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"O, let not the flame die out!

Cherished age after age in its dark caverns,

In its holy temples cherished.

Fed by pure ministers of love

Let not the flame die out.

Within thy body I behold it flicker,

Through the slight husk I feel quick fire leap-

ing

O, let not the flame die out."

— Edward Carpenter



ABSTRACT

A hydrodynamic stability study was carried out to investigate Kelvin-Helmholtz vortices

development. In order to be able to capture the small variations caused in the flow and the

response that it will give to these disturbances, whether or not it may evolve to an unstable

regime, it is necessary to use high-order, low dissipation and low dispersion numerical

methods. As a parametric model, the governing equations were deduced in their dimen-

sionless form so that it could be carried out based on the principle of dynamic similarity.

In order to study reactive flow in the future, second order terms such as viscous and

heat conduction had to be implemented. The influence of strong temperature gradients

on the formation of vortices and their respective amplification rate of the disturbances

was verified. For future work with the mixing layer, the governing equations for reac-

tive flows with diffusive flames were deduced through the Shvab-Zel’Dovich formulation.

Keywords: Kelvin-Helmholtz. Vortices. Temperature gradients. Stability. Instability.



RESUMO

Foi realizado um estudo de estabilidade hidrodinâmica para investigar o desenvolvimento

de vórtices de Kelvin-Helmholtz. Para que seja possível capturar as pequenas variações

provocadas no escoamento e a resposta que este dará a estas perturbações, podendo ou

não evoluir para regime instável, é necessário recorrer a métodos numéricos de alta or-

dem, baixa dissipação e baixa dispersão. Por ser um modelo paramétrico, as equações

governantes foram deduzidas em sua forma adimensional para que se pudesse fazer aná-

lises baseadas no princípio da similaridade dinâmica. Objetivando futuramente o estudo

de um escoamento reativo, os termos de segunda ordem como os viscosos e de condução

de calor, tiveram que ser implementados. Foi verificada a influência de fortes gradientes

de temperatura na formação de vórtices e sua respectiva taxa de amplificação das per-

turbações. Para futuros trabalhos com camada de mistura, foram deduzidas as equações

governantes para escoamentos reativos com chamas difusivas através da formulação de

Shvab-Zel’Dovich.

Palavras-chave: Kelvin-Helmholtz, Vórtices, Gradientes de temperatura, Estabilidade,

Instabilidade.
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1 INTRODUCTION

The successful design of fire safety engineers are required to analyze structures

to ensure acceptable levels of safety. Modellers explicitly consider a small part of a to-

tal system (e.g. a single room in a building or a short section of a tunnel) and expand

conclusions to the entire system.

Some engineering problems requires fast analysis and requires the use of paramet-

ric investigation for different hypothesis of the flow, as the compressible mixing layer, a

model problem for the analysis of high speed air breathing propulsion problems such as

reactant mixing in a combustion chamber, noise generation and mixture of sanility, pollu-

tion and other properties in fluids. In both cases to parallel streams at different velocities

may be composed of different chemical species or with large temperature differences and

properties variation may result in significant differences in flow stability characteristics

such as growth rates. This work investigates how viscous terms and temperature gradi-

ents affects the development of Kelvin-Helmholtz instability.

The research on the stability of binary mixing layers at the Instituto de Aeronáu-

tica e Espaço (IAE) started in 2006 with the Masters’ thesis of Salemi (2006) (SALEMI;

MENDONCA, 2008) and Quirino (2006). Were investigated hydrodynamic stability the-

ory to study binary mixing layers in compressible flow and direct numerical simulation

methods to solve the compressible Naver-Stokes equations, to study the effect of strong

heat sources on the stability of the mixing layer.

Other works where conducted on more complex models of double mixing layers or

mixing layers modified by jets and wakes (MENDONÇA, 2010; SOUZA, 2011; SOUZA;

ALVES; MENDONCA, 2014; MENDONCA, 2014; SOARES; FILHO; MENDONcA,

2014; FERNANDES; FREITAS; MENDONcA, 2014; FREITAS; FERNANDES; MEN-

DONCA, 2014; MANCO, 2014; MANCO; MENDONCA, 2014).

The present investigation extend these previous work using some of the method-

ologies developed by the group for the study of more complex mixing layer configura-

tions. Thus, the diffusion is added on the governing equations with objective of include

the combustion in the future.
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1.1 General Objectives

The objective of this work it to understand the characteristics of compressible, bi-

nary, parallel reactant streams, typically found in fire plume . The aim is to understand

the mechanisms of generation, propagation and interaction of disturbances in the veloc-

ity, entropy and acoustic fields which are associated to instability problems in combustion

devises and may hinder their performance. The long term goal is to understand the influ-

ence of instability problems to prevent set of practices intended to reduce the destruction

caused by fire (fire safety). The influence of important parameters in the development of

thermal, hydrodynamic and acoustic disturbances in terms of frequencies, wave-numbers

and amplification rates will be investigated. These parameters are the Mach number, the

temperature and velocity ratios between two parallel walls.

1.2 Specific Objectives

The main objective of this work is to study the influence of Kelvin-Helmholtz

instability between two parallel reactant streams at different velocity and temperature (or

density). This configuration is similar to a fire plume when there are local differences

in velocity in the flow. The fluid flow is composed by fuel and oxidant and a flame is

established between the reactant streams. Thus the influence of the formed vortexes on

the transfer of heat between the two parallel walls is analyzed.
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2 LITERATURE REVIEW

2.1 Fire modelling

Generally, fire plumes are modeled by a simplified model, see Fig.1. The flame

shape is represented by cone, in which, LF is the length and D is the flame diameter.

These approximations are satisfactory, only, for the first global discussion.

Figure 1 – Simplified representation of a fire plume (circular geometry).

Fonte: (MERCI; BEJI, 2016)

In real fire plumes the turbulence is involved. Turbulence is generated by instabili-

ties. These instabilities are generated by density differences and the resulting flow. Figure

(2) provides an illustration of a real fire plume, with rectangular fuel pool. The white ar-

rows indicate ‘unstable’ situations. The red arrows indicate vertical motion and the global

upward motion. The fire plume is slightly tilted due to forced ventilation (MERCI; BEJI,

2016).In this configuration, the Kelvin-Helmholtz instabilities are important.

Figure 3 show a zoom of the plume configuration, in which the density difference

will provide a substantial contribution in the turbulent flow dynamics of fire plumes.
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Figure 2 – Fire plume.

Fonte: (MERCI; BEJI, 2016)

Figure 3 – Sketch of: zoom in the flame region, indicating the differences in velocity and

density (left); sketch of vortex roll-up with unstable and stable regions (right). Density

ρ1 < ρ2

Fonte: (MERCI; BEJI, 2016)
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In this sense, the simplest configuration to describe the Kelvin-Helmholtz instabil-

ity is by a reacting mixing layer represented by two parallel reactants streams as different

velocity an density.

2.2 Reacting Mixing Layer

Mixing of fuel and oxidizer streams is of primary interest to applications of com-

pressible reacting mixing layers to study Kelvin-Helmholtz instability in the combustion.

This configuration is schematically represented in Fig. (4), in which two fluids (fuel and

oxidant) of different velocities and densities. When a small disturbance, such as a wave,

is introduced at the boundary connecting the fluids, as a consequence, a small velocity

perturbation, perpendicular to the shear flow direction, initiates a instability and causes

roll up of the shear layers. This phenomena is known as Kelvin-Helmholtz instability.

Thus the processes are controlled by large scale vortical structures (BROWN; ROSHKO,

1974). In the present analysis, the effects of compressibility, heat release and the ratios of

density, and velocity are analyzed in the flow structure and what implications this has for

the mixing and the consequently heat transfer from the boundaries (system walls).

Figure 4 – Kelvin-Helmholtz instability in shear flow

Fonte: (PAPERIN, 2007).

Kelvin-Helmholtz instabilities’ growth can also occour in the water. Oceanic and

atmospheric sciences study the correlation between mixing effecs of the vortices and tem-

perature and sanility in seawater (SMYTH; CARPENTER; LAWRENCE, 2007), (ARMI;

FARMER, 1988) or pollution between lakes (ZHU; LAWRENCE, 1996).
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3 METHODOLOGY

The stability and acoustic characteristics of binary compressible mixing layer is

studied using numerical and analytic methods. The base flow will be obtained through

the solution of the axissymetric boundary layer equations. The stability and acoustic

phenomena will be studied through the solution of the stability equations assuming normal

mode solutions. The resulting eigenvalue problem posed by the stability equations will

be solve both by global methods and shooting methods.

The stability and acoustic problems will also be solved through the direct numer-

ical simulation of the two-dimensional Navier-Stokes equations. High order finite differ-

ences will be used in order to reduce dissipation and dispersion errors in the numerical

solution. The direct numerical simulation aims at the study of nonlinear effects and non-

parallel (spreading of the base flow) effects. The simulation based on two-dimensional

set of equations will not allow the study of azimuth modes which will be studied only

through the stability equations.

Figure 5 – Problem schematic: mixing layer

Fonte: The author

In the schematic diagram (Figure 5) are represented the inflow velocities, an

example of the vertical velocity profile, solution for this initial condition, the boundary

conditions for temperature. To stimulate the formation of Kelvin-Helmholtz vortices

where used a pressure pulse witch behaves as a gaussian wave and a source in the energy

equation. The pressure pulse is is represented in the image in the Rayleigh inflexion point

(STRUTT; RAYLEIGH, 1878) to disturb the flow and keep up with the flow response to

this disturb.
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3.1 Governing Equations

Currie and Currie (2002) explains that from invoking the physical laws of

conservation of mass, momentum and energy, this set of equations can be manifested

with Lagrangian or Eulerian reference frame employed. In the first the attention is fixed

on a particular mass of fluid as it flows with no particles passing trough the control

volume, while in the second there are particles passing trough a control volume fixed in

space. The Eulerian reference will be used to derive equations for the conservation laws

using cartesian coordinates are used to describe them. (CURRIE; CURRIE, 2002)

The governing equations in compressible form are the non-conservative form of

conservation of mass, momentum in horizontal and vertical directions and energy:

∂ρ∗

∂ t∗
+ρ∗

∂u∗

∂x∗
+u∗

∂ρ∗

∂x∗
+ρ∗

∂v∗

∂y∗
+ v∗

∂ρ∗

∂y∗
= 0 (1)

∂u∗

∂ t∗
+u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
+

1

ρ∗
∂ p∗

∂x∗
−

∂τ∗xx

∂x∗
−

∂τ∗xy

∂y∗
= 0 (2)

∂v∗

∂ t∗
+ v∗

∂v∗

∂y∗
+u∗

∂v∗

∂x∗
+

1

ρ∗

∂ p∗

∂y∗
−

∂τ∗yy

∂y∗
−

∂τ∗xy

∂x∗
= 0 (3)

∂ p∗

∂ t∗
+u∗

∂ p∗

∂x∗
+ v∗

∂ p∗

∂y∗
+ γ p∗

∂u∗

∂x∗
+ γ p∗

∂v∗

∂y∗
− (γ−1)

~~τ∗ : ∇u∗−∇ · (k∗∇T ∗) = 0 (4)

The energy equation (Eq. 4) was obtained assuming a ideal gas using state equa-

tion, the definition of internal energy and the relation between specific heats, specified in

Eq. (5). Thus, the internal energy can be written as indicated in Eq. 6.

p = ρRT, e =CvT, γ =
Cv

Cp
(5)

e =
p

ρ (γ−1)
(6)
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3.1.1 Viscosity and thermal conductivity terms

In order for friction between the particles to occur, it must have relative velocity.

Relative velocity between adjacent points is responsible for a strain ratio in the fluid

element.

Figure 6 – Representation of a fluid element and the forces acting on it’s surfaces

Fonte: (ANDERSON, 1995)

Considering the following assumptions for the fluid element:

• isotropic.

• There is no strain when considering rotation, as rotation does not cause relative

velocity between particles.

• Linear ratio (Newtonian fluid)

• When there is no motion, τ = 0

The tensor is mathematically represented with:

τi j = λ
∂uk

∂xk

δi j +µ

(

∂ui

∂x j
+

∂u j

∂xi

)

(7)
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The second viscous coefficient, by the Stokes’s assumption is:

λ =−
2

3
µ (8)

This term is important as the divergent of u is not null. Therefore, the second

viscous coefficient must be used in compressible flows. Considering a two-dimensional

flow, the strains used are:

τxy = µ

(

∂u

∂y
+

∂v

∂x

)

, τxx =
2

3
µ

(

2
∂u

∂x
−

∂v

∂y

)

, τyy =
2

3
µ

(

−

∂u

∂x
+2

∂v

∂y

)

(9)

The coefficients µ and k, function of temperature, cannot be determined analyt-

ically and must be determined empirically. Svehla (1995) disposed values for various

chemical species and binaries for NASA Lewis Chemical Equilibrium Program, and are

calculated with:

ln(η) = A lnT +
B

T
+

C

T 2
+D, η = µ,k (10)

The constants A,B,C and D are tabulated coefficients according to each chemical

specie. The reference values for temperature T are also tabulated.

3.2 Adimensionalization

The adimensionalization is a technique that removes the physical dimensions from

the physical variables by a suitable substitution of variables. This procedure can simplify

and parameterize problems where measured units are involved. With the equations ex-

pressed in the dimensionless form, the number of variables are reduced and becomes

independent of system of unit. The independent non-dimensional variables are defined as

x≡
x∗

Lref

, t ≡
t∗

tref
=

t∗

Lref/a
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in which the characteristic time scale tref is the residence time of a fluid particle with

sound speed a in a distance Lref. The non-dimensional dependent variables are defined as

T ≡
T ∗

Tref

, ρ ≡
ρ∗

ρref

, u =
u∗

a
, v =

v∗

a
, p =

p∗

ρref a2

The transport coefficients in non-dimensional form are

µ ≡
µ∗

µref

, k ≡
k∗

kref

in with µ and k are viscosity and thermal conductivity, respectively.

Comparisons between flows with different characteristics may reveal dynamic

similarity, and it can be used to development of models to predict properties of the flow or

used to simplify mathematical models when some simplification is needed. The Reynolds

number (Re) is an adimensional parameter given by ρuL/µ , that allows to classify the

behavior nature of the flow as laminar or turbulent. Is the relation of advective moment

terms that tend to turbulence and diffusive terms that tend to stabilize the flow. The Prandtl

number (Pr) is an adimensional parameter used in flows when heat transfer occurs. Is the

relation of moment difusivity and thermal difusivity and is a fluid property, not a flow

property. Once the adimensionalization is done, the Reynolds and Prandtl number reveals

the influence of diffusive terms on the flow.

3.2.1 Continuity

The adimensionalization of the continuity equation is given by

(

ρref a

Lref

)

∂ρ

∂ t
+

(

ρref a

Lref

)

∂ρu

∂x
+

(

ρref a

Lref

)

∂ρv

∂y
= 0 (11)

∂ρ

∂ t
+ρ

∂u

∂x
+ρ

∂v

∂y
+u

∂ρ

∂x
+ v

∂ρ

∂y
= 0 (12)
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3.2.2 Momentum

The adimensionalization of the momentum equation is given by

(

ρref a2

Lref

)

ρ
∂u

∂ t
+

(

ρref a2

Lref

)

ρ~v · (∇ ·u)+

(

ρref a2

Lref

)

∂ p

∂x
−

(

µref a

L2
ref

)

∇ :~~τ = 0 (13)

∂u

∂ t
+u

∂u

∂x
+ v

∂u

∂y
+

1

ρ

∂ p

∂x
−

1

Re

(

∂τxx

∂x
+

∂τxy

∂y

)

= 0 (14)

∂v

∂ t
+ v

∂v

∂y
+u

∂v

∂x
+

1

ρ

∂ p

∂y
−

1

Re

(

∂τyy

∂y
+

∂τxy

∂x

)

= 0 (15)

3.2.3 Energy

The adimensionalization of the Energy equation is given by

(

ρref a3

Lref

)

∂ p

∂ t
+

(

ρref a3

Lref

)

u
∂ p

∂x
+

(

ρref a3

Lref

)

v
∂ p

∂y
+

(

ρref a3

Lref

)

γ p
∂u

∂x

+

(

ρref a3

Lref

)

γ p
∂v

∂y
−

(γ−1) µ̄ ā2

L̄2

(

~~τ : ∇U
)

−

(γ−1)kref Tref

L2
ref

∇ · (k∇T ) = 0 (16)

∂ p

∂ t
+u

∂ p

∂x
+ v

∂ p

∂y
+ γ p

∂u

∂x
+ γ p

∂v

∂y
−

(γ−1)

Re

(

~~τ : ∇u
)

−

1

PrRe
∇ · (k∇T ) = 0 (17)

3.3 Numerical methodology

A numerical method capable of capture disturbance evolutions related to hydro-

dynamic stability, must be of high order, have low dispersion and dissipation properties.

Therefore, for spatial and temporal discretization the following schemes are available in

the code. (SILVA et al., 2018)

For spatial schemes were used 4th order Central Finite Difference, 6th order Com-

pact Finite Difference (LELE, 1992) and 4th order Dispersion Relation Preserving Finite

Difference (TAM; WEBB, 1993) (SILVA et al., 2018).

For temporal schemes were used 4th order, 4 steps Runge Kutta, 4th order, Low
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Dissipation and Low Dispersion Runge-Kutta (HU; HUSSAINI; MANTHEY, 1996) and

4th order, Low storage six stage Runge Kutta for non-linear operators (BERLAND; BO-

GEY; BAILLY, 2006) (SILVA et al., 2018).

Figure 7 – Mesh representation showing interest domain and buffer zone

Fonte: The author

To avoid noise generated at the boundaries from interfere the developing vortices

in the domain of interest, non-reflecting boundary conditions are also applied. The

figure 7 shows how the computational domain is defined in interest region, where the

Navier-Stokes equations are solved and the non-reflecting boundary regions, where the

properties are smoothed. More details about the numerical schemes and the boundary

condition treatment may be found in (MANCO, 2014).

The computational domain used has a 541 x 481 mesh, resulting in a spacing

δx = 0.05, δy = 0.01 and δ t = 0.01. Is was used a Xeon E5-2609 v3 with 6 cores, with

a gcc version 4.8.3. The code has written using Fortran language and Message Passing

Interface (MPI) to make parallel computation between 32 cores, resulting in a 40 minutes

processing for 80 seconds of flow, for each study case.

3.4 Code Verification

From an code without second-order terms, the present code using Complete

Navier-Stokes equations was developed. (SILVA et al., 2018). The numerical scheme
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verification was done with a mixing layer where upper and lower streams are equal re-

spectively U1 = 0.8 and U2 = 0.2. Figure 8, taken from (MANCO; MENDONCA, 2018),

show a comparison between the growth rate αi, obtained with kinetic energy along the

streamwise direction with a inviscid linear stability analysis code and Euler equations

simulations for a several frequencies (SILVA et al., 2018).

Figure 8 – Growth rate versus frequency ω , comparison between linear stability analysis

and Euler numerical simulation.

Fonte: Manco and Mendonca (2018)
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4 RESULTS AND DISCUSSION

At this reference case will be investigated the effect of temperature gradients with

isothermal reference case. Results are presented in terms of flow topology, given by the

vorticity, normal velocity and pressure results and also presented in terms of growth rates

given by the kinetic energy evolution along the streamwise direction.

4.1 Parameters

The base flow is given by a canonical laminar state defined by the distribution of

density, non-dimensional streamwise velocity, and pressure (SILVA et al., 2018). The

flow is assumed parallel and the velocity distribution follows a hyperbolic tangent profile.

Consider the y axis in equation 18 and 19 the same indicated on figure 5.

U(y) =
1

2

[

(U1+U2)+(U1−U2) tanh

(

2y

δ

)]

(18)

The upper and lower streams have velocities and temperatures U1 = 0.8, T1 = 1

and U2 = .2, T2 = .8. The mixing thickness δ = 0.4.

The temperature distribution T (y) is given by the Crocco-Busemann relation and

the corresponding non-dimensional density is 1/T (y). The initial condition used for tem-

perature is: (MANCO, 2014) (SILVA et al., 2018)

T (y) = T1
y−U2

U1−U2
+T2

U1− y

U1−U2
+

γ−1

2
(U1− y)(y−U2) (19)

The pressure pulse used as source-term to the energy equation to disturb the flow

is: (MANCO, 2014)

s(x,y, t) = asin(ωt)exp−(ln2)[(x−x0)
2+(y−y0)

2]/r0 (20)

Where a = 5 is the pulse amplitude, ω = 1.0 is the frequency, x0 = 0 and y0 = 0

are the localization in the computational domain and r0 = 0.04 the pulse diameter.
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4.2 Reference flow results

Figures 9 through 11 show the evolution of a mixing layer with a temperature gra-

dient with T1 = 1 and T2 = 0.8. The vorticity distributions for the Euler solution (without

second-order terms) and Navier-Stokes solution with different Reynolds number are pre-

sented in Fig. 9. One expected result from the viscous simulation is the attenuation of

noise radiated from the boundaries. The lowest Reynolds number solution show a strong

stabilization of the Kelvin-Helmholtz structures due to viscous effects.

Figure 9 – Reference flow vorticity distribution

With the same test case, the figure 10 shows the pressure distribution and the same

conclusions are drawn, but the solution is not as noise as the vorticity, which involve com-

putations of gradients of the velocity field. Finally, the normal velocity field is presented

in Fig. 11, where the instability attenuation due to viscous effects are again noticeable.
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Figure 10 – Reference flow pressure distribution

Figure 11 – Reference flow normal velocity component distribution
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4.3 Strong Temperature Gradient Cases

In this section is presented the effect of temperature gradients. The upper stream

non-dimensional temperature is kept T1 = 1, and the lower stream temperature is fixed at

T2 = 1, T2 = 0.5 and T2 = 2. The frequency of each case was selected to correspond to

the highest growth rate frequency obtained from a linear stability analysis. For T2 = 0.5

the frequency is ω = 0.8, for T2 = 1, ω = 1 and for T2 = 2, ω = 1.2. Reynolds number

used is 10000.

Figure 12 – Vorticity Distribution for Re=10000. In figure (a) has values for T1 = 1,

T2 = 0.5 and ω = 0.8. Figure (b) has values for T1 = 1, T2 = 1 and ω = 1. Figure (c) has

values for T1 = 1, T2 = 2 and ω = 1.2.

(a)

(b)

(c)

The results are shown in Figs. 9 through 11 in terms of vorticity distribution

pressure and normal velocity component. According to Fig. 9, the topology of the flow

structure is not significantly affected, but the disturbance growth is stronger for the T2 =
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0.5 case, while for T2 = 2 the disturbance is the weakest, as seen in Fig. 13 and 11.

These results are consistent with the linear stability analysis presented in the next section.

The wave-number change due to changes in T2 is also consistent with the linear stability

results, where one has to observe that each case correspond to a different frequency.

Figure 13 – Pressure distribution for Re=10000. The figure (a) has values for T1 = 1 and

T2 = 0.5, ω = 0.8. Figure (b) has values for T1 = 1 and T2 = 1, ω = 1 and figure (c)

T1 = 1 and T2 = 2, ω = 1.2.

(a)

(b)

(c)
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Figure 14 – Normal velocity component for Re=10000. Figure (a) has values for T1 = 1

and T2 = 0.5, ω = 0.8. Figure (b) has values for T1 = 1 and T2 = 1, ω = 1 and figure (c)

has values for T1 = 1 and T2 = 2, ω = 1.2.

(a)

(b)

(c)

4.4 Linear Stability Theory Analysis

Figure 15 shows the growth rate, phase speed and wavenumber for lower stream

temperature T2 from 0.1 to 10 obtained varying the frequency ω from 0 to 3, calculating

the kinect energy and applying the Fast Fourier Transform (FFT) to obtain them. The

results show that as lower is the stream temperature, smaller is the range of unstable

frequencies. The growing mode for T2 = 0.5 is larger than that for the isothermal case. As

the slow stream temperature is decreased the flow becomes more stable, both in terms of

the highest amplification rate and in terms of the range of unstable frequencies. For higher

slow stream temperature, the mixing layer becomes more stable, but the range of unstable

frequencies increase with increasing T2. The phase speed increases as the lower stream
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temperature is increased while the wavenumber reduces monotonically. The wavenumber

observed in the DNS solutions are compatible with this results, considering that each case

was run at a different frequency, the one corresponding to the highest amplification rate.

As T2 is increased, the frequency considered is reduced, resulting in a lower wavenumber

for the lower T2 and a higher wavenumber for the higher T2. Nevertheless the dispersion

characteristic, with a relatively constant phase speed with frequency, does not change with

T2, where the results show that the phase speed levels off for higher frequencies. (SILVA

et al., 2018)

Figure 15 – Linear Stability Theory results. Effect of Temperature gradient. T1 = 1

through T2 = 0.1 to 10 using Re=10000.

Amplification rate αi. Phase speed cp.

Wave number αr.
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5 CONCLUSIONS

This work contributed to the understanding of the development and evolution of

hydrodynamic instabilities. Results with linear stability theory with respect to wavenum-

ber, wave speed amplification rate are consistent with the the solution obtained with

direct numerical simulation using low dispersion and dissipation and high order method.

Was observed different amplification rate for different temperature gradients, where

higher temperature T2 decreases the rate but and lower temperatures can increase the

amplification and decrease the spectrum of frequencies that can amplify the disturbance.

About the phase speed cp of the disturbance, is observed higher values as the temperature

increases and lower values when T2 decreases. The wave number, inversely proportional

to the wave-lenght, and assuming the disturbance propagates as a Gaussian, has higher

values as T2 decreases for the same frequency ω . The results with different Reynolds

number confirmed the stable behavior expected to the flow for low Reynolds numbers.

This work also tried to make advances in studies of combustion and hydrodynamic

instabilities. So far, only the mixing layer without chemical reaction has been analyzed. In

this case the problem was solved by the following governing equations: mass, momentum

in the x and y directions, energy and state equation. For the chemical reaction of the

flame to be implemented it is necessary to include conservation equations of reactants

(fuel and oxidant). However, due to the difficulty of solving the chemical reaction term

present in the species and energy equations, the Zel’dovich procedure will be used. This

method eliminates the source of the chemical reaction of the equations by combining the

governing equations. Thus the solution is obtained through new conservative variables:

mixture fraction and excess enthalpy. For more details, the formulation is present on

Appendix A.
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APPENDIX A — SHVAB-ZEL’DOVICH FORMULATION FOR DIFFUSION

FLAMES

A.1 Conservation of species equation

Considering the chemical specie i, with specific mass ρi, the mass fraction Yi is

defined as:

Yi =
ρi

ρ
(21)

The species conservation equation in a volume V , in an eulerian reference system

can be expressed as the accumulation of the property inside the volume, summed with

the property increment through the area A that involves the volume V , and, using Gauss’s

Theorem, the area integral is transformed in a volume integral:

d

dt

∫

V
ρYidV =

∫

V

∂ρYi

∂ t
dV +

∫

A
ρYi (~v ·~n)dA =−

∫

A

~Qi ·~ndA+
∫

V
ρωidV (22)

∫

V

∂ρYi

∂ t
dV +

∫

V
∇ ·

(

ρ~VYi

)

dV =−
∫

V
∇ · ~QidV + si

∫

V
ρωdV (23)

∂ρYi

∂ t
+∇ ·

(

ρ~VYi

)

=−∇ · ~Qi + siρω (24)

Where the terms on the right-hand side represent the mass diffusion and the rate

of chemical reaction.

The chemical reaction term w is:,

w = BYOYFeE/RT (25)

Where B represents the collisions between the oxidizer O and fuel F molecules,

and the effectiveness of the collisions is defined as e−E/RT , where E is the energy activa-

tion. Thus, the conservation of species equation in the non-conservative form becomes:

ρ

[

∂

∂ t
Yi +~v ·∇Yi

]

= ∇ · (ρDi∇Yi)−ρωi (26)
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A.2 Energy equation with reactive terms

From the internal energy equation for a reactive flow:

∂ρe

∂ t
+∇ ·ρ~ve =−p ·∇~v+~~τ : ∇~v+∇ · (k∇T )+∇ · (ρDi∇Yi)hi (27)

From the of internal energy, e = h− p/ρ , re-writing:

∂ρ (h− p/ρ)

∂ t
+∇ ·ρ~v

(

h−
p

ρ

)

=−p∇ ·~v+~~τ : ∇~v+∇ · (k∇T )+∇ · (ρDi∇Yihi) (28)

Expanding the equation 28:

∂ρh

∂ t
+∇ ·ρ~uh−

∂ p

∂ t
−∇ · p~v =−p∇ ·~v+~~τ : ∇~v+∇ · (k∇T )+∇ · (ρDi∇Yihi) (29)

Using the chain rule for the forth term:

∂ρh

∂ t
+∇ ·ρ~vh−

∂ p

∂ t
−~v ·∇p =~~τ : ∇~v+∇(k∇T )+∇ · (ρDi∇Yihi) (30)

From the definition of enthalpy:

h = ∑
i

Yi

(

h0
i +hT

i

)

= Yiĥ
0
i + ĥ (31)

Considering that there is a local thermodynamic balance,

Yiĥ0
n ≡∑

i

Yih
0
i , ĥ≡∑

i

Yih
T
i = ∑

i

Yi

∫ T

Tre f

cpi
dT

Re-writing:

∂ρ
(

Yiĥ
0
i

)

∂ t
+∇ ·

(

ρ~vYiĥ
0
i

)

+
∂ρ ĥ

∂ t
+∇ · (ρ~vh̄)−

∂ p

∂ t
−~v ·∇p =

~~τ : ∇u+∇ · (k∇T )+∇ ·

[

ρDi∇Yi(h̄
0
i + h̄T

i )
]

(32)
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After regroup the terms:

∑
i

h̄0
i

[

∂ρYi

∂ t
+∇ · (ρ~vYi)−∇(ρDi∇Yi)

]

= ∑
i

h̄0
i (ρωi) (33)

As term in the equation 34 is not expressive for the flow, a simplification is done

with:

∇ ·∑
i

(

ρDi∇Yih̄
T
i

)

= 0 (34)

For simplicity and for initial validation of code, the specific heal is considered

constant:

h̄ =
∫ T

T0

cpdT = cp

∫ T

T0

dT = cpT (35)

With the definitions above the chemical reaction can be insert in the system of

equations, witch, in the non-conservative form becomes:

ρ

[

∂cpT

∂ t
+~v ·∇(cpT )

]

−

∂ p

∂ t
+~v ·∇p−~~τ : ∇~v−∇ · (k∇T ) = Qρω (36)

Where the terms, respectively, represents the energy accumulation, convective

transport, time pressure rate, pressure gradient, viscous dissipation, heat transfer due the

convection, heat transfer due the diffusion and the chemical reaction time rate.

Different from the equation 4, where the primitive variable is the pressure, is

demonstrated below, where changed to use temperature due the pressure Diferentemente

da formulação adotada inicialmente que usava a equação da energia em termos de pressão,

como será visto adiante, esta foi alterada para termos de temperatura due to the symmetry

of the operators, thus, simplifying the complexity of the formulation.

A.3 Adimensionalization

The independent non-dimensionals variables are defined as:

x≡
x̂

L̂c

, t ≡
t̂

t̂c
=

t̂

L̂c/â
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Where the caracteristic time scale t̂c is the residence time of a fluid particle with

velocity â in a distance L̂.

The dependent non-dimensional variables are defined as:

ρ ≡
ρ̂

ρ̂c
, vi =

v̂i

v̂c
, p =

p̂

ρ̂cv̂2c
, i=1, 2, 3

In this analysis, the caracteristic velocity v̂c is the sound velocity with caracteristic

temperature T̂c, v̂c = âc = (γRT̂c)
1/2. The transport coefficients in the non-dimensional

form are:

µ ≡
µ̂

µ̂c
, k ≡

k̂

k̂c

, Dn ≡
D̂n

D̂nc

, n=F, O

A.3.1 Energy equation with chemical reaction

From the dimensional form:

ρ

[

∂ ĉpT̂

∂ t̂
+~̂v ·∇

(

ĉpT̂
)

]

−

∂ p̂

∂ t̂
+~̂v ·∇ p̂−~~τ : ∇v̂−∇ ·

(

k̂∇T̂
)

= Qρ̂ω (37)

Defining ∇̂ = (1/L̂c)∇, the magnitude order of each term is described below:

ρ̂cĉpT̂c

t̂c
,

ρ̂cĉpT̂cv̂c

L̂c

,
ρ̂cγRT̂c

t̂c
,

v̂cρ̂cγRT̂c

L̂c

,
µ̂cv̂c

L̂c

v̂c

L̂c

,
κ̂cT̂c

L̂2
c

, Qρ̂cB (38)

Dividing by ρ̂cĉpT̂c and after by v̂c/L̂c (t̂res ≡ L̂c/v̂c):

t̂res

t̂c
, 1,

t̂

t̂c

γR

ĉp
,

γR

ĉp
,

µ̂cv̂2c

L̂cρ̂cv̂ccpT̂c

,
κ̂c

v̂cLcρ̂ccp
,

Q

ĉpT̂c

BL̂c

v̂c
(39)

Since that St = t̂res/t̂c, (γ−1) = γR/ĉp, ν̂ = µ̂c/ρ̂c, α = κ̂/ρ̂cp, 1/Pe=α/ûL̂,

Da = L̂cB/v̂c, and v̂c
2 = γRT̂c.

St, 1, St (γ−1) , (γ−1) ,
γ−1

Re
,

1

Pe
, qDa (40)

Defining ω = DaY n
OY n

F e−β/T , the non-dimensional form is:



38

ρ

[

St
∂T

∂ t
+~v ·∇T

]

− (γ−1)

[

St
∂ p

∂ t
+~v ·∇p

]

=

(

γ−1

Re

)

~~τ : ∇~̂v+
1

Pe
∇ · (k∇T )+qρω (41)

A.3.2 Chemical Species

ρ

[

∂

∂ t̂
Ŷi +~̂v ·∇Ŷi

]

= ∇ ·
(

ρ̂D̂i∇Ŷi

)

+ siρ̂ω (42)

The magnitude order of each term is demonstrated below:

ρ̂cŶc

t̂c
,

ρ̂ v̂Ŷc

L̂c

,
ρ̂αcŶc

L̂2
c

, ρ̂cBŶFcŶOc (43)

For Lewis Le = 1, DO = DF = α and dividing by ρ̂cv̂cŶc/L̂c:

St, 1,
1

Pe
, Da (44)

In the non-conservative form:

Stρ
∂

∂ t
Yi +ρ~v ·∇Yi =

1

Pe
∇ · (ρα∇Yi)−Siρω (45)

in which SO = S = sOŶFc/ŶOc e SF = 1.

A.4 Eliminating the chemical reaction from the energy equation

The Zeldovich formulation allows to adopt an infinitely narrow region of the flame,

and in this interface all the fuel reacts with the oxidizer. This allows to eliminate the

exponential term, highly non-linear, present in the energy equation.

Stρ
∂T

∂ t
+ρ~v ·∇T − (γ−1)

[

St
∂ p

∂ t
+~v ·∇p

]

−

(

γ−1

Re

)

~~τ : ∇u−
1

Pe
∇ · (k∇T ) = qρω

(46)
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Defining p = ρT , Dρ/Dt =−ρ∇ ·~v and reording the terms:

Stρ
∂T

∂ t
+ρ~v ·∇T − (γ−1)

[

St

(

ρ
∂T

∂ t
+ρ~v ·∇T

)

−ρT (∇ ·~v)

]

−

(

γ−1

Re

)

~~τ : ∇u−
∇

Pe
· (k∇T ) = qρω (47)

Expanding the third term:

(2− γ)

[

Stρ
∂T

∂ t
+ρ~v ·∇T

]

=−(γ−1)ρT ∇ ·~v+

(

γ−1

Re

)

~~τ : ∇v+
∇

Pe
· (k∇T )+qρω

(48)

With the following manipulation:

1

Pe
∇ · [ρα∇(T +(2− γ)T − (2− γ)T )] =

1

Pe
∇ · [ρα∇((2− γ)T )]+

1

Pe
∇ · [ρα∇(T (γ−1))]

Is possible to re-write the equation 48 as:

(2− γ)

[

Stρ
∂T

∂ t
+ρ~v ·∇T

]

= (2− γ)
1

Pe
∇ · (ρα∇T )+

(γ−1)
1

Pe
∇ · (ρα∇T )+

(

γ−1

Re

)

~~τ : ∇~v− (γ−1)ρT ∇ ·~v+qρω (49)

With the chemical species, the equations are:

Stρ
∂

∂ t
YO +ρ~v ·∇YO =

1

Pe
∇ · (ρα∇YO)−Sρω (50)

From definition sF = 1

Stρ
∂

∂ t
YF +ρ~v ·∇YF =

1

Pe
∇ · (ρα∇YF)−ρω (51)

Multiplying the equation (49) ×(S+1)/q+ (50) + (51) and defining:

H =
(2− γ)(S+1)T

q
+ψO/YO +ψF/YF (52)

Zeldovich’s H funcion is obtained:
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Stρ

[

∂H

∂ t
+~v ·∇H

]

=
1

Pe
∇ · (ραH)+

[

(2− γ)(s+1)

q

]

[

(γ−1)
1

Pe
∇ · (ρα∇T )+

(

γ−1

Re

)

~~τ : ∇~v− (γ−1)ρT ∇ ·~v

]

(53)

Now, to obtain the Z function of Zeldovich, must sum −(50) +S× (51), and also

defining:

Z = SYF −YO +1/(SψF −ψO +1)

The Z equation is:

Stρ
∂Z

∂ t
+ρ~v ·∇Z =

1

Pe
∇ · (ρα∇Z) (54)


