptar ao ambiente, uma vez que os musgos estão entre os primeiros habitantes do ambiente terrestre. E essa transição os expôs a um ambiente hostil com intensa radiação ultravioleta, maior luminosidade e menor disponibilidade de água (LOWRY; LEE; HÉBANT, 1980). O estabelecimento desse organismo ao meio terrestre pode ter sido facilitado também pela conhecida habilidade dos musgos em realizar efetivamente a transformação do DNA, ou seja, absorver o DNA disponível no ambiente originado de organismos que coabitam um ambiente mais propenso a fragmentação de DNA (COVE, 2005)

YUE et al., (2012a) propõe que a THG neste musgo pode ter ocorrido mais facilmente na fase de germinação dos esporos, já que os musgos são as primeiras plantas terrestres e não possuem um sistema vascular verdadeiro nem estruturas complexas de proteção dos gametas e do zigoto. Assim o gametófito é uma estrutura simples que está em contato direto com o solo, propiciando a absorção do DNA disponível. Desta forma, observa-se que a THG neste musgo teve um impacto muito importante na adaptação desses organismos, contribuindo grandemente para o metabolismo, para sobrevivência e desenvolvimento desses organismos, evoluindo características de defesa e mecanismos que os permitiu colonizar com sucesso diversos habitats terrestres.

6 Considerações finais

A ideia convencional é que a THG é frequente em eucariotos unicelulares, mas raro em eucariotos multicelulares por causa das diversas barreiras citadas anteriormente. No entanto, tem sido relatado numerosos casos de genes adquiridos horizontalmente no genoma de muitos eucariotos multicelulares (incluindo metazoários vertebrados e não vertebrados). Os estudos de THG atualmente

apresentam resultados subestimados, muitas vezes pela falta de amostragem de sequencias genômicas de diferentes Taxa, além disso muitos estudos trazem uma abordagem filogenética incompleta, ou seja, as comparações dos genomas são restritas a algumas espécies. Outro fato importante que contribui para a subestimação dos resultados de THG, é que as análises são feitas apenas com organismos atualmente existentes. No entanto, observa-se uma forte tendência de eucariotos adquirirem genes de organismos procarióticos ou eucarióticos unicelulares.

As relações ecológicas entre os organismos têm, de fato, sido grandes forças propulsoras da THG. Simbiose, mutualismo, parasitismo ou simplesmente sobreposição de habitats tem dirigido os eventos de transferência.

Ainda é cedo para definir um padrão de genes que são mais transferidos, contudo, genes operacionais, ou seja, genes envolvido em processos metabólicos tem se destacado mais do que genes informacionais (aqueles com funções ligadas ao armazenamento e manutenção da informação genética). Isso contribui para a aquisição de vantagens evolutivas das espécies, permitindo seu sucesso adaptativo a população

7 Perspectivas futuras

Após levantamento dos dados, as próximas etapas para criação do banco de dados incluem a escolha de uma plataforma tecnológica que atenda da melhor forma a necessidade específica, e que permita a disponibilização dos dados levantados em uma interface de Web.

Além disso, outras análises devem ser feitas para melhor acurácia da função dos genes. Estas incluem predição manual de função dos genes, busca em outros bancos de dados, como por exemplo o *Gene ontology* com o objetivo de diminuir os níveis das categorias funcionais dos genes para se aproximar das reais funções desses genes.

Referências

ANDERSSON, J.O. Lateral gene transfer in eukaryotes. Cellular and Molecular Life Sciences, v. 62, p. 1182–1197, 2005.

ANDERSSON, Jan O; ROGER, Andrew J. Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes. BMC evolutionary biology, v. 3, p. 14, 2003.

ANDERSSON, Jan O.; SARCHFIELD, Stewart W.; ROGER, Andrew J. **Gene transfers from nanoarchaeota to an ancestor of diplomonads and parabasalids**. Molecular Biology and Evolution, v. 22, n. 1, p. 85–90, 2005.

BEVEN, Rachel B.; LANG, B. Franz. **Mitochondrial genome evolution: the origin of mitochondria and of eukaryotes**. Mitochondrial Function and Biogenesis, v. 8, 2004.

CAPY, Pierre; CAPY, Pierre; VITALIS, R; *et al.* **Relationship between transposable elements based upon the integrase-transposase domains: is there a common ancestor?** Journal of Molecular Evolution, v. 42, p. 359–368, 1996.

CASCALES, Eric; CHRISTIE, Peter J. **The versatile bacterial type IV secretion systems**. Nature reviews. Microbiology, v. 1, n. November, p. 137–149, 2003.

CASSE, N.; BUI, Q. T.; NICOLAS, V.; *et al.* **Species sympatry and horizontal transfers of Mariner transposons in marine crustacean genomes.** Molecular Phylogenetics and Evolution, v. 40, p. 609–619, 2006.

COVE, David. **The moss Physcomitrella patens**. Annual review of genetics, v. 39, p. 339–358, 2005.

CRISP, Alastair; BOSCHETTI, Chiara; PERRY, Malcolm; *et al.* Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biology, v. 16, p. 1–13, 2015.

DAVIES, Julian; DAVIES, Dorothy. **Origins and evolution of antibiotic resistance.** Microbiology and molecular biology reviews: MMBR, v. 74, n. 3, p. 417–433, 2010.

DIAO, Xianmin; FREELING, Michael; LISCH, Damon. Horizontal transfer of a plant transposon. PLoS Biology, v. 4, n. 1, p. 0119–0127, 2006.

DIMITRI, Patrizio; JUNAKOVIC, Nikolaj. Revising the selfish DNA hypothesis: New evidence on accumulation of transposable elements in heterochromatin. Trends in Genetics, v. 15, p. 123–124, 1999.

DOOLITTLE, Russell F. **Gene Transfers Between Distantly Related Organisms**. v. 2, p. 269–275, 2003.

DUNNY, G M. Analysis of Functional Domains of the Enterococcus faecalis Pheromone-Induced Surface Protein Aggregation Substance. Society, v. 183, n. 19, p. 5659–5667, 2001.

FIERS, W; CONTRERAS, R; DUERINCK, F; et al. Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature, v. 260, p. 500–507, 1976.

FITZPATRICK, David a. **Horizontal gene transfer in fungi**. FEMS Microbiology Letters, v. 329, p. 1–8, 2012.

FORD DOOLITTLE, W. You are what you eat: A gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends in Genetics, v. 14, n. 98, p. 307–311, 1998.

FROST, Laura S; LEPLAE, Raphael; SUMMERS, Anne O; *et al.* **Mobile genetic elements: the agents of open source evolution**. Nature reviews. Microbiology, v. 3, n. September, p. 722–732, 2005.

GARCIA-VALLVE, S.; ROMEU, A.; PALAU, J. Horizontal Gene Transfer of Glycosyl Hydrolases of the Rumen Fungi. Molecular Biology and Evolution, v. 17, n. 3, p. 352–361, 2000.

GRAY, Michael W. **Mitochondrial evolution. Cold Spring Harbor Perspectives in Biology**, v. 4, p. a011403, 2012.

HUANG, Jinling; MULLAPUDI, Nandita; SICHERITZ-PONTEN, Thomas; *et al.* **A first glimpse into the pattern and scale of gene transfer in the Apicomplexa**. International Journal for Parasitology, v. 34, p. 265–274, 2004.

HURST, G D; WERREN, J H. The role of selfish genetic elements in eukaryotic evolution. Nature reviews. Genetics, v. 2, n. August, p. 597–606, 2001.

IRELAN, Jeffrey T.; SELKER, Eric U. Gene silencing in filamentous fungi: RIP, MIP and quelling. Journal of Genetics, v. 75, n. 3, p. 313–324, 1996.

KASUYA, M. Transfer of Drug Resistance Between Enteric Bacteria Induced in the. Journal of bacteriology, v. 88, n. 2, p. 322–328, 1964.

KEELING, Patrick J; PALMER, Jeffrey D. Horizontal gene transfer in eukaryotic evolution. Nature reviews. Genetics, v. 9, n. august, p. 605–618, 2008.

KOONIN, Eugene V; MAKAROVA, K S; WOLF, Yuri I; *et al.* Horizontal Gene Transfer and its Role in the Evolution of Prokaryotes BT - Horizontal Gene Transfer. Horizontal Gene Transfer, n. 25, p. 277–304, 2002.

LISCH, Damon. A new SPIN on horizontal transfer. Proceedings of the National Academy of Sciences of the United States of America, v. 105, n. 44, p. 16827–16828, 2008.

LIU, Huiquan; FU, Yanping; JIANG, Daohong; *et al.* **Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes.** Journal of virology, v. 84, n. 22, p. 11876–11887, 2010.

LORENZ, M G; WACKERNAGEL, W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiological reviews, v. 58, n. 3, p. 563–602, 1994.

LOWRY, J. Brian; LEE, David W.; HÉBANT, Charles. **The Origin of Land Plants: A New Look at an Old Problem**. v. 29, n. 2, p. 56, 1980.

MARTIN, W.; HERRMANN, R. G. Gene Transfer from Organelles to the Nucleus: **How Much, What Happens, and Why?** Plant physiology, v. 118, p. 9–17, 1998.

NAKAMURA, Yoji; ITOH, Takeshi; MATSUDA, Hideo; *et al.* **Biased biological functions of horizontally transferred genes in prokaryotic genomes.** Nature genetics, v. 36, n. 7, p. 760–766, 2004.

NEDELCU, A M; BLAKNEY, A J C; LOGUE, K D. Functional replacement of a primary metabolic pathway via multiple independent eukaryote-to-eukaryote gene transfers and selective retention. v. 22, p. 1882–1894, 2009.

RICHARDS, Thomas a; HIRT, Robert P; WILLIAMS, Bryony a P; *et al.* **Horizontal gene transfer and the evolution of parasitic protozoa.** Protist, v. 154, n. 1, p. 17–32, 2003.

RICHARDS, Thomas a.; LEONARD, Guy; SOANES, Darren M.; *et al.* **Gene transfer into the fungi.** Fungal Biology Reviews, v. 25, n. 2, p. 98–110, 2011.

SLOT, Jason C.; HIBBETT, David S. Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: A phylogenetic study. PLoS ONE, v. 2, n. 10, 2007.

STAJICH, Jason E; DIETRICH, Fred S; ROY, Scott W. om **C parative genomic analysis of fungal genomes reveals intron-rich ancestors**. Genome biology, v. 8, n. 10, p. R223, 2007.

STANHOPE, M J; LUPAS, a; ITALIA, M J; *et al.* **Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates.** Nature, v. 411, n. June, p. 940–944, 2001.

STRUHL, K. Functional Genetic Expression of Eukaryotic DNA in Escherichia coli. Proceedings of the National Academy of Sciences, v. 73, n. 5, p. 1471–1475, 1976.

THOMAS, Christopher M; NIELSEN, Kaare M. **Mechanisms of, and barriers to, horizontal gene transfer between bacteria**. Nature reviews. Microbiology, v. 3, n. September, p. 711–721, 2005.

VAN DER DOES, H Charlotte; REP, Martijn. **Virulence genes and the evolution of host specificity in plant-pathogenic fungi.** Molecular plant-microbe interactions: MPMI, v. 20, n. 10, p. 1175–1182, 2007.

WALTON, J D. Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal genetics and biology: FG & B, v. 30, n. 3, p. 167–171, 2000.

YUE, Jipei; HU, Xiangyang; SUN, Hang; *et al.* **Widespread impact of horizontal gene transfer on plant colonization of land**. Nature Communications, v. 3, p. 1152–1159, 2012.

ANEXO 1 - Tabela 1 – Informações dos THG de *C. elegans* levantadas com a revisão da literatura e conversão dos genes IDs para o formato padrão do NCBI (Entrez ID)

A – adaptado de (CRISP et al., 2015)

B – Ids convertidos (WormBase ID para Entrez ID) - Ensembl Biomart

А	
WormBase ID	Doador
WBGene00000140	protist
WBGene00000879	plant
WBGene00000991	protist
WBGene00001829	protist
WBGene00002263	plant
WBGene00009204	fungi
WBGene00009214	plant
WBGene00009303	bacteria
WBGene00009858	plant
WBGene00010306	protist
WBGene00010661	bacteria
WBGene00011045	plant
WBGene00011794	protist
WBGene00013672	protist
WBGene00013762	protist
WBGene00013859	protist
WBGene00015338	protist
WBGene00015660	protist
WBGene00015966	protist
WBGene00019259	plant
WBGene00021851	fungi
WBGene00022231	bacteria
WBGene00001059	bacteria
WBGene00001393	protist
WBGene00001394	protist
WBGene00001395	fungi
WBGene00001396	fungi
WBGene00001564	bacteria
WBGene00003093	protist
WBGene00003094	protist
WBGene00003095	protist
WBGene00003099	protist
WBGene00006602	bacteria
WBGene00007653	plant
WBGene00008396	protist
WBGene00008743	bacteria
WBGene00009106	plant
WBGene00010148	fungi
WBGene00010267	bacteria
WBGene00010759	plant
WBGene00010790	fungi

В	
Nome associado	Entrez ID
anc-1	172034
cpin-1	185473
cyn-3	180028
dhs-28	180950
dnj-16	175540
dpf-6	176132
fat-1	178291
fat-2	178293
fat-3	177820
fat-4	177819
fat-4	177819
icl-1	178583
gob-1	181637
hcp-1	179049
lea-1	3564838
lys-1	179428
lys-3	179430
lys-4	178086
lys-5	186491
lys-6	178087
lys-8	173944
lys-10	184622
tag-10	175011
tps-1	181778
oac-1	181961
C08B6.4	179407
C09F12.2	181294
C15A11.4	182626
C15A11.7	172496
C15A11.7	172496
cysl-1	181209
fbxa-136	3565166
lact-7	183371
oac-8	3565159
D1086.9	179910
oac-13	184022
F01D4.8	184055
oac-15	184335
F13B12.4	177937
F13B12.4	177937
F13D12.9	

WBGene00010791	fungi
WBGene00011684	plant
WBGene00012968	bacteria
WBGene00013440	bacteria
WBGene00015298	plant
WBGene00016558	bacteria
WBGene00016849	bacteria
WBGene00017023	bacteria
WBGene00017060	fungi
WBGene00017536	fungi
WBGene00017537	fungi
WBGene00018269	bacteria
WBGene00019094	plant
WBGene00019096	plant
WBGene00019730	bacteria
WBGene00019962	plant
WBGene00020052	bacteria
WBGene00020394	fungi
WBGene00020658	bacteria
WBGene00020739	bacteria
WBGene00020741	bacteria
WBGene00020797	bacteria
WBGene00021066	fungi
WBGene00022267	fungi
WBGene00022813	fungi
WBGene00022814	fungi
WBGene00000775	protist
WBGene00001034	protist
WBGene00001649	bacteria
WBGene00003090	protist
WBGene00003092	protist
WBGene00003097	protist
WBGene00006404	bacteria
WBGene00007177	bacteria
WBGene00007425	protist
WBGene00007482	fungi
WBGene00007598	protist
WBGene00007599	protist
WBGene00007672	bacteria
WBGene00008047	bacteria
WBGene00008077	bacteria
WBGene00008475	bacteria
WBGene00008490	bacteria
WBGene00008676	bacteria
WBGene00008732	bacteria
WBGene00008786	bacteria
WBGene00008906	bacteria
WBGene00009413	bacteria
WBGene00009413	bacteria
WBGene00009349 WBGene00009607	bacteria
WBGene00009607 WBGene00009609	bacteria
WBGene00009610	bacteria
AA DGGUGOOO30 10	Daciend

4.5	10444-
oac-16	184447
oac-17	184612
acs-12	180375
F28C6.4	174377
thn-3	
thn-3	46=:-
lips-8	185178
oac-19	173055
F38H4.5	185480
oac-26	185602
oac-27	185604
oac-28	185605
oac-28	185610
oac-25	185605
oac-25	185610
thn-4	186006
F56D5.3	186382
oac-34	173024
F56H6.2	186413
oac-35	186421
oac-36	186422
lips-9	174935
F59A2.6	175445
oac-37	186738
oac-37	186738
oac-38	178369
tyr-2	176810
cysl-2	175107
sodh-1	179627
sodh-2	179628
gpx-2	187630
R10D12.15	187768
R10D12.15	188942
oac-42	
oac-43	188332
oac-44	188333
oac-45	188335
T10B10.8	188365
nep-21	179925
oac-48	188814
T26F2.1	187768
T26F2.1	188942
oac-49	188952
lact-8	189839
Y48A6B.7	176533
Y66D12A.14	190498
oac-56	190505
catp-1	173307
Y113G7B.12	190975
ZC247.1	172895
nit-1	191515
ZK1307.1	174519
<u> </u>	114018

WBGene00009615	bacteria
WBGene00010157	bacteria
WBGene00010163	bacteria
WBGene00010171	bacteria
WBGene00010172	bacteria
WBGene00010391	bacteria
WBGene00010392	bacteria
WBGene00011196	protist
WBGene00011515	bacteria
WBGene00011653	bacteria
WBGene00011654	bacteria
WBGene00011656	bacteria
WBGene00011960	bacteria
WBGene00012057	protist
WBGene00012068	bacteria
WBGene00012777	bacteria
WBGene00013450	bacteria
WBGene00014206	bacteria
WBGene00014244	bacteria
WBGene00015873	bacteria
WBGene00016585	bacteria
WBGene00016657	protist
WBGene00016773	bacteria
WBGene00016776	bacteria
WBGene00017061	bacteria
WBGene00017468	fungi
WBGene00017804	protist
WBGene00017806	protist
WBGene00018141	bacteria
WBGene00018142	bacteria
WBGene00018143	bacteria
WBGene00018211	bacteria
WBGene00018295	bacteria
WBGene00018610	protist
WBGene00018711	fungi
WBGene00019198	fungi
WBGene00019373	protist
WBGene00019579	bacteria
WBGene00019580	bacteria
WBGene00019849	bacteria
WBGene00019851	bacteria
WBGene00020270	protist
WBGene00020672	bacteria
WBGene00020976	bacteria
WBGene00020977	bacteria
WBGene00044617	bacteria

00	4
C01F1.3	173762
catp-2	182114
catp-3	179189
oac-4	182701
C18C4.5	178941
C41A3.1	180815
oac-59	178180
oac-59	178180
C44E12.1	181023
oac-10	183607
oac-11	183610
acs-21	178751
D1022.4	174215
D2063.1	183957
oac-12	183958
F14F9.5	184485
F17A9.4	178999
F17A9.5	184611
F26A1.6	184946
F26A1.8	184948
oac-21	185417
oac-22	185418
oac-23	185419
oac-24	185503
acs-11	173820
oac-29	185622
F48E8.3	175751
F52G3.3	186129
F59A7.7	186586
cysl-4	186587
H14E04.1	175358
H34C03.2	177437
K04A8.1	179047
oac-57	187224
oac-57	187224
oac-58	187225
asns-2	181121
oac-40	179279
oac-41	187551
cysl-3	259617
R13A5.10	260136
T05H4.7	188151
T10B5.8	188353
T21F4.1	180830
T21F4.1	
T22B7.3	3896877
IZZDI.J	188723

Tabela 2 – Informações de THG de *D. melanogaster* levantadas com a revisão da literatura e conversão dos genes IDs para o formato padrão do NCBI (Entrez ID)

A – adaptado de (CRISP et al., 2015) B – Ids convertidos (Flybase ID para Entrez ID) – Ensembl Biomart

۸	
A FlyPage ID	Dooder
FlyBase ID	Doador
FBgn0000116	protist
FBgn0000427	plant
FBgn0002873	protist
FBgn0011722	protist
FBgn0028573	protist
FBgn0035168	protist
FBgn0037836	fungi
FBgn0039349	bacteria
FBgn0040034	protist
FBgn0045063	fungi
FBgn0050069	protist
FBgn0050375	bacteria
FBgn0053017	protist
FBgn0083945	protist
FBgn0086690	protist
FBgn0259246	protist
FBgn0261336	protist
FBgn0000527	bacteria
FBgn0027560	archaea
FBgn0028939	protist
FBgn0031201	protist
FBgn0031907	bacteria
FBgn0031908	bacteria
FBgn0032010	plant
FBgn0032329	protist
FBgn0033277	bacteria
FBgn0034662	protist
FBgn0035798	protist
FBgn0036440	protist
FBgn0036995	protist
FBgn0030993	bacteria
FBgn0039257	protist
FBgn0041607	protist
FBgn0041630	fungi
FBgn0243514	protist
FBgn0259677	protist
FBgn0259896	protist
FBgn0261269	protist
FBgn0029710	protist
FBgn0030189	protist
FBgn0039151	bacteria

В	
Nome associado	Entrez ID
CG5171	34016
Art8	34528
Tps1	33642
-	43262
eater	
CG30375	246575
cp309 fdl	3772382
	250735
NimC1	34816
frac	38850
asparagine-	.=
synthetase	2768965
prc	43930
CG5177	34017
CG34109	4379890
CG13889	38099
CG33017	36811
CG17177	39601
CG13492	37487
CG30069	36573
CG42346	3355160
CG12446	33147
Ssadh	43092
е	42521
CG3568	31383
Argk	39041
CG8086	34131
dec-1	31691
CG10208	42814
Hexo1	38528
tnc	42990
NimC2	34818
CG13607	42859
mud	44839
CG14692	41298
brp	35977
atk	40266
CG2909	31958
CG2909 CG14760	35802
-	
Tig	33896
CONV	36588
CG5171	34016
Art8	34528

Tabela 3 – Informações de THG de *H. sapiens* levantados com a revisão da literatura e conversão dos genes IDs para o formato padrão do NCBI (Entrez ID)

A – adaptado de (CRISP et al., 2015)

B – Ids convertidos (Ensembl ID para Entrez ID) – Ensembl Biomart

Δ	
A	Deeden
Ensembl ID	Doador
ENSG00000001626	protist
ENSG00000006747	protist
ENSG00000067334	protist
ENSG00000104312	plant
ENSG00000105227	fungi
ENSG00000116726	protist
ENSG00000117724	protist
ENSG00000130377	protist
ENSG00000137497	protist
ENSG00000148444	protist
ENSG00000156239	protist
ENSG00000162669	protist
ENSG00000171487	bacteria
ENSG00000171533	bacteria
ENSG00000172594	protist
ENSG00000181143	protist
ENSG00000182272	protist
ENSG00000182330	protist
ENSG00000183248	protist
ENSG00000188280	protist
ENSG00000196333	protist
ENSG00000197632	bacteria
ENSG00000204478	protist
ENSG00000204486	protist
ENSG00000204501	protist
ENSG00000204502	protist
ENSG00000204510	protist
ENSG00000204513	protist
ENSG00000205944	plant
ENSG00000212857	bacteria
ENSG00000225614	protist
ENSG00000229571	protist
ENSG00000237515	protist
ENSG00000243073	protist
ENSG00000253327	protist
ENSG00000005187	bacteria
ENSG000000008086	protist
ENSG00000047457	plant
ENSG00000047407	bacteria
ENSG0000000071794	plant
ENSG00000071794	protist
ENSG00000072009	protist
ENSG00000081014	plant
L1400000000003472	ριαπ

В	
	Frature ID
Nome associado	Entrez ID
CFTR	1080
ACSM3	6296
SCIN	85477
CDKL5	6792
CP	1356
ACSM2B	00000
DNTTIP2	30836
TMEM260	54916
HLTF	6596
CHFR	55743
AP4E1	23431
HEPH	9843
CYP26A1	1592
EPPIN	57119
IRG1	730249
CLN5	1203
HAS3	3038
CTSH	1512
CEMIP	57214
RIPK2	8767
PLAT	5327
IL4I1	259307
PRX	57716
HAS1	3036
PIK3CG	5294
EHHADH	1962
ODC1	
PRAMEF1	65121
PRAMEF1	400736
PRAMEF1	729528
PRAMEF12	390999
PADI2	11240
CENPF	1063
ZRANB3	84083
PLAU	5328
NQO2	4835
AHNAK	79026
NT5C	30833
ACSBG2	81616
ACY3	91703
PRAM1	84106
GIMAP6	474344
GIMAP4	55303

ENSG00000095596	bacteria
ENSG00000101448	protist
ENSG00000102794	bacteria
ENSG00000103811	plant
ENSG00000103888	protist
ENSG00000104368	fungi
ENSG00000104951	bacteria
ENSG00000105851	protist
ENSG00000113790	protist
ENSG00000115758	protist
ENSG00000121988	protist
ENSG00000122861	fungi
ENSG00000124588	bacteria
ENSG00000124942	protist
ENSG00000132744	bacteria
ENSG00000133246	protist
ENSG00000135048	protist
ENSG00000136059	protist
ENSG00000137628	fungi
ENSG00000137020	protist
ENSG00000138658	protist
ENSG00000130036	protist
ENSG00000141337	•
ENSG00000142920	protist
	protist
ENSG00000143951	protist
ENSG00000145439	bacteria
ENSG00000145555	protist
ENSG00000146282	fungi
ENSG00000147324	bacteria
ENSG00000148180	protist
ENSG00000153093	protist
ENSG00000153391	protist
ENSG00000155096	protist
ENSG00000156110	plant
ENSG00000163633	protist
ENSG00000164291	protist
ENSG00000166743	bacteria
ENSG00000167720	plant
ENSG00000168454	plant
ENSG00000169021	plant
ENSG00000169876	fungi
ENSG00000171115	plant
ENSG00000173124	bacteria
ENSG00000173200	protist
ENSG00000173230	protist
ENSG00000174611	archaea
ENSG00000175806	bacteria
ENSG00000179832	protist
ENSG00000181019	bacteria
ENSG00000181333	plant
ENSG00000182919	protist
ENSG00000183549	bacteria

TMEM2	23670
VILL	50853
LMO7	4008
FAM129B	64855
NUMA1	4926
DDX60	55601
ABCG5	64240
ZGRF1	55345
FTO	79068
ARSG	22901
PADI3	51702
PADI1	29943
AZIN2	113451
ABCG8	64241
WDPCP	51057
CBR4	84869
MYO10	4651
RARS2	57038
MFHAS1	9258
GSN	2934
ASTN2	23245
GBGT1	26301
COMMD3	23412
TGOLN2	10618
ACOXL	55289
INO80C	125476
ANKH	56172
AZIN1	
ADK	132
N6AMT1	29104
PADI4	23569
HFM1	164045
C4orf36	132989
C4orf36	100506746
ARSK	153642
RIMKLB	57494
ACSM1	116285
SRR	63826
TXNDC2	84203
UQCRFS1	7386
MUC17	140453
ADPRM	56985
HAS2	3037
GIMAP8	155038
NLRP5	126206
MAP6	4135
CARNS1	57571
SMPDL3A	10924
CFL1	10924
ACSM6	142827
PARP15	165631
GOLGB1	2804

ENSG00000183747	bacteria
ENSG00000185567	protist
ENSG00000185958	protist
ENSG00000187553	bacteria
ENSG00000215009	bacteria
ENSG00000232774	protist
ENSG00000240563	protist
ENSG00000243978	protist
ENSG00000254656	fungi
ENSG00000260383	protist
ENSG00000263074	protist
ENSG00000070269	protist
ENSG00000102805	protist
ENSG00000103044	fungi
ENSG00000105509	fungi
ENSG00000107618	bacteria
ENSG00000116721	protist
ENSG00000117115	bacteria
ENSG00000125458	bacteria
ENSG00000133561	plant
ENSG00000133574	plant
ENSG00000136153	protist
ENSG00000136830	protist
ENSG00000130030	plant
ENSG00000142619	bacteria
ENSG00000142623	bacteria
ENSG00000142023	protist
ENSG00000148288	bacteria
ENSG00000140200	protist
ENSG00000152231	protist
ENSG00000154122	protist
ENSG00000157338	bacteria
ENSG00000139339	archaea
ENSG00000100332	plant
ENSG00000170222	fungi
ENSG00000170901	protist
ENSG00000172757	fungi
ENSG00000175573	fungi
ENSG00000175868 ENSG00000177181	protist
	archaea
ENSG00000179144	plant
ENSG00000196329	plant
ENSG00000205309	bacteria
ENSG00000212907	protist
ENSG00000213203	plant
ENSG00000216937	protist
ENSG00000232423	protist
ENSG00000242265	fungi
ENSG00000256062	bacteria
ENSG00000265203	bacteria

-	T
KY	339855
C11orf68	83638
MSRA	4482
CALCB	797
RIMKLA	284716
GIMAP7	168537
MROH1	727957
NQO1	1728
MUC16	94025
HEPHL1	341208
B4GALNT4	338707
PRAMEF8	391002
PRAMEF8	441871
C11orf54	28970
PRR36	80164
ACSM5	54988
ACSM2A	123876
AHNAK2	113146
FAM186A	121006
CYP26C1	340665
FAM230A	0.0000
GIMAP5	55340
SERPINB2	5055
PRAMEF20	645425
PRAMEF9	653619
PRAMEF7	441871
NT5M	56953
DAZ2	57054
DAZ2	57055
MT-ND4L	4539
GIMAP1	170575
ACSM4	341392
CCDC7	79741
ZNF469	84627
PRAMEF26	441873
PRAMEF26	645359
PRAMEF6	440561
SHISA9	729993
L1TD1	54596
PEG10	23089
PRAMEF4	400735
RGAG1	57529
RAD21-AS1	644660
RTL1	388015
RBP3 CFTR	5949
	1080
ACSM3	6296
SCIN	85477
CDKL5	6792
СР	1356