UNIVERSIDADE FEDERAL DO PAMPA

JULIANA GOMIDES OLIVEIRA

GEOCRONOLOGIA U-Pb EM ZIRCÕES DETRÍTICOS DE SEDIMENTOS DA BACIA DO RIO PIRATINI, RS

CAÇAPAVA DO SUL

2020

UNIVERSIDADE FEDERAL DO PAMPA

JULIANA GOMIDES OLIVEIRA

GEOCRONOLOGIA U-Pb EM ZIRCÕES DETRÍTICOS DE SEDIMENTOS DA BACIA DO RIO PIRATINI, RS

Trabalho de Conclusão de Curso apresentado ao Curso de Geologia da Universidade Federal do Pampa, como requisito parcial para obtenção do Título de Bacharel em Geologia

Orientador: Prof. Dr. Felipe Guadagnin

CAÇAPAVA DO SUL

2020

Ficha catalográfica elaborada automaticamente com os dados fornecidos pelo(a) autor(a) através do Módulo de Biblioteca do Sistema GURI (Gestão Unificada de Recursos Institucionais).

 Oliveira, Juliana Gomides Geocronologia U-Pb em zircões detríticos de sedimentos da Bacia do Rio Piratini, RS / Juliana Gomides Oliveira. 56 p. Trabalho de Conclusão de Curso(Graduação)-- Universidade Federal do Pampa, GEOLOGIA, 2020. "Orientação: Felipe Guadagnin".
1. Geocronologia U-Pb. 2. Proveniência sedimentar . I. Título.

SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO Universidade Federal do Pampa

JULIANA GOMIDES OLIVEIRA

GEOCRONOLOGIA U-Pb EM ZIRCÕES DETRÍTICOS DE SEDIMENTOS DA BACIA DO RIO PIRATINI, RS

Trabalho de Conclusão de Curso apresentado ao Curso de Geologia da Universidade Federal do Pampa, como requisito parcial para obtenção do Título de Bacharel em Geologia.

Trabalho de Conclusão de Curso defendido e aprovado em: 10 de dezembro de 2020.

Banca examinadora:

Prof. Dr. Felipe Guadagnin Orientador UNIPAMPA

Prof. Dr. Vinicius Matté UNIPAMPA

Prof. Dr. Igor Magalhães Clemente UNIPAMPA

Assinado eletronicamente por **VINICIUS MATTE, PROFESSOR DO MAGISTERIO SUPERIOR**, em 17/12/2020, às 08:21, conforme horário oficial de Brasília, de acordo com as norma vas legais aplicáveis.

Assinado eletronicamente por **IGOR MAGALHAES CLEMENTE**, **PROFESSOR DO MAGISTERIO SUPERIOR**, em 17/12/2020, às 08:29, conforme horário oficial de Brasília, de acordo com as norma vas legais aplicáveis.

Assinado eletronicamente por **FELIPE GUADAGNIN**, **PROFESSOR DO MAGISTERIO SUPERIOR**, em 17/12/2020, às 08:50, conforme horário oficial de Brasília, de acordo com as norma vas legais aplicáveis.

A autencidade deste documento pode ser conferida no site <u>hps://sei.unipampa.edu.br/sei/controlador_externo.php?</u> <u>acao=documento_conferir&id_orgao_acesso_externo=0</u>, informando o código verificador **0429360** e o código CRC **DD8B7FBE**.

Universidade Federal do Pampa, Campus Caçapava do Sul

AGRADECIMENTOS

Agradeço, primeiramente, aos meus pais, Glauce e Lenine e à Mainha e Painho, pelo apoio sem limites nesses longos anos e amor infinito. Às minhas irmãs, Fê e Aninha, pelas risadas e amor.

Ao CNPq pelo financiamento do projeto ao qual deu origem a este trabalho.

Agradeço ao professor Felipe Guadagnin, pelos ensinamentos e confiança durante os últimos anos, e aos demais professores que de alguma forma me incentivaram e me proporcionaram conhecimentos incríveis.

Aos terceirizados da UNIPAMPA e a todos que proporcionam a existência e manutenção da universidade pública e gratuita no Brasil.

À Anne e Paulinha, sempre presentes com muito amor e apoio aos meus estudos.

Aos meus amigos da geologia, minha família em Caçapava!

À Jéssica Gomides, por tanto amor, incentivo e apoio em toda essa caminhada que percorremos juntas.

Ao André, pelas nossas vivências, conversas e pelos ensinamentos quanto à faculdade e principalmente à vida.

E enfim, agradeço à minha vida, ao universo e à natureza que me dão a oportunidade de a cada dia ser uma pessoa melhor, me conectando a uma infinidade de ensinamentos e gratidão!

RESUMO

A bacia do Rio Piratini está localizada na região sudeste do estado do Rio Grande do Sul e é composta por sedimentos detríticos derivados de rochas graníticas do Batólito Pelotas. A região tem a predominância de rochas calcioalcalinas do Proterozoico, com idade ²⁰⁶Pb/²⁰⁷Pb mínima, sugerida anteriormente, de ±650 Ma. A partir do método de datação U-Pb LA-ICP-MS (Ablação a Laser com Espectrometria de Massa com plasma acoplado) aplicado nas amostras de sedimentos coletados, os dados obtidos foram analisados e interpretados e poderão ser utilizados como base para estudos de geocronologia da região. O trabalho teve início com o trabalho de campo, onde foram coletados os sedimentos das amostras JG-01, JG-02 e JG-03, respectivamente à margem à jusante da confluência entre o Rio Piratini e o Arroio Basílio, à margem do Arroio Basílio e à margem do Rio Piratini. Dos 413 grãos de zircões detríticos selecionados das amostras, 236 possuem concordância maior do que 5%. As idades U/Pb dos zircões detríticos mostram uma contribuição de sedimentos a partir de áreas fonte de idades neoproterozoicas, sendo as populações de idades mais frequentes de 622 Ma, 625 Ma e 640 Ma. Os resultados obtidos coincidem e reforçam as idades de outros estudos, possibilitando a complementação dos dados geocronológicos da região.

Palavras-Chave: Geocronologia. Proveniência sedimentar. Datação isotópica.

ABSTRACT

The Piratini River basin is located in the southeastern region of the state of Rio Grande do Sul and is composed of detrital sediments derived from granitic rocks of Pelotas Batholith. The region has a predominance of calc-alkaline proterozoic rocks, with a minimum age of ²⁰⁶Pb / ²⁰⁷Pb, previously suggested, of ± 650 Ma. From the U-Pb LA-ICP-MS dating method (Laser ablation inductively coupled plasma mass spectrometer) applied in the collected sediment samples, the data obtained were analyzed and interpreted and can be used as a basis for geochronology studies in the region. The work began with fieldwork, where sediments from samples JG-01, JG-02 and JG-03 were collected, respectively at the margin downstream of the confluence between the Piratini river and the Basílio river, at the margin of the Basílio river and at the margin of the Piratini River. Of the 413 detrital zircon grains selected from the samples, 236 have an agreement greater than 5%. The U/Pb ages of the detritic zircons show a contribution of sediments from source areas of neoproterozoic ages, with populations of more frequent ages of 622 Ma, 625 Ma and 640 Ma. The results obtained coincide and reinforce the ages of other bibliographies, making it possible to complement the region's geochronological data.

Keywords: U-Pb geochronology. Sedimentary provenance. Isotopic dating.

LISTA DE FIGURAS

Figura 1 - Mapa de localização da área em estudo, com principais rodovias e indicação do arroio Basílio e Rio Piratini12
Figura 2 - Mapa de relações temporais entre as unidades litoestratigráficas e geotectônicas da área que compreende o Cinturão Dom Feliciano14
Figura 3 - Mapa geotectônico simplificado do Batólito Pelotas16
Figura 4 - Mapa de localização dos pontos de coleta de amostras22
Figura 5 - Pontos de coleta de sedimentos: A) ponto JG-01; B) ponto JG-02; C) ponto JG-03)
Figura 6 - Peneira utilizada no processo de peneiramento23
Figura 7 - Bateia com sedimentos finos decantado24
Figura 8 - Pipeta com bico descartável e placas de petri com sedimentos parcialmente separados25
Figura 9 - Imagem dos zircões selecionados na amostra JG-01, com numeração para controle da análise
Figura 10 - Imagem de catodoluminescência de parte dos zircões detríticos da amostra JG-01 com datações entre 620±10 e 633±10 Ma pertencentes à população 2
Figura 11 - Diagrama Concórdia e histograma das idades U-Pb dos zircões concordantes da amostra JG-01
Figura 12 - Imagem de Catodoluminescência em parte dos zircões detríticos da amostra JG-02, com datações entre 622±10 a 629±11 Ma, conferem à população 2

Figura	15 -	Histograma	das	idades	U-Pb	dos	zircões	concordar	ntes da	a amostra	JG-
03											32

Figura 16 - Mapa de unidades geológicas da região da Bacia do Rio Piratini......33

LISTA DE ABREVIATURAS E SIGLAS

- BP Batólito Pelotas
- BRP Bacia hidrográfica do Rio Piratini
- CL catodoluminescência
- ESRG Escudo Sul-rio-grandense
- LA-ICP-MS Laser Ablation Inductively Coupled Plasma Mass Spectrometry
- Ma Milhões de anos
- Nd Neodímio
- Shrimp Sensitive High Resolution Ion Micro Probe
- SHRIMP Sensitive High Resolution Ion Microprobe
- Sr Estrôncio
- SW Sudoeste
- Th Tório
- TIMS Thermal Ionization Mass Spectrometer
- U Urânio
- Zr Zircônio

SUMÁRIO

1.	INTRODUÇÃO	.11
2.	ÁREA DE ESTUDO E CONTEXTO GEOLÓGICO	12
2.1	CONTEXTO GEOLÓGICO	13
2.1	1 Cinturão Dom Feliciano	13
2.1	.2 Batólito Pelotas	15
2.1	.3 Bacia hidrográfica do Rio Piratini	.17
3.	CONCEITOS GERAIS E REVISÃO DA LITERATURA	18
4.	METODOLOGIA	21
5.	RESULTADOS	27
6.	DISCUSSÃO E CONSIDERAÇÕES FINAIS	.32
RE	FERÊNCIAS	35
AP	ÊNDICES	.38

1. INTRODUÇÃO

Sedimentos detríticos percorrem uma longa trajetória desde a sua origem até a deposição e soterramento final, sendo submetidos a processos químicos e físicos que controlam e modificam sua composição. Estudos de proveniência sedimentar desempenham um papel fundamental na análise de sucessões sedimentares siliciclásticas, permitindo a reconstrução dos parâmetros tectônicos, paleogeográficos e paleoclimáticos de uma porção da crosta terrestre ao longo da evolução de uma bacia sedimentar (e.g., BASU, 1985). Para a compreensão da inter-relação entre os processos naturais que levam a geração e evolução de sedimentos detríticos e para a quantificação da influência de cada processo no produto final são necessários estudos em ambientes atuais onde as diversas variáveis podem ser controladas e cada processo pode ser avaliado (e.g., VALLONI, 1985; von EYNATTEN et al., 2015). Dickinson (1985) e outros autores sugerem que as idades U-Pb de zircões detríticos de sedimentos indicam a idade das rochas da área fonte e contribuem para a compreensão dos processos que ocorrem na superfície terrestre.

O Batólito Pelotas está inserido no Cinturão Dom Feliciano e constitui um complexo plutônico multi-intrusivo de 400 x 120 km, composto por um conjunto de suítes graníticas de idade ediacarana geradas durante e após o clímax da orogenia Dom Feliciano durante a aglutinação do supercontinente Gondwana (e.g., PHILIPP, R. P., PIMENTEL, M.M., CHEMALE JR., F., 2016). A colocação das diferentes intrusões ocorreu entre 650 e 550 Ma, mas apenas uma pequena proporção dos plútons graníticos foi precisamente datada. Os dados isotópicos disponíveis de Sr e Nd sugerem a origem por retrabalhamento de crosta continental paleoproterozoica (PHILIPP et al. 2003, 2007). Na bacia hidrográfica do Rio Piratini (BRP) ocorrem rochas predominantemente associadas ao Batólito Pelotas. O estudo dos sedimentos detríticos nessa bacia pode contribuir com a compreensão da evolução geológica do batólito, além do entendimento das relações de proveniência em um contexto específico.

No presente trabalho, a datação de zircões detríticos da BRP pelo método U-Pb utilizando LA-ICPMS (*Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry*) é apresentada.

2. ÁREA DE ESTUDO E CONTEXTO GEOLÓGICO

A área de estudo localiza-se a sudeste do estado do Rio Grande do Sul, a aproximadamente 300 km da capital Porto Alegre, seguindo pela BR- 116, até o município de Pedro Osório, que está geograficamente inserido na BRP (Figura 1). A BRP drena uma área de aproximadamente 5.700 km² e seu substrato é composto essencialmente por rochas graníticas do Cinturão Dom Feliciano (CHEMALE, 2000).

Figura 1 - Mapa de localização da área em estudo, com principais rodovias e indicação do arroio Basílio e Rio Piratini.

Fonte: Autora, Modificado de CPRM.

A BRP está inserida na região morfológica Planalto Sul-rio-grandense, abrangendo ainda a Planície Costeira e drena essencialmente terrenos cristalinos (RAMGRAB e WILDNER, 1999). O Rio Piratini tem suas nascentes na Serra das Asperezas e, após sua confluência com o Arroio Solidão, desenvolve um curso de noroeste para sudeste, recebendo o Arroio Basílio, seu principal afluente próximo a cidade de Pedro Osório. À jusante dessa confluência, o Rio Piratini drena os terrenos sedimentares da Planície Costeira, desenvolvendo ampla planície aluvial (RAMGRAB e WILDNER, 1999).

2.1 CONTEXTO GEOLÓGICO

A área de estudo está inserida no Escudo Sul-rio-grandense (ESRG), que ocorre na porção centro-sul do Rio Grande do Sul. O ESRG é composto por uma associação de rochas formadas ou deformadas nas orogenias Transamazônica, no Paleoproterozoico (2,26 – 2,0 Ga), e Brasiliana, no Neoproterozoico (900 – 535 Ma; HARTMANN; CHEMALE Jr. e PHILIPP, 2007; PHILIPP, R. P., PIMENTEL, M.M., CHEMALE JR., F., 2016). O ESRG é composto por terrenos metamórficos de médio a alto grau que constituem as áreas de embasamento paleoproterozoico, intercalados com associações de rochas que marcam a evolução de uma zona de convergência de placas durante o Neoproterozoico, sendo o limite entre estas duas unidades definido por zonas de cisalhamento dúcteis em escala continental, as quais foram responsáveis pela segmentação das unidades pré-cambrianas e por sua configuração como faixas alongadas (na direção NE-SW), que passaram a constituir os Cinturões Vila Nova, Tijucas e Dom Feliciano (HARTMANN; CHEMALE Jr. e PHILIPP, 2007).

2.1.1 Cinturão Dom Feliciano

O Cinturão Dom Feliciano é um segmento da Província Mantiqueira, formado durante uma longa evolução de 450 Ma, começando com a abertura do Oceano Charrua na porção sudoeste do Gondwana, entre 950 Ma e 900 Ma (PHILIPP, R. P., PIMENTEL, M.M., CHEMALE JR., F., 2016). O fechamento do oceano Charrua e a colisão dos arcos magmáticos ocorreram entre 770 e 680 Ma, seguido pelo fechamento do Oceano Adamastor e a colisão entre a microplaca Nico Perez/Cráton Rio de La Plata e o cráton Kalahari no fim do Neoproterozoico (PHILIPP, R. P., PIMENTEL, M.M., CHEMALE JR., F., 2016).

Na figura 2, são representadas no mapa de Philipp; Pimentel; Chemale Jr. (2016), as relações entre as unidades do Cráton do Rio de La Plata, a microplaca Nico

Perez e o Cinturão Dom Feliciano, incluindo as relações temporais entre as unidades litoestratigráficas/ geotectônicas e tempo (apresentando a geocronologia U-Pb e Pb-Pb), geoquímica e principais ciclos orogênicos.

Figura 2 - Mapa de relações temporais entre as unidades litoestratigráficas e geotectônicas da área que compreende o Cinturão Dom Feliciano, A numeração de 1 a 10 representa as seguintes zonas de cisalhamento dúcteis: 1 – Itajai-Perimbó, 2 – Major Gercino, 3 – Caçapava do Sul, 4 – Dorsal de Canguçu, 5 – Passo do Marinheiro, 6 – Ibaré, 7 – Sarandí del Yí, 8 – Sierra Ballena, 9 – Cerro Amaro, 10 – Arroio Grande.

Fonte: modificado de Philipp, R.P, Pimentel, M.M., Chemale Jr., F., 2016.

Dados geocronológicos, sugeridos anteriormente por Philipp; Pimentel; Chemale Jr. (2016), indicam três eventos orogênicos neoproterozoicos principais:

- 1. Fase de acúmulo crustais com magmatismo juvenil, entre 890 e 860 Ma;
- 2. Magmatismo arco continental e acresção entre 770 e 680 Ma;

 Metamorfismo colisional entre 650 e 620 Ma e uma fase magmática principal entre 650 e 550 Ma, com intensa anatexia crustal promovida pela injeção de magmas mantélicos.

Com o grande espessamento crustal, a partição da deformação no cinturão controla a sua evolução final com a passagem para uma tectônica de escape, responsável pela nucleação de zonas de cisalhamento transcorrentes de escala crustal (PHILIPP, R. P., PIMENTEL, M.M., CHEMALE JR., F., 2016). Essas estruturas são profundas e promoveram a geração e a ascensão de magmas máficos, que, associados ao elevado gradiente térmico regional, induziram um extenso evento de retrabalhamento crustal, responsável pela formação do Batólito Pelotas (PHILIPP, R. P., PIMENTEL, M.M., CHEMALE JR., F., 2016). Em algumas áreas também é reconhecido um evento regional metamórfico juvenil (570 – 560 Ma), associado com zonas de cisalhamento transcorrente (PHILIPP, R. P., PIMENTEL, M.M., CHEMALE JR., F., 2016).

2.1.2 Batólito Pelotas

O Batólito Pelotas possui mais de 130 corpos geológicos expostos na unidade, ocupando uma área de aproximadamente 37.000 Km² (HARTMANN; CHEMALE Jr. e PHILIPP, 2007), compreendendo um complexo plutônico multi-intrusivo de 400 x 120 km, composto por um conjunto de suítes graníticas (ediacaranas - 630 e 542 Ma), geradas durante e após o clímax da orogenia Dom Feliciano (PHILIPP, R. P., PIMENTEL, M.M., CHEMALE JR., F., 2016). As suítes graníticas são alongadas na direção N50 – 70E, e sua geração e colocação foram controladas por zonas de cisalhamento dúctil de alto ângulo (PHILIPP, R. P., PIMENTEL, M.M., CHEMALE JR., F., 2016), formando um complexo granítico-gnáissico e sete suítes (seis graníticas - Suíte Intrusiva Pinheiro Machado, Suíte Intrusiva Erval, Suíte Intrusiva Viamão, Suíte Granítica Dom Feliciano, Suíte Intrusiva Encruzilhada do Sul e Suíte Granítica Cordilheira - e uma sienítica) (HARTMANN; CHEMALE Jr. e PHILIPP, 2007). A figura 3 detalha a geotectônica do Batólito Pelotas.

Figura 3 - Mapa geotectônico simplificado do Batólito Pelotas.

Fonte: modificado de Philipp, R.P, Pimentel, M.M., Chemale Jr., F., 2016.

A colocação das diferentes intrusões ocorreu entre 650 e 550 Ma, mas apenas uma pequena proporção dos plútons de granito foi precisamente datada. O início do período transpressivo no Batólito Pelotas corresponde à primeira intrusão granítica, o Granito Quitéria, ocorrida durante o pico de deformação, com idades SHRIMP U-Pb de 658 ±4 Ma (FRANTZ et al., 2003). Os dados isotópicos disponíveis de Sr e Nd sugerem retrabalho da crosta continental paleoproterozoica (PHILIPP et al. 2003). Idades U-Pb La-ICP-MS em zircões no Complexo Várzea do Capivarita indicam cristalização de 620 ±6 Ma, enquanto grãos de zircão metamórfico de gnaisses migmatíticos têm idade de 619 ± Ma, indicando que o magmatismo granítico da região Quitéria representa os estágios iniciais da formação do Batólito Pelotas (PHILIPP, R. P., PIMENTEL, M.M., CHEMALE JR., F., 2016). O pico colisional foi controlado por compressão e novos episódios de cisalhamento, ao longo da Dorsal da Zona de Cisalhamento Canguçu, evento que culminou na formação dos granitos do Complexo Pinheiro machado e Suíte Viamão (PHILIPP, R. P., PIMENTEL, M.M., CHEMALE JR., F., 2016), que apresentam idades U-Pb e Pb-Pb TIMS em zircões entre 630 e 620 Ma (PHILIPP et al. 2003). A porção norte do Batólito Pelotas é dominada pelo volumoso leucogranito pós-colisional da Suíte Dom Feliciano, colocado no fim do Neoproterozoico, o granito Ponta grossa tem idade U-P TIMS em zircões de 600 ±9 Ma e o leucogranito pegmatoide que corta o Gnaisse Porto Alegre cristalizou em 585 ±6 Ma com herança em 739 ±45 Ma (PHILIPP, R. P., PIMENTEL, M.M., CHEMALE JR., F., 2016).

Durante a ascensão e a colocação, as suítes graníticas capturaram xenólitos de rochas nativas com dimensões de até vários quilômetros de diâmetro (PHILIPP, R. P., PIMENTEL, M.M., CHEMALE JR., F., 2016). Embasamentos *inliers* são representados por rochas metamórficas de baixo a alto grau, com ocorrência na porção norte do Batólito Pelotas e como xenólitos de dimensões centimétricas e decamétricas nas áreas central e sul (PHILIPP, R. P., PIMENTEL, M.M., CHEMALE JR., F., 2016).

2.1.3 Bacia hidrográfica do Rio Piratini

As unidades geológicas drenadas pela BRP incluem predominantemente rochas ígneas, meta-ígneas e sedimentares do Cinturão Dom Feliciano (Neoproterozoico) (PHILIPP e MACHADO, 2001), Bacia do Paraná (Período Permiano) e subordinadamente sedimentos da Planície Costeira do Rio Grande do Sul (Período Quaternário) (RANGRAB e WILDNER, 1999). As unidades ígneas e meta-ígneas incluem: Complexo Pinheiro Machado, Granitos Serra do Erval, Cerro Grande, Capão do Leão, Gabro Passo da Fabiana e Riolito Asperezas (RANGRAB e WILDNER, 1999). Essas unidades perfazem mais de 90% da área da bacia. O Complexo Pinheiro Machado é composto por granodioritos a monzogranitos e

subordinadamente tonalitos, dioritos e quartzo-dioritos, que possuem texturas ígneas preservadas e apresentam-se deformados próximos às principais zonas de cisalhamento (PHILIPP e MACHADO, 2001). No Complexo Pinheiro Machado é comum a ocorrência de xenólitos e septos de rochas do embasamento, constituídas de gnaisses e migmatitos (PHILIPP e MACHADO, 2001). Os granitos são predominantemente monzo- e sienogranitos e contém enclaves de rochas supracrustais (PHILIPP e MACHADO, 2002). O gabro Passo da Fabiana e o Riolito Asperezas ocorrem de forma subordinada (RANGRAB e WILDNER, 1999). Além destas unidades geológicas, também ocorrem a sequência vulcano-sedimentar Cerro Chato e a Formação Rio Bonito (RANGRAB e WILDNER, 1999). Os depósitos quaternários consistem em sistemas deposicionais de planície lagunar e aluvial (RANGRAB e WILDNER, 1999).

3. CONCEITOS GERAIS E REVISÃO DA LITERATURA

3.1 Isótopos U-Pb

Na natureza existem átomos cujos núcleos são estáveis – nesses átomos as forças de atração e repulsão das partículas que os compõem (prótons, nêutrons e elétrons) se igualam fazendo com que eles permaneçam estáveis e não sofram alterações ao longo do tempo – e átomos cujos núcleos são instáveis (FAURE, 1986). O núcleo de átomos instáveis sofre transformações espontâneas que envolvem a emissão de partículas e emissão de energia, sendo que ao emitir uma partícula, um átomo se transforma em outro (FAURE, 1986). A emissão de partículas subatômicas ocorre a uma taxa constante ao longo do tempo geológico, sem interferência de fatores externos ao núcleo do átomo, essa taxa é conhecida como constante de decaimento e cada isótopo possui uma constante de decaimento própria (FAURE, 1986).

Elementos que possuem o mesmo número atômico (número de prótons), mas diferente número de massa, e consequentemente diferente número de nêutrons, são conhecidos como isótopos. Os isótopos podem ser utilizados para investigar a natureza e a composição da fonte dos magmas, a extensão do envolvimento mantélico, o nível (inferior ou superior) e a idade da porção da crosta continental estudada e o ambiente geotectônico (FAURE, 1986).

A meia vida de um determinado isótopo-pai é o tempo decorrido para que a metade da massa do elemento-pai tenha decaído para o elemento-filho e é um conceito muito importante na datação radiométrica (FAURE, 1986).

O urânio possui três isótopos: ²³⁸U, ²³⁵U, ²³⁴U, todos os três radioativos. O isótopo ²³⁴U é um isótopo-filho, intermediário na série de decaimento do ²³⁸U. O Pb possui quatro isótopos naturais: ²⁰⁸Pb, ²⁰⁷Pb, ²⁰6Pb e ²⁰⁴Pb. Os três primeiros são produtos do decaimento do U e Th. Apenas o ²⁰⁴Pb não é radiogênico e é tratado como o isótopo estável de referência, ou seja, sua concentração não muda ao longo do tempo. (FAURE, 1986).

3.2 Princípios do método de análise geocronológica u-pb

Os métodos geocronológicos são importantes na determinação de idades de rochas e na investigação do registro dos eventos geológicos ocorridos na Terra.O método U-Pb ocorre através do decaimento dos isótopos radioativos ²³⁵U e ²³⁸U para os respectivos isótopos radiogênicos ²⁰⁷Pb e ²⁰⁶Pb (²³⁸U □ ²⁰⁶Pb = 4,47 Ga; ²³⁵U □ ²⁰⁷Pb = 704 Ma) (FAURE, 1986). Em função dos diferentes valores de meia-vida, o decaimento de ²³⁵U e ²³⁸U para os isótopos radiogênicos ²⁰⁷Pb e ²⁰⁶Pb e ²⁰⁶Pb e ²⁰⁶Pb ocorre em taxas diferentes.

A utilização do sistema U-Th/Pb como uma ferramenta de datação radiométrica em minerais é baseada na premissa de que ocorre uma separação dos elementos U e Th do Pb no momento da cristalização de determinados minerais a partir de um magma. Essa separação ocorre devido às diferenças de raio iônico e de cargas existentes entre o U-Th e o Pb. Essa diferença faz com que o urânio e o tório entrem na estrutura do mineral e o chumbo seja excluído (FAURE, 1986).

Dessa forma, todo o chumbo que ocorre no mineral ao momento da análise é de origem radiogênica, permitindo calcular o tempo decorrido da formação daquele mineral até o presente, enquanto o mineral permanecer como um sistema fechado (não perder nem ganhar elementos). O mineral zircão é um dos mais utilizados para datação U-Th/Pb, pois permite a substituição do zircônio por urânio e tório (raios e cargas iônicas similares) na estrutura cristalina e exclui o chumbo ao momento de sua cristalização (FAURE, 1986).

As rochas de composições félsicas tendem a possuir altas concentrações de U, Zr, Th e Pb na crosta em relação ao manto, logo tem-se maior facilidade na datação de rochas através do zircão. (HANCHAR e HOSKIN, 2003). A morfologia dos zircões pode indicar a composição do magma, temperatura e taxa de cristalização (PUPIN, 1980).

Atualmente existem diversos tipos de espectrômetros de massas capazes de medir as razões isotópicas apropriadas para o método U/Pb. Destacam-se o espectrômetro de massa de ionização termal (TIMS), a sonda iônica sensitiva de alta resolução em massa (SHRIMP) e a sonda a laser com espectrômetro de massa a plasma acoplado indutivamente (LA-ICP-MS) (GUADAGNIN, 2011).

A sonda a laser com espectrômetro de massa a plasma acoplado indutivamente (LA-ICP-MS – laser ablation inductively coupled plasma mass spectrometer) foi desenvolvida na década de 1980, e logo se tornou uma ferramenta analítica muito utilizada para a determinação de elementos traço em amostras geológicas. Então foi percebido que as variações de Pb radiogênico e as razões isotópicas de Pb/U poderiam ser resolvidas pela técnica de ICPMS, e que quando acoplado a um canhão laser, o ICPMS poderia ser usado como uma ferramenta de datação similar à sonda iônica.

A amostragem feita pelo laser (*light amplification by stimulated emission of radiation*) para o ICPMS é baseada em interações de fótons de alta intensidade – radiação laser – com o material sólido, resultando em vaporização e abrasão, que envolve a ejeção de átomos, íons, moléculas, partículas sólidas e fundidas (DARKE e TYSON, apud KOSLER e SYLVESTER, 2003). O sistema da sonda a laser combina o feixe de laser a um sistema ótico que converge o feixe na superfície da amostra dentro de uma célula de abrasão. Os parâmetros do laser são completamente controlados pelo operador, e são: comprimento de onda; perfil do feixe de laser; densidade de energia do laser, energia por pulso e tamanho do ponto; taxa de repetição de laser; foco do feixe de laser; gás ambiente. (KOSLER e SYLVESTER, 2003).

3.3 Análise U-Pb em zircões

A primeira demonstração do potencial do LA-ICP-MS para realizar determinações in situ de ²⁰⁷Pb/²⁰⁶Pb em zircões, com precisão suficiente para ser uma ferramenta útil para datação de zircões proterozóicos, e mais antigos, ocorreu no início de 1900 (FRYER et al., 1993). O zircão é um mineral refratário que cristaliza a partir de um magma, em temperaturas superiores a 800°C, podendo apresentar zonação de crescimento (FAURE,1986). Conhecido por incorporar uma variedade de elementos menores e traços, o zircão tem a capacidade de reter química substancial e informações isotópicas levando a sua utilização em uma ampla gama de investigações geoquímicas, incluindo estudos sobre a evolução da crosta terrestre e o manto (HANCAR E MILLER, 1993). Uma vez cristalizado, a tendência do zircão é permanecer inerte aos processos de baixa temperatura. Dessa forma ele pode soerguer juntamente com a rocha que o hospeda, resistir aos processos de intemperismo, transporte, deposição e diagênese (FAURE,1986). Com essas propriedades o zircão se torna um excelente mineral para estudos da evolução geológica de determinadas regiões.

4. METODOLOGIA

A realização deste trabalho foi dividida em etapas, que se iniciaram na revisão bibliográfica, seguida do trabalho de campo, preparação das amostras, resultados da geocronologia U-Pb em zircão detritico e processamento e interpretação dos dados.

As técnicas e métodos utilizados neste trabalho visam atender à sua proposta de forma a dar respostas aos objetivos descritos anteriormente. Portanto foi necessário compreender os princípios que envolvem essas técnicas, os métodos, interpretar os dados, buscar informações que já foram apresentados na literatura e compará-los com os resultados obtidos nas análises, para que assim as informações sejam discutidas.

4.1 Coleta das amostras

Nesta etapa foram coletados sedimentos em três pontos da BRP, nos municípios de Pedro Osório, Cerrito e Piratini. Os sedimentos da amostra JG - 01 foram coletados às margens do rio à jusante da confluência entre o Rio Piratini e o Arroio Basílio, a amostra JG - 02 foi coletada em bancos de areia do Rio Piratini e os sedimentos da amostra JG - 03 às margens do Arroio Basílio (figura 4).

Figura 4 - Mapa de localização dos pontos de coleta de amostras.

Fonte: Autora, modificado de Google Earth.

As amostras foram coletadas com o auxílio de uma pá e em seguida armazenadas em sacos plásticos devidamente etiquetados. Foram coletados aproximadamente 5 kg de sedimento em cada ponto (figura 5).

Figura 5 - Pontos de coleta de sedimentos: A) ponto JG-01; B) ponto JG-02; C) ponto JG-03).

Fonte: Autora.

4.2 Seleção dos zircões

Os sedimentos foram inicialmente separados por peneiramento, com peneiras de abertura de 250 mm/µm (figura 6), esse procedimento foi realizado com os sedimentos das três amostras. Após separados os sedimentos mais grossos foram descartados e os mais finos separados em sacos identificados.

Figura 6 - Peneira 250 mm/µm utilizada no processo de peneiramento.

Fonte: Autora.

Após o peneiramento os sedimentos foram submetidos ao bateamento (figura 7), onde os minerais mais densos são separados com a realização de movimentos

semi-circulares na bateia que está imersa na água, essa agitação, juntamente com a diferença de densidade entre os sedimentos, faz com que os grãos mais densos se concentrem no fundo da bateia, e os sedimentos menos densos vão para as bordas. Os sedimentos mais densos foram reservados e os sedimentos com menor densidade foram despejados na bacia. Foi utilizada nesse processo uma bateia de 44 cm de diâmetro. Após separados, os grãos de maior densidade foram levados à estufa a uma temperatura de aproximadamente 46°C para secagem por aproximadamente 24 horas.

Figura 7 - Bateia com sedimentos densos decantados.

Fonte: Autora.

No laboratório de microscopia da UNIPAMPA foi realizado, nas amostras com os sedimentos densos separados pelo processo anterior, o bateamento com a micro bateia com álcool (figura 8). Neste processo foi retirado o máximo possível de minerais leves que podem ter passado pelo processo de bateia. Na placa de petri os minerais ficam submersos em álcool e com movimentos semi circulares os minerais mais densos se deslocam para a margem e os menos densos para o centro, podendo assim serem retirados com o auxílio de uma pipeta de bico descartável. Após esses processos os concentrados foram levados novamente para a estufa a uma temperatura de aproximadamente 50°C por 24 horas.

Figura 8 - Pipeta com bico descartável e placas de petri com sedimentos já parcialmente separados.

Fonte: Autora.

No laboratório de geoquímica isotópica da Universidade Federal de Ouro Preto -UFOP, o material obtido foi concentrado usando uma panela, e seco entre 50 e 70 graus Celsius. A fração magnética foi separada usando um ímã de neodímio, a fração não magnética foi separada em uma porção com densidade superior a 3,31 e outra com densidade inferior a 3,31, utilizando um funil de decantação e diiodometano. O material mais denso foi submetido à máquina separadora magnética Frantz para a segregação em porções diamagnéticas e paramagnéticas. O material diamagnético foi montado em resina acrílica e polido com alumina poder (figura 9). Figura 9 - Imagem dos zircões selecionados na amostra JG-01, com numeração para controle da análise.

Fonte: Autora

4.3 Geocronologia U-Pb LA-ICP-MS

As idades U-Pb foram obtidas usando LA-ICP-MS, no Laboratório de Geoquímica Isotópica da Universidade Federal de Ouro Preto - UFOP. As imagens de catodoluminescência (CL) foram obtidas em um microscópio eletrônico de varredura JEOL 6510. As análises de U-Pb foram obtidas usando um Thermo Finnigan Element 2, acoplado a um sistema a laser Photon-Machines 193nm. Os dados foram obtidos usando o modo de pico de salto com medição de fundo (branco) por 20 segundos, ablação de zircão por 20 segundos e tamanho do ponto de 30 micrômetros. A cada 10 zircões da amostra é feita uma análise do zircão padrão, que foi o GJ-1. A redução dos dados foi realizada no software GLITTER. A correção do chumbo em comum foi aplicada usando um programa de planilha Ms Excel (GERDES E ZEH, 2006), baseado no modelo de composição Pb de Stacey e Kramers (1975). Foi utilizado Isoplot (LUDWIN, 2001) e os erros foram apresentados em 2 sigma.

5. **RESULTADOS**

Foram analisados 413 grãos de zircão detríticos, dos quais 236 são concordantes (mais do que 95%).

A amostra JG-01 foi coletada à margem do Rio Piratini, à jusante da sua confluência com o Arroio Basílio. Nesta amostra foram analisados 140 zircões, dos quais 97 foram utilizados e 43 descartados (por apresentarem concordância menor que 95%).

A população dos zircões da amostra JG-01 é heterogênea, mas em sua maior parte constituída por cristais idiomórficos, prismáticos alongados, e arredondados. A estrutura interna dos zircões em sua maioria apresentam nucleações marcantes e também alongadas, como pode ser observado em alguns dos zircões concordantes da amostra JG-01 na figura 10. Dos 97 zircões concordantes foram identificadas 3 populações: (1) entre 593 Ma e 620 Ma (22,68%); (2) entre 620 Ma e 669 Ma (74,23%) e (3) entre 757 Ma e 781 Ma (3,09%).

Figura 10 - Imagem de catodoluminescência de parte dos zircões detríticos da amostra JG-01 com datações entre 620±10 e 633±10 Ma pertencentes à população 2.

Fonte: Autora.

A figura 11 apresenta os resultados a partir do diagrama concórdia e do histograma. O histograma de idades e probabilidades relativas, mostra a população de maior frequência em torno de 633 Ma, onde a linha vermelha indica a probabilidade relativa. Populações menos frequentes que variam de aproximadamente 750 Ma a 780 Ma são mostrados nas análises das idades dos zircões e são exibidos no histograma. No diagrama concórdia são apresentados os resultados das idades de todos os zircões concordantes da amostra JG-01.

Figura 11 – Diagrama Concórdia e histograma das idades U-Pb dos zircões concordantes da amostra JG-01.

Fonte: Autora.

A amostra JG-02 foi coletada à margem do Rio Piratini, nela foram analisados 140 zircões, dos quais 57 foram utilizados e 83 foram descartados, por apresentarem concordância menor que 95%.

A população de zircões desta amostra é heterogênea, com grãos idiomórficos em sua maioria curtos e alguns alongados. A estrutura interna de uma parte dos zircões concordantes apresentam núcleos herdados ovóides, tipicamente detríticos. A figura 12 mostra a imagem de catodoluminescência de alguns dos grãos analisados com suas respectivas idades. Os pontos em vermelho são as indicações de onde foram realizadas as análises com *laser*. Figura 12 – Imagem de Catodoluminescência em parte dos zircões detríticos da amostra JG-02, com datações entre 622±10 a 629±11 Ma, conferem à população 2.

Fonte: Autora.

Dos 57 zircões concordantes da amostra JG-02, foram identificadas 3 populações: (1) entre 611 Ma e 619 Ma (8,77%); (2) entre 621 Ma e 655 Ma (77,19%) e (3) entre 734 Ma e 901 Ma (14,03%). A figura 13 apresenta o histograma de idades e probabilidades relativas e o digrama concórdia. No histograma pode ser observada a maior população de idade em aproximadamente 625 Ma. A linha vermelha indica a probabilidade relativa. O histograma apresenta também outras três populações menos frequentes com idades de: 750 Ma; 800 Ma e 900 Ma. O diagrama concórdia apresenta o resultado da análise de todos os zircões concordantes da amostra JG-02.

Figura 13 – Diagrama Concórdia e histograma das idades U-Pb dos zircões concordantes da amostra JG-02.

Fonte: Autora.

Na amostra JG-03, coleta à margem do arroio Basílio, foram analisados 133 zircões, dos quais 82 foram utilizados e 51 descartados por apresentarem concordância menor que 95%. A população de zircões concordantes da amostra é heterogênea, constituída por grãos subarredondados a arredondados de baixa esfericidade, apresentando-se curtos em sua maioria e alongados em uma porção da amostra (figura 14).

Figura 14 - Imagem de catodoluminescência de parte dos zircões detríticos da amostra JG-03, com datações entre 640±12 e 654±12 Ma, conferem à população 2. Os pontos vermelhos indicam o local da análise.

Fonte: Autora.

Dos 82 zircões concordantes da amostra foram identificadas 3 populações: (1) entre 598 Ma e 620 Ma (23,17%); (2) entre 622 Ma e 661 Ma (70,73%) e (3) entre 743 Ma e 806 Ma (6,10%). O histograma de idades e probabilidades relativas da figura 15 tem maior frequência na idade em torno de 640 Ma, com o crescimento da probabilidade relativa iniciada em torno de 616 Ma, para os zircões concordantes. A linha vermelha indica a probabilidade relativa. A população 3, pode ser observada no histograma com frequências menores próximos a idade de 740 Ma, com um intervalo que vai até aproximadamente os 800 Ma. O diagrama concórdia mostra a coerência entre os dados, onde a maior concordância confere com as idades dos maiores picos do histograma e das idades encontradas na maior população de dados.

Figura 15 - Histograma das idades U-Pb dos zircões concordantes da amostra JG-03.

Fonte: Autora.

6. DISCUSSÃO E CONSIDERAÇÕES FINAIS

Os zircões concordantes obtidos neste estudo apresentaram como resultados as idades ²³⁸U/²⁰⁶Pb máxima e mínima de 593±10 Ma a 909±10 Ma, entre as três amostras. A população de maior frequência concordante representa em média 74% dos zircões coletados nas três amostras, com idades que variam de 620 Ma a 669 Ma. Os sedimentos da amostra JG-01 foram coletados à jusante da confluência entre as drenagens do Rio Piratini e Arroio Basílio e as idades dos seus zircões concordantes variam de 593 Ma a 781 Ma. O histograma revela uma maior frequência na população 2, com idades de aproximadamente 633 ±10 Ma. Os sedimentos da amostra JG-02 foram coletados à margem do Rio Piratini e apresentaram idades dos zircões concordantes mínima de 611 Ma e máxima de 909 Ma, com sua maior frequência de população com idades de aproximadamente 625 ±10 Ma. Os sedimentos da amostra JG-03 foram coletados à margem do Arroio Basílio e seus zircões concordantes têm idades que variam de 598 Ma a 806 Ma, com a população de maior frequência próxima a idade de 640 ±12 Ma. Os dados de idades U/Pb obtidos neste estudo são similares às idades das rochas compreendidas na área da BRP.

As idades dos zircões concordantes das amostras se aproximam às idades já datadas por outros autores, referentes às unidades inseridas na BRP (figura 16) seguintes: (I) Complexo Pinheiro Machado - granitos com idades Pb/Pb de 625 ± 4

Ma (PHILIPP, 2002) e rochas dioríticas de 618 \pm 7 Ma (LOUREIRO, 2015); (II) unidades do Capão do Leão - idades Pb/Pb em zircões de 583 \pm 3 Ma (PHILIPP *et a*l., 2002), que são interpretadas como a cristalização do magma; (III) granitos da zona de cisalhamento Serra do Erval - com idades que definem o período mínimo de atividade, variando de 605 Ma a 635 Ma (KNIJNIK *et al.*, 2018); (IV) granitos da Suíte Cerro Grande com idade de 585 Ma (LAUX *et al.*, 2018) e (V) riolitos do Cerro Chato com idades de 630.4 \pm 2.8 Ma (NOLL *et al.*, 2018).

Figura 16 – Mapa de unidades geológicas da região da Bacia do Rio Piratini.

Fonte: Autora, modificado de Ramgrab e Wildner (CPRM), 1999.

A realização deste trabalho possibilitou a separação das idades dos zircões concordantes em populações. Os resultados indicam que existem,

predominantemente, dois grupos de idades na área fonte, relacionados a evolução do supercontinente Gondwana no Neoproterozóico. As populações que mostraram-se em frequências mais altas estão compreendidas nos períodos Ediacarano e Criogeniano. A partir dos resultados obtidos foi possível a datação dos sedimentos e a indicação das rochas fonte. Os sedimentos apresentaram idades U/Pb coincidentes com as idades das rochas datadas em outros estudos, pertencentes à BRP.

REFERÊNCIAS

ÀLLEGRE, C. J.; SUTCLIFFE, C., 2008, Isotope Geology. Cambridge University Press, 512 pp.

BASU, A. (1985) Influence of Climate and Relief on Compositions of Sands Released at Source Areas. **Zuffa G.G. (eds) Provenance of Arenites. NATO ASI Series** (Series C: Mathematical and Physical Sciences), vol 148. Springer, Dordrecht.

CHEMALE JR., F. Evolução geológica do Escudo Sul-rio-grandense. **Geologia do Rio Grande do Sul**, p. 13-52, 2000.

DARKE, S. A.; TYSON, J. F., 1993. Interactions of laser radiation with solid materials and its significance to analytical spectrometry. **Journal of Analytical Atomic Spectrometry** 8, 145-209.

DICKINSON W.R. (1985) Interpreting Provenance Relations from Detrital Modes of Sandstones. In: Zuffa G.G. (eds) Provenance of Arenites. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol 148. Springer, Dordrecht

FAURE, G., 1986. **Principles of isotope geology.** John Wiley & Sons, Nova Iorque, 2 ed., 589 p.

FRANTZ, J. C., *et al.* Shrimp U-Pb zircon ages of granitoids from southernmost Brazil: constraints on the temporal evolution on the Dorsal do Canguçu transcurrent shear zone and the eastern Dom Feliciano Belt. In: **IV South Amer. Symp. Isotope Geol**. 2003.

FRYER B.J.; JACKSON, S.E.; LONGERICH, H. P., 1993. The application of laser ablation microprobe-inductively coupled plasm-mass spectrometry (LAM-ICP-MS) to in-situ (U)-Pb geochronology.

GERDES, A.; ZEH, A., 2006. Combined U-Pb and Hf isotope LA-(MC)-ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. **Earth Planet**.

GUADAGNIN, F., 2011. Técnicas analíticas aplicadas ao estudo da proveniência sedimentar de arenitos. Tese de Doutorado. INSTITUTO DE GEOCIÊNCIAS, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2011.

HANCHAR, J. M.; MILLER, C. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories. **Chemical Geology**, 110, 1-13. 1993.

HANCHAR, J. M.; HOSKIN, P. W. Zircon–Reviews in Mineralogy and Geochemistry, vol. 53. **Mineralogical society of America/geochemical society**, p. 500, 2003.

HARTMANN, L.A.; CHEMALE JR.; F. & PHILIPP, R.P. 2007. Evolução Geotectônica do Rio Grande do Sul no Pré-Cambriano. FRANTZ, J.C., ET AL. **50 anos de Geologia no Rio Grande do Sul**, Porto Alegre: Comunicação e Identidade, Porto Alegre, RS, Brasil, p.97-123.

KNIJNIK, D.; BITENCOURT, M.D.F.; NARDI, L.V.; PINTO, V.M.; FONTANA, E. 2012. Geochemical and structural characterization of the Cruzeiro do Sul Granodiorite: neoproterozoic postcollisional shoshonitic magmatism within transcurrent shear zone, Quitéria region, Southernmost Brazil. Geologia USP, Série Científica, 12: 17-38.

KOŠLER, J., FONNELAND, H., SYLVESTER, P., TUBRETT, M., PEDERSEN, R. B., 2002. U-Pb dating of detrital zircons for sediment provenance studies – a comparasion of laser ablation ICP-MS and SIMS techniques.

KOŠLER, J.; SYLVESTER, P., 2003. Present Trends and the Future of Zircon in Geochronology: Laser Ablation ICPMS. **Reviews in Mineralogy and Geochemistry**; 53 (1): 243–275. doi: https://doi.org/10.2113/0530243.

LAUX, J. H.; TAKEHARA, L.; STROPPER, J. L.; PROVENZANO, C. A.; SCHERER, L. B. O., 2018. **Revisão estratigráfica do Batólito Pelotas**. In: Congresso Brasileiro de Geologia, 49., 2018, Rio de Janeiro.

LOUREIRO, P.; KOESTER, E.; WEINBERG, R. F.; PORCHER, C. C.; PIMENTEL, M. M., KNIJNIK, D., 2015. Magmatic Evolution Of Pinheiro Machado Complex In Monte Bonito Region, Southern, Brazil. Florianópolis SC. **Books of Abstracts** p. 125.

LUDWIG, K., 2001. Isoplot/Ex, rev. 2.49. **A Geochronological Toolkit for Microsoft Excel.** Berkeley Geochronology Center, Special Publications n. 4.

PHILIPP, R. P.; PIMENTEL, M.M.; CHEMALE JR., F. Tectonic evolution of the Dom Feliciano Belt in southern Brazil: Geological relationships and U-Pb geochronology. **Brazilian Journal of Geology**, v. 46, p. 83-104, 2016.

PHILIPP, R.P.; MACHADO, R. 2002. Ocorrência e significado dos septos do embasamento encontrados nas suítes graníticas do Batólito Pelotas, RS, Brasil. Pesquisas em Geociências, v. 29 (1). 43-60.

PHILIPP R.P.; MACHADO, R. 2005. The Neoproterozoic to Cambrian granitic magmatism of Pelotas Batholith, Southern Brazil. **Journal of South American Earth Sciences**, 19:461-478.

PUPIN, J. P. Zircon and granite petrology. Contrib. Miner. 1980.

RAMGRAB, G. E. & WILDNER, W. (1999). Programa de Levantamentos Geológicos Básicos do Brasil. Folha SH.22- Y- C. CPRM. Porto Alegre, Estado do Rio Grande do Sul. Escala 1:250.000 - Brasília. SOLIANI Jr. E. 1986. Os dados geocronológicos do Escudo Sul-riograndense e suas implicações de ordem geotectônica. Instituto de Geociências, Universidade de São Paulo, São Paulo, Tese de Doutoramento, 425p.

STACEY, J.S.; KRAMERS, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. **Earth Planet**.

VALLONI, R., 1985. **Reading provenance from modern marine sands.** In: Zuffa, G.G. (Ed.), Provenance of Arenites, 148. D. Reidel, NATO Advanced Study Institute, Dordrecht, Netherlands, pp. 309–332

Von EYNATTEN, H.; TOLOSANA-DELGADO, R.; KARIUS, V.; BACHMANN, K.; CARACCIOLO, L., 2015. Sediment generation in humid Mediterranean setting: Grainsize and source-rock control on sediment geochemistry and mineralogy (Sila Massif, Calabria). **Sedimentary Geology**, 2015.

Resultados U-Pb JG S#1													
				Ratios c					Dat	es c			
Identifier	Th/U	207Pb/235U	2s (%)	206Pb/238U	2s (%)	Rho	207Pb/206Pb	2s	206Pb/23811	2s	207Ph/23511	2s	% conc d
			Data for W	etherill plo	ot c		2071 0/2001 0	abs	2001 0/2000	abs	2011 0/2330	abs	
1.sSMPABC007	0,586356	0,865707	3,572093	0,10153	2,092071	0,585671	668,6117	61,9755	623,3684	12,43037	633,2338	16,96095	98,41979
1.sSMPABC008	0,474831	1,064928	2,738089	0,102851	1,827018	0,66726	1071,037	40,97467	631,0971	10,9824	736,2496	14,43271	85,69542
1.sSMPABC009	0,280237	1,132928	2,941086	0,096645	1,99262	0,677512	1316,004	41,94443	594,715	11,31897	769,1481	15,97923	77,29999
1.sSMPABC010	0,369693	0,852997	2,546154	0,10187	1,698168	0,666954	629,6617	40,87151	625,3601	10,11882	626,2925	11,96436	99,82877
1.sSMPABC011	0,131915	0,882138	2,496797	0,103542	1,682297	0,673782	666,8485	39,50309	635,1334	10,17338	642,1365	11,94539	98,88679
1.sSMPABC012	0,02405	0,860572	2,479671	0,103212	1,672635	0,674539	620,5197	39,49802	633,2033	10,08562	630,4353	11,70612	100,4165
1.sSMPABC013	0,309288	0,868954	2,599197	0,094682	1,732655	0,666612	824,0954	40,43947	583,1707	9,658449	634,999	12,33819	91,81691
1.sSMPABC014	0,345064	0,906294	2,467285	0,105915	1,68242	0,681891	676,1769	38,5818	648,9781	10,38512	655,0855	11,97402	99,04469
1.sSMPABC015	0,131961	0,947676	2,581893	0,100839	1,707535	0,66135	873,4233	40,10789	619,3248	10,08104	676,8919	12,82953	91,47322
1.sSMPABC016	0,448985	1,012966	2,875855	0,091709	1,92556	0,669561	1199,668	42,11141	565,6381	10,42562	710,3712	14,79386	79,60518
1.sSMPABC017	0,378537	0,855527	2,498044	0,10207	1,686936	0,675303	631,8118	39,67826	626,5313	10,06978	627,6779	11,75586	99,79494
1.sSMPABC018	0,394518	0,946725	2,791311	0,097936	1,758152	0,629866	931,5764	44,49447	602,3018	10,10769	676,3956	13,87006	89,02412
1.sSMPABC019	0,245337	0,856291	2,531694	0,10196	1,629848	0,643778	636,0573	41,69207	625,8871	9,719215	628,0959	11,92092	99,62598
1.sSMPABC020	0,231357	0,88765	2,457018	0,105314	1,673004	0,680908	643,8114	38,67576	645,4759	10,27392	645,106	11,79313	100,0344
1.sSMPABC027	0,076395	1,111676	2,507218	0,124635	1,686747	0,672756	764,2701	39,09143	757,1859	12,04991	758,9804	13,48437	99,73773
1.sSMPABC028	0,227122	0,856338	2,537765	0,102361	1,688371	0,665298	627,7343	40,83081	628,2292	10,10438	628,1216	11,95003	99,9947
1.sSMPABC029	0,464071	0,901985	2,531262	0,098917	1,700322	0,671729	810,6297	39,22314	608,0594	9,864154	652,7879	12,25548	93,12623
1.sSMPABC030	0,304964	1,379898	4 ,563301	0,080777	3,606347	0,790294	2013,07	4 9,59383	500,7615	17,3816	880,3958	27,21492	56,86107
1.sSMPABC031	0,219725	0,927109	2,634631	0,106746	1,741449	0,660984	707,9323	42,04605	653,8196	10,82606	666,1124	12,9448	98,13142
1.sSMPABC032	0,032923	0,860941	2,466552	0,102651	1,6774	0,680059	633,1814	38,93637	629,9267	10,06451	630,6363	11,64653	99,86501
1.sSMPABC033	0,214181	0,889279	2,490596	0,103662	1,691288	0,67907	681,6127	39,05084	635,8352	10,23856	645,9821	11,96693	98,40658
1.sSMPABC034	0,022751	0,853101	2,510897	0,100218	1,694279	0,67477	665,0404	39,6895	615,6891	9,946709	626,3498	11,79851	98,2759
1.sSMPABC035	0,509969	0,875072	2,590301	0,102431	1,720094	0,664052	672,7284	41,4279	628,639	10,30078	638,3173	12,34218	98,46134

1.sSMPABC036	0,205952	1,163506	3,00559	0,093411	2,053521	0,683234	1432,678	41,8734	575,6794	11,30793	783,6017	16,53807	73,44516
1.sSMPABC037	0,952811	0,750016	3,232362	0,062317	2,374792	0,734693	1366,883	42,21811	389,7038	8,97757	568,2338	14,15577	68,5664
1.sSMPABC038	0,377286	0,991698	4 ,246049	0,099868	2,618256	0,616634	986,4973	68,02489	613,6359	15,32869	699,5862	21,68523	87,69216
1.sSMPABC039	0,523568	1,198162	3,020461	0,1014	2,007426	0,664609	1331,409	4 3,66601	622,6068	11,91308	799,7376	16,84779	77,82937
1.sSMPABC040	0,63821	0,969189	2,637997	0,105354	1,710376	0,648362	829,0454	4 1,88715	645,7095	10,50722	688,0457	13,26232	93,824
1.sSMPABC047	0,07948	0,889098	2,478149	0,104954	1,678749	0,67742	654,6736	39,10978	643,3737	10,27727	645,8848	11,90549	99,58837
1.sSMPABC048	0,113937	0,931343	2,503751	0,107286	1,623589	0,648462	706,8799	40,54187	656,9676	10,13899	668,3409	12,32711	98,27506
1.sSMPABC049	0,062613	0,894633	2,4922	0,104233	1,690357	0,678259	682,7085	39,10882	639,1672	10,28397	648,8556	12,01298	98,48414
1.sSMPABC050	0,220226	0,859391	2,567536	0,102751	1,67576	0,652672	627,1996	41,92566	630,5119	10,06356	629,7902	12,11439	100,0921
1.sSMPABC051	0,078206	0,897025	2,50061	0,104713	1,66348	0,66523	678,5864	39,89886	641,9719	10,1626	650,1366	12,07086	98,72135
1.sSMPABC052	0,032936	1,016126	3,037806	0,091669	2,053678	0,67604	1206,665	44, 08532	565,4016	11,11544	711,9639	15,6578	79,39385
1.sSMPABC053	0,256298	1,052224	2,791029	0,106105	1,755405	0,628945	983,7815	44,17605	650,0867	10,85362	729,9835	14,6276	89,03203
1.sSMPABC054	0,055193	0,895185	2,44971	0,105895	1,664875	0,679621	650,1582	38,58297	648,8614	10,27497	649,151	11,81084	99,93239
1.sSMPABC055	0,055304	0,866715	2,471634	0,103832	1,639028	0,663135	622,9302	39,90111	636,8291	9,936716	633,7822	11,71286	100,4581
1.sSMPABC056	0,142327	0,880473	2,572667	0,103682	1,680023	0,653028	659,9029	41,76513	635,9521	10,17209	641,2378	12,29814	99,15306
1.sSMPABC057	0,660976	0,987725	2,587256	0,09209	1,695837	0,655458	1141,515	38,85008	567,884	9,215832	697,5587	13,1316	81,38958
1.sSMPABC058	0,658409	0,972709	2,526778	0,103012	1,693866	0,670366	883,2688	38,77064	632,0333	10,19576	689,8589	12,7232	91,59527
1.sSMPABC059	0,337096	0,8546	2,525044	0,10208	1,687201	0,668187	629,2661	40,47519	626,5899	10,07226	627,1707	11,87669	99,885
1.sSMPABC060	1,13128	1,375822	4,702643	0,080167	3,751037	0,797644	2021,278	50,25983	497,1181	17,95322	878,655	28,02213	56,55921
1.sSMPABC067	0,288109	0,900676	2,522591	0,105564	1,688004	0,669155	669,9641	40,11703	646,9354	10,38841	652,0887	12,20385	99,18679
1.sSMPABC068	0,160584	0,871446	2,55591	0,10118	1,721616	0,673583	690,1158	40,29362	621,3176	10,19542	636,3522	12,15019	97,61515
1.sSMPABC069	0,26517	0,865841	2,747595	0,100959	1,745166	0,635161	680,9923	45,3331	620,0282	10,31455	633,3062	13,02194	97,88118
1.sSMPABC070	0,135627	0,876845	2,564626	0,103272	1,667313	0,650119	659,5548	41,77432	633,5543	10,05882	639,277	12,23238	99,08225
1.sSMPABC071	0,078296	0,856885	2,607012	0,083661	1,757317	0,674073	1049,217	38,81744	517,9353	8,742914	628,4208	12,28234	82,39934
1.sSMPABC072	0,249726	0,907513	2,708816	0,104413	1,753784	0,647435	709,4871	43,894	640,2191	10,68689	655,7349	13,16316	97,61107
1.sSMPABC073	0,17763	0,870782	2,514475	0,103482	1,683274	0,669433	640,2915	40,1713	634,7826	10,17393	635,9919	11,94716	99,78725
1.sSMPABC074	0,088055	0,925823	4,450745	0,107967	2,494877	0,560553	680,7261	78,73652	660,9295	15,67597	665,4348	21,94904	99,29962
1.sSMPABC075	0,943984	0,829163	2,625118	0,086654	1,758192	0,669757	910,6139	4 0,13744	535,7168	9,035502	613,1479	12,14799	87,35178
1.sSMPABC076	0,035277	0,887232	2,490143	0,104073	1,673721	0,672138	668,2339	39,4685	638,2321	10,16849	644,8811	11,95005	98,94626
1.sSMPABC077	0,482127	0,749542	2,551006	0,086854	1,682803	0,659663	694,3297	40,86547	536,9044	8,666212	567,9588	11,15133	94,51248
1.sSMPABC078	0,002687	0,932771	2,484184	0,109308	1,666819	0,670973	670,3099	39,41674	668,7296	10,5862	669,0914	12,23995	99,9224
1.sSMPABC079	0,316919	0,893857	2,875488	0,104243	1,747815	0,607833	680,6488	48,77803	639,2257	10,63476	648,4393	13,86679	98,55637
1.sSMPABC080	0,038114	1,157515	2,48103	0,128739	1,664075	0,670719	781,1191	38,67461	780,6697	12,235	780,7862	13,59947	99,95866
1.sSMPABC087	0,293988	1,01963	2,5435 44	0,10179	1,691581	0,665049	1004,206	38,55137	624,8915	10,07234	713,7275	13,11623	87,53098

1.sSMPABC088	0,82988	0,852325	2,966004	0,069735	2,101908	0,708667	1396,481	40,12488	434,5618	8,830127	625,9241	13,94487	69,41066
1.sSMPABC089	0,147256	0,88362	4,532859	0,104543	2,538506	0,560023	649,8189	80,63443	640,9787	15,49192	642,9362	21,81127	99,67276
1.sSMPABC090	0,406838	0,880253	2,525935	0,104283	1,670347	0,661279	646,9726	40,70404	639,4594	10,16656	641,1194	12,0718	99,71835
1.sSMPABC091	0,065061	1,35156	3,433797	0,097826	2,385826	0,694807	1627,852	45,91441	601,6552	13,70599	868,2325	20,23033	69,27535
1.sSMPABC092	0,098312	0,925498	2,579241	0,107797	1,755496	0,680625	683,3442	40,34984	659,9392	11,01056	665,2632	12,65944	99,17643
1.sSMPABC093	0,079694	0,877636	2,49732	0,095744	1,679774	0,672631	821,5831	38,58696	589,4166	9,459308	639,7049	11,91522	92,11752
1.sSMPABC094	0,175526	0,871163	2,5392	0,103782	1,678403	0,660997	634,997	41,01285	636,5368	10,17117	636,1985	12,06817	100,0305
1.sSMPABC095	0,034309	0,858258	2,506217	0,100479	1,681469	0,670919	672,3869	39,75533	617,214	9,894767	629,1712	11,81494	98,07742
1.sSMPABC096	0,368615	0,928518	2,489506	0,108898	1,673102	0,672062	668,5801	39,45987	666,344	10,59012	666,8545	12,23714	99,89998
1.sSMPABC097	0,331936	0,803181	2,505458	0,097265	1,667353	0,665488	599,6027	40,49181	598,3625	9,525419	598,6215	11,38842	99,93515
1.sSMPABC098	0,375943	0,864196	2,713279	0,102321	1,736321	0,639935	648,2285	44,77965	627,9951	10,38789	632,4109	12,84508	99,27933
1.sSMPABC099	0,235477	0,874336	2,89169	0,103552	1,798688	0,62202	647,5901	48,63431	635,1919	10,87878	637,9188	13,78179	99,54991
1.sSMPABC100	0,418495	0,914191	2,777709	0,096064	1,729887	0,622775	899,338	44, 8268	591,301	9,771488	659,2831	13,55244	89,66712
1.sSMPABC107	0,08068	0,853862	2,530721	0,10121	1,689924	0,667764	645,8438	40,4752	621,4934	10,0103	626,7668	11,89797	99,13641
1.sSMPABC108	0,27729	0,875875	2,541704	0,103292	1,66699	0,655855	656,7674	41,15049	633,6713	10,05864	638,7525	12,11521	99,18195
1.sSMPABC109	0,634896	0,971224	2,498722	0,100729	1,669648	0,668201	926,2984	38,18368	618,6799	9,847404	689,0945	12,57125	89,75946
1.sSMPABC110	0,05459	0,876277	2,502018	0,102721	1,656759	0,662169	669,6182	40,1258	630,3364	9,946727	638,9699	11,92786	98,62636
1.sSMPABC111	0,274875	1,159041	2,55624	0,128869	1,709003	0,668561	781,7636	39,94737	781,4129	12,57692	781,5039	14,0232	99,96192
1.sSMPABC112	0,520148	0,856597	2,745954	0,101049	1,727814	0,629222	656,1093	45,7779	620,5557	10,22019	628,2637	12,93877	98,75092
1.sSMPABC113	0,086266	0,858617	2,543425	0,102591	1,678376	0,659888	628,6201	41,17815	629,5755	10,06503	629,3675	11,9941	100,0106
1.sSMPABC114	0,14666	0,859648	2,700975	0,10183	1,717014	0,635702	647,2179	44,78744	625,1258	10,22755	629,9309	12,75003	99,21486
1.sSMPABC115	0,620546	0,890036	2,853392	0,103052	1,690305	0,592384	696,0315	48,98574	632,2673	10,1779	646,3886	13,72816	97,79282
1.sSMPABC116	1,1993	0,806642	3,690366	0,096444	1,951422	0,528788	627,1996	67,50742	593,538	11,06378	600,5683	16,85963	98,80793
1.sSMPABC117	0,109308	0,975369	2,502054	0,108547	1,660057	0,663478	779,8295	39,35148	664,3068	10,47696	691,2271	12,61549	96,08203
1.sSMPABC118	0,029407	0,869626	2,447101	0,102821	1,657764	0,67744	651,2004	38,64106	630,9216	9,961572	635,3644	11,61689	99,27825
1.sSMPABC119	0,249624	0,926415	2,508721	0,098116	1,673299	0,666993	883,1163	38,65187	603,3597	9,63563 4	665,747	12,31758	90,60727
1.sSMPABC120	0,128762	0,776633	2,575778	0,077404	1,681324	0,652744	1007,555	39,58321	4 80,6075	7,783573	583,5609	11,49071	82,33963
1.sSMPABC127	0,114581	0,835322	2,61992	0,099648	1,736668	0,66287	632,0726	42,24386	612,3449	10,14292	616,5609	12,17318	99,29422
1.sSMPABC128	0,218873	0,874933	2,534589	0,104283	1,670347	0,659021	633,936	41,04031	639,4594	10,16656	638,2424	12,07411	100,168
1.sSMPABC129	0,163609	0,937014	2,573439	0,108978	1,671872	0,649665	686,4777	41,75359	666,8096	10,58936	671,3181	12,71247	99,30493
1.sSMPABC130	0,180484	0,801891	3,070359	0,096915	1,735358	0,565197	603,9352	54,80348	596,3037	9,881637	597,8949	13,96134	99,71233
1.sSMPABC131	0,039082	0,856126	2,546247	0,100539	1,690852	0,664057	665,7848	40,76977	617,5658	9,955433	628,0057	11,9886	98,3155
1.sSMPABC132	0,157902	0,827284	2,777805	0,100399	1,757902	0,632839	594,9699	46,60612	616,7448	10,33741	612,1042	12,843	100,736
1.sSMPABC133	0,189309	0,868552	2,559626	0,10128	1,680813	0,656663	680,905	41,23745	621,9036	9,962548	634,7809	12,1462	97,94914

1.sSMPABC134	0,057353	0,826545	2,513191	0,100228	1,638034	0,651775	596,7078	41,29005	615,7478	9,617139	611,6931	11,60683	100,6408
1.sSMPABC135	0,089537	0,86792	2,563039	0,102221	1,664871	0,649569	659,5548	41,77432	627,4096	9,951243	634,4371	12,15772	98,86992
1.sSMPABC136	0,035343	0,852575	2,601793	0,10197	1,684354	0,647382	626,4797	42,74393	625,9457	10,0454	626,0615	12,2241	99,95915
1.sSMPABC137	0,100222	1,445348	3,107876	0,118819	1,978308	0,636546	1387,366	4 6,01672	723,7603	13,5448	907,9427	18,81702	79,68972
1.sSMPABC138	0,114824	0,867169	2,569689	0,094582	1,690752	0,65796	822,0125	40,40397	582,5811	9,415586	634,029	12,18377	91,86444
1.sSMPABC139	0,109825	0,848647	2,530422	0,1014	1,658604	0,655466	628,6201	41,17815	622,6068	9,841408	623,906	11,85699	99,7695
1.sSMPABC140	0,425508	0,832567	2,578778	0,100138	1,679496	0,651276	614,3568	42,26644	615,2199	9,85269	615,0355	11,95918	100,0079
1.sSMPABC147	0,196056	0,87001	2,646884	0,102301	1,683139	0,635895	663,0322	43,76675	627,878	10,06768	635,5729	12,57419	98,76689
1.sSMPABC148	0,211598	0,83611	2,537306	0,100899	1,646989	0,649109	607,1768	41,73842	619,6765	9,728581	616,9968	11,79318	100,4121
1.sSMPABC149	0,251115	0,886361	2,518778	0,105144	1,65667	0,657727	644,163	40,7763	644,4833	10,15864	644,4122	12,08196	99,98816
1.sSMPABC150	0,340253	0,858407	2,751559	0,10152	1,739332	0,632126	650,6686	45,77326	623,3099	10,33191	629,2527	12,98018	99,03328
1.sSMPABC151	0,32086	0,852295	2,572309	0,100399	1,710655	0,665027	659,1656	41,18456	616,7448	10,05935	625,9081	12,0826	98,51391
1.sSMPABC152	0,086381	0,882904	2,495424	0,103212	1,687883	0,676391	675,5449	39,29739	633,2033	10,17764	642,5501	11,94433	98,5228
1.sSMPABC153	0,300532	0,892294	2,86967	0,102951	1,769739	0,616705	703,4978	48,07747	631,6823	10,64721	647,6011	13,82566	97,51936
1.sSMPABC154	0,101908	0,860645	2,478197	0,102681	1,657405	0,668795	631,8118	39,67826	630,1023	9,947088	630,475	11,69965	99,91841
1.sSMPABC155	0,289966	0,798638	2,742283	0,096524	1,662769	0,606345	603,873	47,18265	594,0088	9,43318	596,0599	12,43205	99,63442
1.sSMPABC156	0,019893	0,844456	2,466111	0,10129	1,622782	0,658033	620,289	40,06841	621,9622	9,619194	621,6016	11,5228	100,0358
1.sSMPABC157	0,025864	0,874715	2,663083	0,10205	1,684055	0,63237	679,8107	44,07738	626,4142	10,05078	638,1241	12,68836	98,14258
1.sSMPABC158	0,277417	0,866793	2,494509	0,103262	1,648085	0,660685	634,997	40,30573	633,4958	9,941855	633,8245	11,82247	99,92557
1.sSMPABC159	0,532361	1,006409	2,904648	0,099738	1,864804	0,642007	1019,036	4 5,09579	612,873	10,90089	707,0583	14,89448	86,65736
1.sSMPABC160	0,230873	0,898381	2,490994	0,106205	1,658969	0,665987	651,5277	39,88735	650,6701	10,26564	650,8621	12,0338	99,94747
1.sSMPABC167	0,203809	0,898258	2,656015	0,099828	1,684717	0,634303	782,7298	43,14239	613,4012	9,855469	650,796	12,83513	94,23198
1.sSMPABC168	0,060106	0,83024	2,546694	0,100108	1,641923	0,644727	608,9557	42,08505	615,0439	9,629477	613,7451	11,79137	100,1896
1.sSMPABC169	0,094649	0,824967	2,916355	0,099848	1,782896	0,611344	600,8066	49,96123	613,5185	10,43217	610,816	13,46701	100,4204
1.sSMPABC170	0,610184	0,929689	2,755923	0,10136	1,742328	0,632212	822,8717	44, 57719	622,3724	10,33487	667,4711	13,56442	93,22111
1.sSMPABC171	0,202022	0,768292	2,531217	0,077954	1,669449	0,6595 44	971,1718	38,81004	4 83,9011	7,779599	578,7827	11,22182	83,58848
1.sSMPABC172	0,126207	0,880005	2,524978	0,104033	1,635874	0,647876	651,5277	41,2869	637,9983	9,934915	640,9856	12,06539	99,51126
1.sSMPABC173	0,113322	0,918569	2,492168	0,102211	1,645446	0,660247	780,152	39,3434	627,351	9,83417	661,6028	12,18145	94,80053
1.sSMPABC174	0,158795	0,855723	2,548225	0,102651	1,638385	0,642951	620,0775	42,11434	629,9267	9,830242	627,7852	11,99491	100,3187
1.sSMPABC175	0,197339	0,850419	2,544039	0,10157	1,662287	0,653405	629,5023	41,49143	623,6028	9,87832	624,879	11,93472	99,77346
1.sSMPABC176	0,327577	0,856051	2,584946	0,102521	1,659994	0,642177	623,6426	42,732	629,1658	9,948533	627,965	12,17133	100,1688
1.sSMPABC177	0,305866	0,882093	2,529957	0,097265	1,659573	0,655969	799,1978	40,01637	598,3625	9,48094	642,1127	12,10466	93,16494
1.sSMPABC178	0,341561	0,835762	2,623201	0,100579	1,641921	0,625923	613,1492	44,19579	617,8004	9,67062	616,8041	12,19203	100,1394
1.sSMPABC179	0,247149	0,939564	2,574664	0,100359	1,676754	0,651251	865,5054	40,51446	616,5103	9,856267	672,6538	12,73653	91,63136

1.sSMPABC180	0,054019	0,846021	2,507899	0,101069	1,624406	0,647716	628,9751	41,16894	620,6729	9,609796	622,4629	11,73103	99,69023
1.sSMPABC187	0,113049	0,846004	2,49481	0,100719	1,649935	0,661347	636,4106	40,2698	618,6212	9,730173	622,4537	11,66932	99,36214
1.sSMPABC188	0,092984	0,917326	2,616876	0,1014	1,684356	0,643651	794,0334	4 2,00339	622,6068	9,994327	660,945	12,78577	94,17724
1.sSMPABC189	0,070658	0,800527	2,994452	0,097826	1,657798	0,553623	579,9589	54,17239	601,6552	9,520556	597,1257	13,6009	100,7369
1.sSMPABC190	0,111819	0,897926	2,634695	0,104954	1,678749	0,63717	675,8324	43,41398	643,3737	10,27727	650,6184	12,72896	98,86364
1.sSMPABC191	0,131407	0,825214	2,525289	0,099568	1,628795	0,644994	607,5366	41,72896	611,8754	9,505478	610,9534	11,65268	100,1289
1.sSMPABC192	0,01357	0,848564	2,513372	0,10194	1,613062	0,641792	616,941	41,61282	625,77	9,617323	623,8604	11,77601	100,2837
1.sSMPABC193	0,051701	0,910737	2,488605	0,107186	1,625785	0,653292	661,1028	40,38031	656,3847	10,14415	657,4491	12,10929	99,8149
1.sSMPABC194	0,278035	0,854135	2,593457	0,100859	1,667494	0,642962	653,9751	42,62053	619,442	9,84624	626,916	12,1968	98,78563
1.sSMPABC195	0,076106	0,877962	2,565234	0,103022	1,672758	0,652088	667,4815	41,6368	632,0918	10,0695	639,8814	12,24366	98,76012
1.sSMPABC196	0,061304	0,973091	2,593908	0,101139	1,697023	0,654234	921,8878	4 0,32177	621,0832	10,04605	690,0555	13,06603	89,98264
1.sSMPABC197	0,022124	0,840606	2,490199	0,099618	1,649337	0,662332	646,2832	40,08303	612,1688	9,62985	619,4798	11,60699	98,79785
1.sSMPABC198	0,181057	0,870269	2,574452	0,100299	1,656852	0,643575	705,866	4 1,92019	616,1584	9,73389	635,7136	12,22998	96,90181
1.sSMPABC199	0,152039	0,831539	2,599772	0,100539	1,654868	0,636543	603,0568	43,38877	617,5658	9,743403	614,4655	12,04894	100,4824
1.sSMPABC200	0,116206	1,172996	2,611798	0,103862	1,677108	0,642128	1243,366	39,22465	637,0045	10,17043	788,0459	14,41016	80,81097

APÊNDICE B – Tabela de resultados U-Pb da amostra JG-02

Resultados U-Pb JG S#2													
				Ratios c					Dat	tes c			
Identifier	Th/U	207Pb/235U	2s (%)	206Pb/238U	2s (%)	Rho	207Pb/206Pb	2s	206Pb/238U	2s	207Pb/235U	2s	% conc d
			Data for V	Vetherill pl	ot c		2011 0/2001 0	abs	2001 0/2000	abs	2011 2/2000	abs	
1.sSMPABC007	0,506204	1,077764	3,370112	0,091437	2,311287	0,685819	1326,603	47,486556	564,032	12,486028	742,54181	17,90071	75,94575341
1.sSMPABC008	0,467238	1,082012	3,046919	0,094189	2,040026	0,669537	1276,631	44,127798	580,266	11,322759	744,61546	16,20116	77,91407178
1.sSMPABC009	0,310412	0,859857	4,601501	0,101815	2,631597	0,5719	648,0619	81,073519	625,0365	15,68478	630,04502	21,82546	99,18986183
1.sSMPABC010	0,213139	0,982686	3,317181	0,083091	2,289726	0,690263	1333,107	4 6,427836	514,5473	11,326033	694,98136	16,82643	74,02465163
1.sSMPABC011	0,068803	1,447874	2,53091	0,151492	1,730752	0,683846	908,1951	38,036313	909,3189	14,685794	908,99114	15,31044	100,0160224
1.sSMPABC012	0,223568	0,906576	2,762326	0,104037	1,882548	0,681508	714,9652	42,942478	638,0216	11,438323	655,23557	13,42004	97,35742216
1.sSMPABC013	0,363445	0,872144	2,833728	0,087935	1,871155	0,660316	984,0375	4 3,32361	543,3113	9,750346	636,73081	13,488	85,31467952
1.sSMPABC014	0,156068	0,888952	2,800525	0,089096	1,898635	0,677957	996,1876	41,832532	550,1861	10,013674	645,80621	13,46586	85,17997685
1.sSMPABC015	0,50557	0,884427	2,592905	0,103626	1,757605	0,677852	670,6556	40,790863	635,6254	10,640351	643,37076	12,42752	98,78073747
1.sSMPABC016	0,569667	0,915305	2,868323	0,106328	1,887625	0,658094	688,981	46,073111	651,3888	11,697786	659,87382	14,00913	98,69845453
1.sSMPABC017	0,14118	0,917234	2,820558	0,08135	1,944304	0,689333	1240,139	40,049149	504,1751	9,429634	660,89608	13,78951	76,27384995
1.sSMPABC018	0,310685	0,917876	2,621006	0,09525	1,780649	0,679376	925,1336	39,510872	586,5126	9,9837307	661,23615	12,81244	88,68498327
1.sSMPABC019	0,234263	0,908163	2,5605	0,105808	1,74436	0,681257	682,7341	40,0285	648,3559	10,761327	656,08077	12,44498	98,80693699
1.sSMPABC020	0,188034	0,903946	2,852803	0,104937	1,891103	0,662893	690,4347	45,55599	643,2784	11,580467	653,83426	13,84134	98,37000606
1.sSMPABC027	0,283359	0,98582	3,633824	0,072473	2,725653	0,750078	1598,849	44,849106	4 51,0397	11,876332	696,58526	18,47719	64,73855802
1.sSMPABC028	0,357138	0,879707	2,577162	0,103947	1,75219	0,679891	652,5771	40,560237	637,4957	10,637264	640,82453	12,31631	99,46510817
1.sSMPABC029	0,474366	0,903912	2,609557	0,094139	1,750257	0,670711	917,7335	39,809082	579,9712	9,708522	653,8159 4	12,65351	88,69127593
1.sSMPABC030	0,472524	0,589278	6,538108	0,038919	5,9378	0,908183	1796,336	49,811307	246,1268	14,344826	470,40617	24,90671	52,31521857
1.sSMPABC031	0,408434	1,012842	2,821548	0,091127	1,892944	0,670889	1211,97	41,176148	562,1995	10,192444	710,30866	14,51412	79,13472572
1.sSMPABC032	0,085506	0,904643	2,726224	0,105518	1,858877	0,68185	680,3053	42,604156	646,6638	11,439957	654,20585	13,22858	98,83154765
1.sSMPABC033	0,541242	0,968673	2,619585	0,103196	1,765889	0,67411	870,9596	40,087922	633,1114	10,650265	687,77945	13,1679	92,03618976
1.sSMPABC034	0,200237	0,993769	4,351706	0,106869	2,557568	0,587716	851,4692	73,169946	654,5368	15,927483	700,64159	22,25825	93,40391198
1.sSMPABC035	0,465823	1,104282	2,842446	0,113383	1,841824	0,647971	946,9122	44,326971	692,3678	12,094595	755,41908	15,25473	91,63708722

1.sSMPABC036	0,940784	0,942505	2,615119	0,100584	1,75107	0,669595	867,3345	40,264478	617,8308	10,317735	674,19254	12,96126	91,62507326
1.sSMPABC037	0,079499	1,097292	2,621504	0,12221	1,768752	0,674709	778,2159	40,68345	743,2711	12,42084	752,04055	14,01798	98,81659063
1.sSMPABC038	0,365041	0,9902 4	2,556939	0,103396	1,74216	0,681346	912,432	38,525023	634,2808	10,52552 4	698,84254	12,99573	90,74628571
1.sSMPABC039	0,134702	0,540448	2,850751	0,052919	2,042522	0,716486	1043,371	40,12233	332,4175	6,6163778	438,71998	10,2016	75,76079134
1.sSMPABC040	0,333498	0,854758	2,644418	0,101064	1,742747	0,659029	651,1778	42,695894	620,6437	10,313234	627,2573	12,44521	98,93052714
1.sSMPABC047	0,063338	1,012793	2,806895	0,096101	1,852238	0,659889	1106,488	42,149794	591,5173	10,470131	710,28402	14,43785	83,26449266
1.sSMPABC048	0,260694	1,29542	3,18925	0,103836	2,148001	0,673513	1435,712	44,959749	636,8528	13,03007	843,6980 4	18,4359	75,46832793
1.sSMPABC049	0,792503	1,382423	14,98799	0,045784	14,55847	0,971342	2973,296	57,3956	288,5838	41,189243	881,47241	92,35538	32,73137563
1.sSMPABC050	0,209866	0,768861	2,607295	0,085503	1,751486	0,671764	781,368	40,589392	528,8859	8,8936463	579,10952	11,56818	91,31413357
1.sSMPABC051	0,226005	1,026457	2,737898	0,097402	1,849987	0,675696	1106,398	40,338153	599,1639	10,58651	717,15395	14,17492	83,53283729
1.sSMPABC052	0,585766	1,176312	3,090048	0,098232	2,075882	0,671796	1357,155	44,127374	604,0413	11,972726	789,59395	17,09623	76,485629
1.sSMPABC053	0,119147	1,055442	3,704028	0,076126	2,756579	0,744211	1634,355	45,959729	4 72,9579	12,574337	731,57419	19,49123	64,63737485
1.sSMPABC054	0,218228	0,874398	2,585741	0,104167	1,752065	0,677587	635,0187	40,932544	638,7812	10,656926	637,95256	12,31752	100,1144341
1.sSMPABC055	0,071951	0,970632	2,678534	0,095781	1,801651	0,672626	1027,719	40,083454	589,6336	10,152956	688,78935	13,48011	85,58987595
1.sSMPABC056	0,111602	0,299064	28,53831	0,01376	28,36831	0,994043	2430,402	52,724277	88,09876	24,851942	265,66902	68,96206	33,15832917
1.sSMPABC057	0,218895	0,983445	2,71726	0,099173	1,822852	0,670842	983,7031	41,02575	609,5606	10,603842	695,36991	13,76799	87,64505396
1.sSMPABC058	0,241324	0,875887	2,605725	0,103226	1,764421	0,677132	658,1617	41,114253	633,2868	10,644212	638,75858	12,42463	99,12802681
1.sSMPABC059	0,442249	0,876716	2,652168	0,103106	1,766476	0,66605	662,6848	42,386638	632,5851	10,645371	639,20728	12,65389	98,94866144
1.sSMPABC060	0,337632	0,979978	3,437472	0,08133	2,402169	0,698819	1369,123	47,324391	504,0558	11,649581	693,59377	17,41739	72,66035549
1.sSMPABC067	0,051975	1,084397	2,783439	0,094119	1,881065	0,675806	1282,373	39,970017	579,8533	10,432659	745,77805	14,80568	77,73725849
1.sSMPABC068	0,011266	0,967995	2,656719	0,092798	1,788892	0,673346	1085,929	39,375835	572,0656	9,793536 4	687,43001	13,35101	83,20389668
1.sSMPABC069	0,284485	0,997486	9,772525	0,044973	9,239117	0,945418	2464,737	53,793896	283,5852	25,665792	702,53266	50,78255	40,358498
1.sSMPABC070	0,315023	0,930524	2,685631	0,097752	1,760852	0,655657	899,9355	41,822321	601,2211	10,109074	667,91031	13,22477	90,00053148
1.sSMPABC071	0,1973	0,940872	2,56285 4	0,100734	1,729475	0,674824	860,6443	39,24886	618,71	10,204225	673,33849	12,68918	91,8718601
1.sSMPABC072	0,332726	0,860858	2,599777	0,101305	1,719905	0,661559	661,3389	41,780655	622,0497	10,199933	630,59118	12,28107	98,6303517
1.sSMPABC073	0,238883	0,872079	2,656759	0,093579	1,767499	0,665284	855,9801	41,192084	576,6686	9,7508199	636,69565	12,63989	90,55784021
1.sSMPABC074	0,235443	0,900001	2,690946	0,094199	1,786209	0,663785	907,4963	41,460127	580,325	9,9138769	651,72814	13,02079	89,02971428
1.sSMPABC075	0,141561	1,418669	2,68608	0,124522	1,783334	0,663917	1260,477	39,255301	756,5368	12,734226	896,80408	16,11997	84,34184806
1.sSMPABC076	0,408879	0,854386	2,696467	0,101285	1,77848	0,659559	645,5684	43,549803	621,9326	10,545708	627,05342	12,6887	99,16821578
1.sSMPABC077	0,317096	1,153905	2,656499	0,115325	1,766448	0,664953	1001,915	40,282018	703,5988	11,77743	779,08546	14,5493	90,29429243
1.sSMPABC078	0,156288	0,988199	2,654379	0,100434	1,769978	0,6668 14	967,78	40,370644	616,9515	10,415085	697,80086	13,4802	88,39868973
1.sSMPABC079	0,660031	1,028522	2,831433	0,100284	1,867902	0,659702	1051,914	42,875721	616,0721	10,9768 46	718,1881	14,67734	85,76647454
1.sSMPABC080	0,658968	0,855041	2,708151	0,101545	1,754213	0,647753	641,7004	44,360398	623,4554	10,425975	627,41186	12,74933	99,35424432
1.sSMPABC087	0,469355	1,332867	4,110864	0,093209	2,940518	0,715304	1691,588	52,976226	574,4855	16,171379	860,12879	24,12525	66,77675743

1.sSMPABC088	0,215488	0,985593	2,628787	0,10898	1,726513	0,656772	793,3712	41,579857	666,8228	10,939362	696,46904	13,33151	95,72739556
1.sSMPABC089	0,013095	1,109444	2,540568	0,124962	1,716501	0,675637	754,5047	39,532955	759,0605	12,2951	757,9068	13,6541	100,1346155
1.sSMPABC090	0,184786	0,981268	2,725534	0,082561	1,857444	0,681497	1342,694	38,530986	511,3897	9,1320335	694,25477	13,79466	73,6473864
1.sSMPABC091	0,086219	0,852383	4 ,512484	0,09445	2,727051	0,604335	788,9512	75,463981	581,7988	15,178698	625,95618	21,29725	92,93124995
1.sSMPABC092	0,178333	1,128055	2,749795	0,111432	1,811311	0,658708	1025,589	41,853782	681,0592	11,709676	766,82575	14,90427	88,79922519
1.sSMPABC093	0,121806	0,912558	2,654817	0,107009	1,776863	0,669298	668,9262	42,219742	655,3527	11,074513	658,41656	12,9392	99,51890654
1.sSMPABC094	0,182047	0,878869	2,561858	0,103456	1,725892	0,673687	660,6742	40,578552	634,6316	10,432647	640,37163	12,23648	99,08826858
1.sSMPABC095	0,17081	0,914389	2,723906	0,106558	1,724992	0,633279	682,228	45,022947	652,7298	10,710025	659,38807	13,29215	98,97452334
1.sSMPABC096	0,265845	0,963597	3,756288	0,069131	2,831347	0,753762	1644,282	45,796266	430,9175	11,804594	685,15824	18,88432	62,88201531
1.sSMPABC097	0,112091	0,957647	2,546178	0,093379	1,714714	0,673446	1051,796	37,926263	575,4886	9,440888	682,07677	12,72167	84,3588076
1.sSMPABC098	0,286271	0,985954	6,723772	0,048826	6,136108	0,912599	2304,942	47,210878	307,3096	18,427826	696,65348	34,46021	44,10403874
1.sSMPABC099	0,096522	0,851675	2,553005	0,101245	1,739646	0,681411	639,5866	40,189178	621,6983	10,311546	625,56802	11,9889	99,36627317
1.sSMPABC100	0,266428	0,872008	2,632724	0,102586	1,736416	0,659551	661,9898	42,405259	629,5433	10,416132	636,657	12,52428	98,86737102
1.sSMPABC107	0,296818	0,878633	3,021592	0,102355	1,898734	0,628388	682,9852	50,193669	628,1974	11,367473	640,24407	14,44597	98,10318161
1.sSMPABC108	0,412199	1,086806	3,148734	0,098853	2,038579	0,647428	1190,499	47,372519	607,6823	11,82503	746,95082	16,78289	81,34029753
1.sSMPABC109	0,290024	0,898661	2,763317	0,092508	1,779297	0,643899	941,6562	43,323118	570,3534	9,7130611	651,01154	13,36273	87,59622087
1.sSMPABC110	0,132775	0,869438	2,553238	0,103356	1,704105	0,667429	639,5866	40,894251	634,0469	10,29181	635,26184	12,12461	99,79339566
1.sSMPABC111	0,025529	0,876915	2,517851	0,102756	1,714775	0,681047	670,4586	39,452011	630,5379	10,301692	639,31529	12,01071	98,61176619
1.sSMPABC112	0,421105	1,174039	3,093794	0,102686	2,014076	0,651005	1267,388	45,849817	630,1284	12,093978	788,53281	17,10178	79,8963562
1.sSMPABC113	0,07958	0,8492	2,627778	0,101064	1,737402	0,661168	637,1554	42,419778	620,6437	10,28158	624,20963	12,32265	99,41362476
1.sSMPABC114	0,089089	0,967226	2,657283	0,096921	1,774866	0,667925	996,5919	4 0,1832	596,3416	10,110595	687,03306	13,34844	86,78494688
1.sSMPABC115	1,458174	0,879955	2,67895	0,102145	1,763496	0,658279	690,5793	43,01075	626,9684	10,537472	640,95816	12,80777	97,80213515
1.sSMPABC116	0,058309	0,856116	2,63835	0,099874	1,763527	0,66842	679,9617	41,926106	613,6677	10,324402	628,00028	12,42717	97,7027704
1.sSMPABC117	0,360765	0,918015	4 ,427679	0,100274	2,632613	0,594581	818,9768	74,366847	616,0134	15,474706	661,30985	21,74094	93,13549176
1.sSMPABC118	0,306879	0,916553	4 ,985969	0,095931	2,863432	0,574298	907,5213	84,08385	590,5166	16,167093	660,53547	24,49499	89,38517625
1.sSMPABC119	0,155296	0,916215	2,804354	0,106388	1,806039	0,644012	689,8964	45,761368	651,7386	11,197465	660,35611	13,70174	98,67933232
1.sSMPABC120	0,272253	0,855575	2,57394	0,102566	1,717241	0,667164	621,5045	41,363311	629,4263	10,299191	627,70427	12,11782	100,2590596
1.sSMPABC127	0,403349	0,860412	2,710218	0,101485	1,735529	0,640365	656,4186	44,647652	623,104	10,309298	630,3477	12,80249	98,8356929
1.sSMPABC128	0,379514	0,853706	2,680488	0,100514	1,732378	0,646292	660,2509	43,843746	617,4205	10,201045	626,68135	12,60759	98,50718595
1.sSMPABC129	0,219606	0,881013	2,581368	0,093499	1,712512	0,663412	878,883	39,967946	576,1966	9,4398511	641,5298	12,34634	89,80179396
1.sSMPABC130	0,607075	0,94083	2,535187	0,102966	1,710565	0,674729	814,9153	39,112327	631,7663	10,295452	673,31661	12,55105	93,81369893
1.sSMPABC131	0,010056	0,921164	2,909146	0,084862	1,968335	0,676602	1165,263	42,443294	525,0813	9,9265368	662,97544	14,25762	79,18753378
1.sSMPABC132	0,129708	0,854487	2,68072	0,102596	1,757548	0,655626	618,1281	43,692349	629,6018	10,543935	627,10895	12,61495	100,382237
1.sSMPABC133	0,37338	1,194075	2,627186	0,131117	1,740192	0,662379	807,9606	41,187128	794,2319	13,00831	797,84789	14,61764	99,52859128

1.sSMPABC134	0,284563	0,877197	2,588773	0,103196	1,706749	0,659289	661,9898	41,710091	633,1114	10,293304	639,46764	12,35321	98,9906646
1.sSMPABC135	0,463421	0,873839	2,851983	0,102435	1,817116	0,637141	669,6182	47,044045	628,6656	10,886151	637,64979	13,58965	98,57578598
1.sSMPABC136	0,324435	0,851954	3,541106	0,100644	2,108242	0,595363	653,0702	61,057002	618,1825	12,431062	625,7211	16,67026	98,78014667
1.sSMPABC137	0,186342	0,857995	4,56572	0,101375	2,604026	0,570343	652,7111	80,487283	622,4598	15,459232	629,02756	21,6284	98,94073887
1.sSMPABC138	0,356368	0,916392	4 ,451046	0,099263	2,646316	0,594538	836,4181	74,555241	610,0888	15,412536	660,45	21,83652	92,35982675
1.sSMPABC139	0,112067	0,915235	4,516685	0,105658	2,548518	0,564245	702,2981	79,379112	647,4807	15,708197	659,83661	22,1473	98,11181908
1.sSMPABC140	0,288627	0,860187	2,623425	0,101475	1,715976	0,654098	656,0698	42,564172	623,0455	10,192147	630,22502	12,38824	98,84564266
1.sSMPABC147	0,365917	0,9971	2,595026	0,101355	1,698262	0,65443	967,4576	40,047141	622,3426	10,076002	702,33665	13,23665	88,59520063
1.sSMPABC148	0,135244	1,080369	2,687211	0,120529	1,760213	0,655033	774,6601	42,71731	733,6062	12,208903	743,814	14,2645	98,61048335
1.sSMPABC149	0,380502	0,875824	2,811352	0,102535	1,795823	0,638776	672,3831	46,271256	629,2507	10,76802	638,72467	13,41109	98,50147161
1.sSMPABC150	0,442291	0,860622	2,605988	0,101775	1,713679	0,657593	650,8152	42,148172	624,8023	10,205848	630,46242	12,30876	99,08703882
1.sSMPABC151	0,331724	1,205648	2,707522	0,132147	1,726619	0,637712	811,7579	43,61598	800,1037	12,996462	803,18987	15,13471	99,59747035
1.sSMPABC152	0,414938	0,975621	2,563373	0,099013	1,715256	0,66914	970,7179	38,859776	608,6215	9,9627806	691,35662	12,93063	88,01809225
1.sSMPABC153	0,209132	0,918636	6,300197	0,052799	5,575715	0,885007	2045,526	51,833124	331,6823	18,038552	661,6383	31,08849	50,12159533
1.sSMPABC154	0,4174	0,877052	2,660954	0,102746	1,71423	0,644216	671,0012	43,546827	630,4794	10,297508	639,38939	12,69869	98,59118655
1.sSMPABC155	0,584355	1,101562	2,559133	0,08149	1,694707	0,662219	1587,175	35,84053	505,0103	8,2314458	754,1055	13,70773	66,95549244
1.sSMPABC156	0,061119	0,923941	2,593251	0,099533	1,712871	0,660511	847,8345	4 0,48708	611,6732	9,9965124	664,44173	12,71973	92,04328886
1.sSMPABC157	0,059875	0,856355	2,583608	0,102415	1,709778	0,661779	626,6278	41,749868	628,5486	10,24077	628,131	12,16962	100,0512182
1.sSMPABC158	0,123431	0,852034	2,578802	0,100824	1,695045	0,6573	649,4316	41,732228	619,2374	10,009053	625,76465	12,11354	98,94183539
1.sSMPABC159	0,377164	1,0848	3,710392	0,079889	2,696797	0,726823	1595,601	47,578267	495,4591	12,865023	745,97433	19,78821	66,40527674
1.sSMPABC160	0,356716	1,211281	2,60177	0,133268	1,697079	0,652279	803,8365	41,295559	806,4825	12,869599	805,77934	14,57026	100,0688629
1.sSMPABC167	0,214129	1,394012	3,231363	0,101405	2,194061	0,678989	1618,544	44,158984	622,6355	13,026451	886,39943	19,28143	70,22841482
1.sSMPABC168	0,336738	0,909535	2,712024	0,104907	1,755223	0,6472	704,1748	43,99571	643,1032	10,744902	656,81027	13,19674	97,89755769
1.sSMPABC169	0,326666	0,911963	2,575476	0,105237	1,692659	0,657222	703,1592	41,314858	645,0297	10,391136	658,10045	12,54579	97,99829759
1.sSMPABC170	0,254519	1,201422	2,605858	0,129415	1,716672	0,658774	847,9983	40,765449	784,5289	12,684734	801,24218	14,53895	97,89606263
1.sSMPABC171	0,101601	0,960247	2,683347	0,099203	1,760943	0,656249	934,3016	41,535626	609,7367	10,246242	683,4244 4	13,43027	89,20299703
1.sSMPABC172	0,515077	1,450484	2,749052	0,105167	1,75088	0,636903	1624,641	39,419643	644,6211	10,742372	910,07298	16,65328	70,81661184
1.sSMPABC173	0,308386	0,88306	2,615266	0,103216	1,687027	0,645069	675,8324	42,724874	633,2283	10,176058	642,63385	12,525	98,52106573
1.sSMPABC174	0,047109	0,990604	2,570064	0,103426	1,688178	0,656862	912,5912	39,8882 44	634,4562	10,201808	699,02829	13,0653	90,74725562
1.sSMPABC175	0,952107	1,812425	6,437677	0,084682	5,445716	0,845913	2404,316	58,355168	524,0108	27,446871	1049,95 4	43,01208	4 9,8955838
1.sSMPABC176	0,109024	1,040048	2,916355	0,086764	1,962226	0,672835	1359,137	41,582447	536,3698	10,099896	723,94115	15,20457	74,07691023
1.sSMPABC177	0,525746	1,113036	4 ,856794	0,065268	4,016108	0,826905	2010,013	48,460043	407,584	15,870826	759,63446	26,30535	53,64480751
1.sSMPABC178	0,337294	0,877678	2,68728	0,103286	1,705261	0,634568	661,2945	44,510318	633,6377	10,292464	639,72765	12,83002	99,03267877
1.sSMPABC179	0,185023	0,907266	2,651946	0,099653	1,70717	0,643743	807,3268	42,471582	612,3772	9,9741577	655,60311	12,88555	93,39175351

1.sSMPABC180	0,253184	1,408962	5,447875	0,076186	4,509774	0,82780 4	2152,718	53,360722	4 73,3176	20,59955 4	892,72076	32,87034	53,00800211
1.sSMPABC187	0,381567	0,989059	2,718596	0,101174	1,758212	0,646735	954,5488	42,404025	621,2882	10,415128	698,23996	13,81463	88,96409475
1.sSMPABC188	0,244212	0,81365	2,578984	0,091377	1,686562	0,653964	760,6827	41,13974	563,6774	9,1032695	604,49946	11,81163	93,23296083
1.sSMPABC189	0,551562	0,916431	3,003934	0,106328	1,807059	0,601564	691,603	51,170098	651,3888	11,198073	660,47053	14,68577	98,60927106
1.sSMPABC190	0,340175	1,576099	2,590873	0,093459	1,69183	0,652996	1990,194	34,89645	575,9606	9,3221089	960,83285	16,21948	59,9302079
1.sSMPABC191	0,136704	1,089518	4,107246	0,100424	2,602862	0,633725	1164,241	62,96062 4	616,8929	15,320464	748,26981	21,97387	82,42763009
1.sSMPABC192	0,434499	0,906259	2,94357	0,103476	1,798839	0,611108	725,6869	49,408921	634,7485	10,875882	655,06677	14,30416	96,8829234
1.sSMPABC193	0,230994	0,779377	3,133086	0,066769	2,195445	0,700729	1307,728	43,391475	4 16,6614	8,8581838	585,12813	14,02484	71,19765793
1.sSMPABC194	0,149023	0,856591	2,657723	0,099433	1,731079	0,651339	690,5793	43,01075	611,0864	10,093614	628,26042	12,52276	97,25149731
1.sSMPABC195	0,529809	1,109399	3,146213	0,078988	2,214867	0,703979	1658,377	41,381385	490,0803	10,45362 4	757,88521	16,93606	64,65188915
1.sSMPABC196	0,885587	1,033427	2,803282	0,097001	1,795009	0,640324	1128,118	42,895983	596,8121	10,233136	720,64006	14,5647	82,80236913
1.sSMPABC197	0,272105	0,875611	2,952687	0,102345	1,740491	0,58946	675,8324	50,994204	628,1389	10,418402	638,60938	14,08817	98,34517719
1.sSMPABC198	0,457951	1,052898	2,665653	0,098432	1,745653	0,654869	1136,123	40,086131	605,216	10,08532	730,31652	13,97273	82,85564407
1.sSMPABC199	0,108879	1,386882	3,250802	0,118297	2,016638	0,620351	1316,186	49,436978	720,7547	13,757529	883,37077	19,35655	81,57470157
1.sSMPABC200	0,365716	1,367284	2,752164	0,06787	1,76939	0,642908	2300,89	36,21733	423,3101	7,2484566	874,99974	16,26489	48,36771127

APENDICE C – Tabelas de resultados U-Pb da amostra JG-C
--

Resultados U-Pb JG S#3													
				Ratios c					Dat	es c			
Identifier	Th/U	207Pb/235U	2s (%)	206Pb/238U	2s (%)	Rho	207Pb/206Pb	2s	206Pb/238U	2s	207Pb/235U	2s	% conc d
			Data for W	etherill plo	ot c			abs		abs		abs	
1.sSMPABC007	0,377097	0,932972	2,9018948	0,107002	1,971231	0,679291	716,2278	45,22974	655,3145	12,26838	669,1973	14,30473	97,875
1.sSMPABC008	0,172468	0,926808	4,6682208	0,107944	2,692915	0,576861	683,4411	81,42289	660,799	16,89924	665,9541	23,0312	99,17512
1.sSMPABC009	0,283755	0,863978	2,7799877	0,100677	1,971326	0,709113	682,3654	41,86239	618,377	11,60935	632,2919	13,15207	97,75105
1.sSMPABC010	0,536374	0,886701	2,7990596	0,104807	1,970161	0,703865	651,8776	42,67703	642,5186	12,03376	644,5953	13,42893	99,62813
1.sSMPABC011	0,308398	0,830907	2,7922092	0,097941	1,965276	0,703843	657,816	42,53209	602,3303	11,28686	614,1156	12,93203	98,03367
1.sSMPABC012	0,076351	0,861932	2,7647848	0,103293	1,960213	0,708993	622,2175	42,05756	633,6811	11,81605	631,1771	13,06292	100,3475
1.sSMPABC013	0,090619	1,266903	3,2421563	0,103574	2,242321	0,691614	1397,986	44,89111	635,3207	13,55169	831,0043	18,54737	76,40359
1.sSMPABC014	0,115113	0,934485	2,8374985	0,107002	2,023419	0,7131	719,6662	42,2253	655,3145	12,5935	669,9913	13,99691	97,75896
1.sSMPABC015	0,212232	0,890263	2,8477809	0,104937	2,04413	0,717798	657,8133	42,51732	643,2789	12,50007	646,5106	13,69352	99,45039
1.sSMPABC016	0,212205	0,926694	2,9186447	0,1059	2,067595	0,708409	723,8806	43,69643	648,8905	12,74867	665,8938	14,33722	97,39648
1.sSMPABC017	0,269743	0,906901	2,8354175	0,105679	2,048753	0,722558	682,3654	41,86239	647,6049	12,60856	655,409	13,76836	98,75929
1.sSMPABC018	0,256094	0,883491	2,8121308	0,104657	1,975896	0,702633	647,1743	42,9834	641,6413	12,05313	642,8667	13,46593	99,75974
1.sSMPABC019	0,400803	1,352222	3,5334542	0,093721	2,53424	0,717213	1708,049	45,31309	577,5057	13,98394	868,5183	20,81647	66,44861
1.sSMPABC020	0,200028	0,895673	3,0854807	0,105789	2,034905	0,65951	653,4642	49,77034	648,2478	12,53508	649,4127	14,89289	99,77057
1.sSMPABC027	0,281662	1,113457	2,7965854	0,124453	1,981533	0,708554	770,7119	41,54393	756,1451	14,12371	759,8363	15,05457	99,458
1.sSMPABC028	0,072948	1,457059	22,278555	0,037809	21,98792	0,986955	3360,13	56,01534	239,2385	51,72914	912,7937	143,726	26,18959
1.sSMPABC029	0,351652	0,933321	2,8388246	0,106361	1,903807	0,670632	729,7782	44,62564	651,5777	11,78409	669,3805	13,99441	97,29018
1.sSMPABC030	0,016771	0,89185	3,0677064	0,080249	2,176512	0,709492	1211,776	42,54533	4 97,6098	10,40872	647,3626	14,77278	76,82683
1.sSMPABC031	0,549639	0,94568	2,9540235	0,098201	2,046074	0,69264	923,7514	4 3,78142	603,8602	11,77983	675,8509	14,66636	89,30088
1.sSMPABC032	0,444846	0,858653	2,7982666	0,081823	1,960064	0,700456	1097,965	39,96418	506,9941	9,542911	629,3873	13,19488	80,5125
1.sSMPABC033	0,184953	1,108237	2,900046	0,123411	2,065493	0,712228	778,5235	42,80064	750,166	14,6129	757,3256	15,58079	98,99875
1.sSMPABC034	0,690549	0,883925	2,8858653	0,103484	2,014723	0,698135	672,3831	44,19941	634,7938	12,16526	643,1004	13,82505	98,65911
1.sSMPABC035	0,042856	1,156919	2,790591	0,120815	1,978002	0,708811	912,1806	40,52116	735,2516	13,73027	780,5056	15,29632	94,14703
1.sSMPABC036	0,275746	0,973806	2,8282813	0,100828	1,979144	0,699769	929,7407	41,47738	619,2575	11,67126	690,4237	14,25099	89,64419

1.sSMPABC037	0,051118	0,871286	2,8374815	0,103153	2,021184	0,712316	648,3756	42,77151	632,8611	12,1689	636,2653	13,48704	99,41585
1.sSMPABC038	0,320619	0,930995	2,8856681	0,106581	1,889068	0,654638	720,0933	46,30045	652,8624	11,71471	668,1581	14,20844	97,66047
1.sSMPABC039	0,286548	0,932382	2,9714298	0,106351	2,101297	0,707167	727,8438	44,53641	651,5193	13,00663	668,8871	14,64515	97,35326
1.sSMPABC040	0,138307	1,153035	2,7912846	0,12742	1,966646	0,704567	794,5973	41,53942	773,1323	14,3143	778,6754	15,27608	99,23101
1.sSMPABC047	0,106577	0,896549	2,8105444	0,105038	1,96731	0,699975	670,8388	42,94861	643,8637	12,04028	649,8814	13,56398	99,02424
1.sSMPABC048	0,537864	0,874921	2,8276069	0,103855	1,968922	0,696321	642,7563	43,62718	636,96	11,92709	638,236	13,46993	99,7507
1.sSMPABC049	0,092255	0,869345	2,80253	0,102542	1,975823	0,705014	656,3487	42,62979	629,2871	11,83152	635,2115	13,30382	99,01842
1.sSMPABC050	0,015594	0,875688	2,8335002	0,102742	1,993175	0,703432	667,7405	43,11499	630,4591	11,95671	638,6509	13,50455	98,66836
1.sSMPABC051	0,156986	0,871016	2,866203	0,102702	2,0691	0,721896	657,1161	42,53605	630,2247	12,40821	636,1189	13,62221	99,02445
1.sSMPABC052	0,207856	1,407305	6,9371758	0,064622	6,195421	0,893075	2433,773	52,88836	4 03,6752	24,23424	892,022	41,99461	4 5,22153
1.sSMPABC053	0,349857	0,896422	3,1928427	0,105238	2,09372	0,655754	666,4558	51,61576	645,033	12,83686	649,8138	15,42191	99,21444
1.sSMPABC054	0,275691	0,835824	2,8968985	0,095956	2,068966	0,7142	714,1045	4 3,07938	590,6669	11,66296	616,8386	13,4637	95,7106
1.sSMPABC055	0,146288	0,864073	2,7839283	0,100527	1,914448	0,687679	685,7931	43,14125	617,4963	11,25878	632,3441	13,17162	97,60377
1.sSMPABC056	0,29735	0,88488	2,9872093	0,083296	2,102431	0,703811	1122,413	42,31126	515,7683	10,40694	643,6149	14,32226	80,09452
1.sSMPABC057	0,140026	1,559194	3,0565549	0,102732	2,169604	0,70982	1800,659	39,16654	630,4005	13,01499	954,1479	19,06909	66,02207
1.sSMPABC058	0,01979	0,848926	2,7987415	0,101569	1,974983	0,705668	625,7264	42,74995	623,5997	11,72457	624,0594	13,11566	99,87778
1.sSMPABC059	0,643726	0,859927	2,8093101	0,100367	1,977429	0,703884	678,9304	42,64123	616,5568	11,61263	630,0831	13,25794	97,80513
1.sSMPABC060	0,113399	0,890191	3,0376432	0,08927	2,108275	0,69405	995,0349	44,4456	551,2209	11,12375	646,4721	14,61245	85,22201
1.sSMPABC067	0,018537	0,866442	2,8814437	0,100657	1,991635	0,691193	688,8716	44,42417	618,2596	11,72694	633,6337	13,6563	97,52542
1.sSMPABC068	0,055657	0,928956	2,8418257	0,1062	2,023194	0,711935	723,0381	42,33778	650,6431	12,50669	667,0854	13,97507	97,48503
1.sSMPABC069	0,231366	0,86725	4,7247289	0,101279	2,799314	0,592481	677,718	81,34929	621,8984	16,5813	634,0731	22,50104	98,03147
1.sSMPABC070	0,432146	1,300618	3,8859165	0,090864	2,827678	0,727673	1693,399	49,14239	560,646	15,16846	845,9948	22,53163	66,22699
1.sSMPABC071	0,593378	1,21049	3,4173542	0,094944	2,39612	0,701162	1477,023	4 6,2105	584,7093	13,37876	805,4161	19,16107	72,55171
1.sSMPABC072	1,024629	7,986838	9,4591119	0,157782	8,476644	0,896135	3779,606	63,64368	944,4386	74,74854	2229,539	89,13683	42,30778
1.sSMPABC073	0,080311	0,832349	2,9085213	0,09744	2,072832	0,712676	672,5173	43,64498	599,387	11,84957	614,9149	13,48718	97,4277
1.sSMPABC074	0,462951	0,893704	2,8433569	0,103394	2,000913	0,703715	697,7318	43,03506	634,2667	12,07224	648,3573	13,70023	97,77752
1.sSMPABC075	0,659724	0,893366	3,4326181	0,079668	2,424354	0,70627	1229,406	4 7,703	494,1395	11,51716	648,1762	16,55942	76,1952
1.sSMPABC076	0,272411	1,106295	2,8503366	0,122088	2,020322	0,708801	797,4707	42,146	742,5691	14,15622	756,3899	15,29885	98,11736
1.sSMPABC077	0,314675	0,93469	2,9648371	0,093009	2,072787	0,699124	1010,766	4 2,98039	573,3096	11,35586	670,099	14,63127	85,51062
1.sSMPABC078	0,572901	0,89837	2,876445	0,10598	2,01676	0,701129	656,0544	43,99322	649,3579	12,44345	650,856	13,89918	99,71972
1.sSMPABC079	0,088832	0,869846	2,844669	0,102331	1,978646	0,695563	661,9898	43,7956	628,0562	11,82635	635,4838	13,50939	98,78237
1.sSMPABC080	0,279762	0,854651	2,8281289	0,102111	1,984717	0,701778	628,7577	43,41186	626,7665	11,83945	627,1987	13,30285	99,88234
1.sSMPABC087	0,434616	0,926326	2,8301772	0,106912	1,931371	0,68242	702,8205	44,03348	654,7891	12,01091	665,7	13,89677	98,31057
1.sSMPABC088	0,085566	0,849649	2,8337226	0,101349	1,998662	0,705313	632,244	43,25887	622,3091	11,84186	624,4565	13,28683	99,60764

1 sSMPABC089	0 105034	0.835223	2 8455493	0.098803	1 968144	0.691657	650 1276	44 12502	607 3896	11 39399	616 5059	13 21827	98 47373
1.sSMPABC090	0.063777	0,925375	2.8746183	0,107453	2.037219	0,708692	689,8705	43,25999	657,9406	12,7278	665,1984	14,10892	98,85832
1.sSMPABC091	0.185616	0,908009	2,8125651	0,104707	1.972596	0,701351	704,6722	42,66031	641,9337	12,03821	655,9988	13,66545	97,80628
1.sSMPABC092	0,014708	0,874708	2,8030216	0,104246	1,983679	0,707693	634,1481	42,6333	639,2425	12,05757	638,1202	13,35029	100,1264
1.sSMPABC093	0,034713	0,740967	2,8530987	0,076751	2,008107	0,703834	928,9008	41,61222	476,7	9,213651	562,9695	12,38833	84,6368
1.sSMPABC094	0,192518	0,456696	6,5343353	0,032396	5,962832	0,912538	1665,221	49,44916	205,5289	12,04574	381,9579	20,98291	53,79018
1.sSMPABC095	0,283831	0,860536	2,9526045	0,094052	2,034885	0,689183	817,7262	44,70028	579,455	11,26236	630,4154	13,9442	91,87056
1.sSMPABC096	0,329364	0,932034	3,1991592	0,08067	2,275708	0,711346	1287,796	43,7722	500,1216	10,9364	668,7042	15,77324	74,74915
1.sSMPABC097	0,101691	0,90912	2,8384378	0,098973	1,999967	0,704601	825,9042	42,02852	608,3892	11,59657	656,5899	13,80093	92,61134
1.sSMPABC098	0,226171	0,904072	2,8442743	0,104627	2,01188	0,707344	697,0517	42,83484	641,4658	12,26965	653,9015	13,78885	98,04859
1.sSMPABC099	0,074849	0,830218	2,8216327	0,098953	1,985413	0,70364	633,936	43,16309	608,2716	11,50999	613,7329	13,06321	99,06253
1.sSMPABC100	0,467835	0,852112	2,873548	0,100457	2,015566	0,701421	657,4647	43,921	617,0853	11,84647	625,8078	13,49607	98,55804
1.sSMPABC107	0,091524	0,884989	2,8278781	0,103163	2,002796	0,708233	681,5902	42,64239	632,9197	12,05916	643,6737	13,55411	98,28015
1.sSMPABC108	0,148273	1,016036	2,9019894	0,104286	2,029491	0,699345	947,635	42,46532	639,4766	12,34061	711,9186	14,94237	89,77501
1.sSMPABC109	0,202729	0,908572	2,8726474	0,100908	2,016861	0,702091	784,1136	42,96998	619,7271	11,9025	656,2983	13,96396	94,37936
1.sSMPABC110	0,348883	1,047176	3,1528952	0,095565	2,181061	0,691764	1183,936	44,98819	588,3671	12,24968	727,4829	16,49016	80,831
1.sSMPABC111	0,361352	0,86322	3,0788063	0,1019	2,088124	0,678225	654,6433	48,54051	625,5351	12,43357	631,879	14,56905	98,94736
1.sSMPABC112	0,284042	0,840058	2,9271096	0,099635	2,012072	0,687392	644,5145	45,68744	612,2686	11,73783	619,1774	13,6428	98,83634
1.sSMPABC113	0,084485	1,05864	2,9412447	0,103694	2,049186	0,696707	1042,676	42,57264	636,0233	12,39638	733,1529	15,45725	86,70269
1.sSMPABC114	0,069633	0,838049	2,8471964	0,098983	2,005647	0,704429	653,4623	43,36543	608,448	11,63061	618,0683	13,2505	98,39585
1.sSMPABC115	0,314312	0,88774	3,1579078	0,09759	2,111349	0,668591	805,5816	4 9,16007	600,2701	12,08695	645,1546	15,17297	92,99573
1.sSMPABC116	0,034917	0,828823	3,1640863	0,073944	2,26499	0,715843	1228,55	43,37521	459,8751	10,03902	612,9592	14,64658	74,98748
1.sSMPABC117	0,365498	0,84011	2,9250189	0,09777	2,050441	0,701001	685,1081	44,53011	601,3297	11,75774	619,2066	13,63346	97,06574
1.sSMPABC118	0,234067	1,222889	2,8655846	0,133264	2,032488	0,709275	823,8403	42,16497	806,4598	15,39367	811,0959	16,11734	99,3695
1.sSMPABC119	0,275684	0,865532	4,7468798	0,102231	2,801109	0,590095	653,4293	82,23743	627,47	16,73369	633,1383	22,58341	99,05594
1.sSMPABC120	0,250161	1,180636	3,1812696	0,109468	2,163725	0,680145	1152,511	46,29363	669,6577	13,74776	791,6096	17,62204	84,54351
1.sSMPABC127	0,039411	0,763157	2,8805637	0,082655	2,036731	0,70706	836,6689	42,43241	511,9497	10,00968	575,8299	12,72233	88,8649
1.sSMPABC128	0,33372	0,831327	4,8999337	0,0975	2,95175	0,602406	668,5665	83,71776	599,7402	16,89009	614,3481	22,81052	97,57511
1.sSMPABC129	0,086531	0,869012	2,9888141	0,102161	2,113666	0,707192	663,5046	45,27054	627,0596	12,61504	635,0306	14,1914	98,69602
1.sSMPABC130	0,496976	0,836162	2,849051	0,099254	1,999596	0,701846	642,7563	43,62718	610,0353	11,62437	617,0253	13,24281	98,81941
1.sSMPABC131	0,341165	0,828274	4,8523946	0,098813	2,85486	0,58834	631,9454	84,4995	607,4484	16,53549	612,6541	22,54081	99,10273
1.sSMPABC132	0,600329	0,777507	3,3942531	0,068742	2,45698	0,723865	1246,269	45,85941	428,5724	10,17309	584,0604	15,16806	73,34227
1.sSMPABC133	0,211557	0,926296	2,8255481	0,106892	1,952573	0,691042	703,1508	43,46922	654,6724	12,14082	665,6842	13,87365	98,29537
1.sSMPABC134	0,049025	0,874181	2,8284182	0,103163	1,982137	0,700793	655,2874	43,28421	632,9197	11,93465	637,835	13,46769	99,18025

1.sSMPABC135	0,326117	0,861347	2,8631395	0,102462	2,015261	0,703864	638,1758	43,75348	628,8182	12,05933	630,858	13,52576	99,62778
1.sSMPABC136	0,793045	0,867069	2,9082328	0,100908	2,026423	0,696788	685,1081	44,53011	619,7271	11,95898	633,9746	13,78951	97,70435
1.sSMPABC137	0,087232	0,878345	4,739707	0,103785	2,786894	0,587989	652,5975	82,28064	636,5502	16,87824	640,0887	22,72883	99,39785
1.sSMPABC138	0,022132	0,873787	2,8431197	0,103093	2,003088	0,704539	655,7808	43,28005	632,5096	12,05347	637,6218	13,53489	99,14915
1.sSMPABC139	0,130029	0,884154	4,7437256	0,104937	2,770083	0,583947	643,0299	82,77921	643,2789	16,94519	643,2237	22,82915	99,95884
1.sSMPABC140	0,373422	0,949472	3,0278343	0,096257	2,041029	0,674089	972,8831	4 5,6086	592,4355	11,53826	677,8275	15,06674	87,35555
1.sSMPABC147	1,037886	1,046364	3,2561088	0,097269	2,102226	0,645625	1147,383	4 9,39619	598,3859	11,99858	727,08	17,02802	82,25313
1.sSMPABC148	0,115748	2,483235	4,7677055	0,115893	3,648615	0,765277	2406,243	52,15184	706,8824	24,42223	1267,159	35,08829	55,73539
1.sSMPABC149	0,04211	0,876066	3,810881	0,063069	2,936522	0,770562	1637,871	4 5,10032	394,2607	11,21546	638,8557	18,20898	61,68042
1.sSMPABC150	0,086732	1,141714	2,8649119	0,112415	2,015158	0,703393	1032,167	41,15413	686,7578	13,11309	773,3221	15,60961	88,75412
1.sSMPABC151	0,044669	0,881384	2,8346162	0,104536	2,013616	0,710366	644,5145	42,87591	640,9393	12,27065	641,73	13,55698	99,82717
1.sSMPABC152	0,334993	1,036939	2,9073965	0,099404	2,028932	0,697852	1085,998	41,74526	610,917	11,81133	722,3925	15,12293	84,521
1.sSMPABC153	0,066218	0,846236	2,8664672	0,091957	2,009277	0,700959	829,7683	42,63255	567,0993	10,89342	622,5811	13,41192	91,04338
1.sSMPABC154	0,432598	0,998169	2,8781761	0,109398	2,023762	0,70314	811,9162	42,79912	669,25	12,85014	702,88	14,68734	95,16417
1.sSMPABC155	0,184808	1,494621	5,0173409	0,079958	4,081116	0,813402	2171,364	50,8508	4 95,8749	19,46529	928,199	30,9616	53,38466
1.sSMPABC156	0,074703	0,92879	2,8551665	0,10625	2,018869	0,707093	721,6574	42,84144	650,9352	12,48526	666,9979	14,03981	97,5416
1.sSMPABC157	0,486863	0,895733	2,9401783	0,104647	2,030651	0,690656	676,8657	45,4516	641,5828	12,38639	649,4444	14,18713	98,73983
1.sSMPABC158	0,082348	1,01771	3,1315304	0,092378	2,183916	0,697396	1194,56	44,27852	569,5841	11,89079	712,7616	16,14701	79,86734
1.sSMPABC159	0,784023	1,003271	3,0312727	0,098632	2,083743	0,687415	1035,263	44,47035	606,3898	12,04488	705,4694	15,51441	85,90816
1.sSMPABC160	0,445413	0,883782	2,9228056	0,103534	2,033111	0,695602	671,0012	44,92927	635,0865	12,28178	643,0234	14,00203	98,71645
1.sSMPABC167	0,353925	0,829603	3,1116369	0,096638	2,136198	0,686519	683,1146	4 8,3137	594,6749	12,1204	613,3918	14,40952	96,90184
1.sSMPABC168	0,088114	0,905573	2,9007727	0,104817	2,02735	0,6989	696,7117	44,20419	642,5771	12,38448	654,7017	14,07701	98,09837
1.sSMPABC169	0,658192	1,094213	3,0397607	0,1018	2,107529	0,693321	1145,769	4 3,5263	624,9487	12,53801	750,5488	16,23786	83,21722
1.sSMPABC170	0,912316	0,90404	3,051816	0,09352	2,057878	0,674313	931,5764	4 6,25083	576,32 4	11,33083	653,88 44	14,80209	88,09293
1.sSMPABC171	0,320014	1,227392	3,432533	0,10604	2,324543	0,677209	1291,357	49,14221	649,7085	14,35196	813,1504	19,36896	79,85058
1.sSMPABC172	0,153622	0,949821	3,1060203	0,101249	2,111227	0,679721	869,7101	47,20915	621,7223	12,49819	678,0093	15,46171	91,64982
1.sSMPABC173	0,13482	0,902923	2,9333497	0,104647	2,049902	0,698826	693,9317	44,72552	641,5828	12,50393	653,2882	14,21414	98,15858
1.sSMPABC174	0,755144	0,831272	2,9641201	0,097209	2,023427	0,68264	674,8125	46,3171	598,0326	11,54192	614,3175	13,73695	97,30211
1.sSMPABC175	0,406139	0,885039	2,9684726	0,104135	2,021369	0,680946	661,6421	46,5865	638,5988	12,2751	643,7007	14,23316	99,15795
1.sSMPABC176	0,031784	0,887211	4 ,3835246	0,060683	3,515751	0,802037	1732,369	4 8,03429	379,7781	12,95054	644,8697	21,11662	58,86017
1.sSMPABC177	0,225197	0,876013	3,0877273	0,075949	2,197825	0,711794	1284,521	42,23984	471,8974	9,986783	638,8271	14,72797	73,83066
1.sSMPABC178	0,142798	1,02453	2,9195346	0,109007	2,046055	0,700816	873,6133	43,13047	666,9781	12,94993	716,1881	15,096	93,07784
1.sSMPABC179	0,478518	0,902628	2,9255079	0,104727	1,990812	0,680501	691,603	45,71195	642,0507	12,15159	653,1311	14,17342	98,25383
1.sSMPABC180	0,366933	0,927085	2,9071252	0,106792	2,032374	0,699101	706,9588	44,21456	654,0886	12,62678	666,1001	14,28339	98,14636

1.sSMPABC187	0,313741	0,869348	2,951496	0,10168	2,020195	0,684465	674,4371	46,01483	624,2449	12,00506	635,2134	14,0159	98,22467
1.sSMPABC188	0,393183	0,899765	2,900864	0,104797	2,046868	0,705606	683,3945	43,89261	642,4601	12,50166	651,6019	14,02954	98,54733
1.sSMPABC189	0,199808	0,898909	2,898674	0,104546	2,036331	0,702504	686,474	44,02751	640,9978	12,41029	651,1445	14,0118	98,39211
1.sSMPABC190	0,293593	0,933333	2,9800308	0,10605	1,94707	0,653372	736,0022	47,75986	649,7669	12,02025	669,3867	14,69566	97,01886
1.sSMPABC191	0,160823	0,927363	3,0518729	0,106561	2,121315	0,695086	712,1915	46,62953	652,7457	13,15417	666,2466	15,0022	97,92328
1.sSMPABC192	0,014571	0,805003	2,9037728	0,0976	2,033481	0,700289	597,0699	44,90175	600,329	11,64186	599,6472	13,21806	100,0666
1.sSMPABC193	0,014833	0,81443	2,9100925	0,097359	2,038505	0,700495	627,5548	44,75805	598,9159	11,64441	604,9359	13,33317	98,9578

