
UNIVERSIDADE FEDERAL DO PAMPA

Luciano Marchezan

PAxSPL: a Feature Retrieval Process for
Software Product Line Re-engineering

Alegrete
2018

Luciano Marchezan

PAxSPL: a Feature Retrieval Process for Software
Product Line Re-engineering

Term Paper presented in Software Engineer-
ing Graduation Course of Universidade Fed-
eral do Pampa as partial requirement for title
obtention of Software Engineering Bachelor

Supervisor: Prof. PhD Elder de Macedo Ro-
drigues

Co-supervisor: Prof. PhD Maicon
Bernardino da Silveira

Alegrete
2018

Luciano Marchezan

PAxSPL: a Feature Retrieval Process for Software
Product Line Re-engineering

Term Paper presented in Software Engineer
ing Graduation Course of Universidade Fed
eral do Pampa as partial requirement for title
obtention of Software Engineering Bachelor

Term Paper presented and approved in of
Examination Board:

:hDEider de ~edo Rodrigu~
Supervisor

UNIPAMPA

IYrA C~,:-:-
~

Prof. PhD Maicon Bernardino da Silveira
Co-supervisor
UNIPAMPA

June 27 2018

“Imagination is more important than knowledge. For knowledge is
limited to all we now know and understand, while imagination

embraces the entire world, and all there ever will be to know
and understand.” (Albert Einstein)

ABSTRACT

Software Product Lines (SPL) are a well known solution to systematically create reusable
software products. Amongst the approaches to create SPL, the extractive approach is usu-
ally used when the organization already has a set of similar systems. These systems are
analyzed to extract, categorize and group their common and variant features throughout
the SPL re-engineering process. As there are different scenario variables, such as, available
artifacts and team experience, the activities and techniques used to perform these tasks
may change. This may increase the effort and decrease the precision of the retrieved fea-
tures when users with low experience in SPL re-engineering perform such tasks. However,
there is not a process support performing these tasks considering different scenarios.
With the objective of creating a process to be applicable in difference scenarios and flexible
to fulfill the users needs, we sought in the literature and analyzed SPL re-engineering
processes. We collected information about these process and compiled them to create our
own. Therefore, we propose PAxSPL, a process that provides support to prepare, assemble
and execute feature retrieval throughout the analysis of product artifacts, documentation
and team experiences. Within PAxSPL we also included a set of guidelines to give support
to those who may perform it.
To evaluate our proposal contribution to the SPL field, we applied a survey in experts of
the area. The survey results gave use evidence about PAxSPL contribution and relevance
for the field. To further evaluate our process we conducted and reported an exploratory
case study in a real development environment. The organization where the case study was
executed possesses a large number of products that are candidates to become SPL. The
case study results were important to identify some points for improvement in PAxSPL.
We also could use the information gathered to improve the guidelines and give these
information to be use as basis of comparison to future users.

Key-words: Software Product Line Re-engineering, Software Re-engineering, Software
Product Lines, Software Reuse, Software Evolution.

RESUMO

Linhas de Produto de Software (LPS) são uma solução bem conhecida para se criar de
maneira sistemática softwares reutilizáveis. Entre as abordagens existentes para se criar
LPS, a abordagem extrativa é geralmente utilizada quando uma empresa já tem um con-
junto de sistemas similares. Esses sistemas são analisados para se extrair, categorizar e
agrupar suas características em comum e variantes por meio do processo de re-engenharia
de LPS. Como existem diferentes variáveis de cenário, como artefatos disponíveis e exper-
iência da equipe, as atividades e técnicas utilizadas para se executar estas tarefas podem
alterar. Isto pode aumentar o esforço e diminuir a precisão das características recuper-
adas, principalmente quando usuários com pouca experiência em re-engenharia de LPS
executam estas tarefas. Porém, não existe um processo que de suporte para executar tais
tarefas levando em consideração diferentes cenários.
Com o objetivo de se criar um processo que possa ser aplicável em diferentes cenários
e flexível para atender as necessidades dos usuários, nós buscamos na literatura e anal-
isamos processos de re-engenharia para LPS. Foram coletados dados sobre estes processos,
sendo que os mesmos foram mesclados para criar nosso próprio processo. Portanto, neste
trabalho propõe-se PAxSPL, um processo que fornece suporte para preparar, montar e
executar a recuperação de características por meio da análise de artefatos de produto,
documentação e experiência do time. Foi incluído no PAxSPL, um conjunto de diretrizes
para dar suporte àqueles que venham a executá-lo.
Para avaliar a contribuição da nossa proposta para a área de LPS, aplicou-se um ques-
tionário em especialistas da área. Os resultados do questionário forneceram evidência
sobre a contribuição e relevância do PAxSPL para a área. Para obter uma avaliação
adicional, um estudo de caso exploratório em um ambiente real de desenvolvimento foi
conduzido e reportado. A empresa onde o estudo de caso foi aplicado possui um grande
numero de produtos que são candidatos à se tornarem LPS. Os resultados do estudo
de caso foram importantes para se identificar alguns pontos para se melhorar PAxSPL.
Adicionalmente, pode-se usar as informações coletadas para incrementar as diretrizes de
suporte e fornecer algumas informações coletadas para serem usadas como base de com-
paração para futuros usuários do processo.

Palavras-chave: Re-engenharia de Linhas de Produto de Software, Re-engenharia de
Software, Linhas de Produto de Software, Reuso de Software, Evolução de Software.

LIST OF FIGURES
Figure 1 – The two-life-cycle model of SPLE. 26
Figure 2 – SPL Re-engineering process. 29
Figure 3 – A feature model of a car. 31
Figure 4 – A feature model created using the Generative Programming notation. . 31
Figure 5 – The generic process for feature retrieval. 46
Figure 6 – An example of assembled process. 47
Figure 7 – The PAxSPL process. 47
Figure 8 – Documentation analysis sub-process. 49
Figure 9 – Select techniques sub-process. 53
Figure 10 – A feature model of retrieval techniques. 55
Figure 11 – Participants technical knowledge. 66
Figure 12 – Frequency diagram of the quantitative questions. 67
Figure 13 – First version of our process. 70
Figure 14 – First version of our process (Feature Search Activity). 70
Figure 15 – Team information report generated during case study. 78
Figure 16 – Retrieval techniques report generated during case study. 79
Figure 17 – Concept lattice of features extracted from ten different products of ICode. 80
Figure 18 – ICode feature model from Phase 1. 81
Figure 19 – ICode feature model from Phase 2. 82
Figure 20 – Effort percentage of each PAxSPL activity. 93
Figure 21 – Effort percentage of each PAxSPL phase. 93
Figure 22 – Template for Team Information Report 109
Figure 23 – Template for Artifacts Type Specification 111
Figure 24 – Template for Retrieval Techniques Report 113
Figure 25 – Template for Feature Report . 115
Figure 26 – Template for Process Execution Report 117

LIST OF TABLES
Table 1 – Base Search String. 35
Table 2 – Reduced search string. 35
Table 3 – Retrieved studies by database. 37
Table 4 – Summary of the selection process. 38
Table 5 – Quality assessment result. 38
Table 6 – Artifacts used for each study. 39
Table 7 – Retrieval strategies used for each study. 39
Table 8 – Experience applying/performing/monitoring: 66
Table 9 – Time spent in each activity of PAxSPL during both phases of case study. 76
Table 10 – Quality of PAxSPL artifacts generated during both phases of case study. 77
Table 11 – Artifacts reused during Phase 2. 83
Table 12 – Use of artifacts for each activity of PAxSPL. 84
Table 13 – Relevance of artifacts according to survey results. 85
Table 14 – Complexity level of each PAxSPL activity according to survey answers. 86
Table 15 – Reusability level of PAxSPL generated artifacts according to survey 3

results. 86
Table 16 – Relevance score of each artifact. 88
Table 17 – Relevance level of each artifact during PAxSPL execution. 89
Table 18 – Impact level of artifacts when selecting techniques. 90
Table 19 – Effort score of each PAxSPL activity. 92
Table 20 – Reusability score of PAxSPL artifacts. 95
Table 21 – Reusability level of PAxSPL artifacts. 95

LIST OF ABREVIATIONS
EC Exclusion Criteria

FCA Formal Concept Analysis

FODA Feature-Oriented Domain Analysis

IC Inclusion Criteria

LSI Latent Semantic Indexing

PAxSPL Prepare Assemble and Execute Process for Software Product Line Re-engineering

QA Quality/Assessment Criteria

QM Quality Metrics

RQ Research Question

SLR Systematic Literature Review

SMS Systematic Mapping Study

SPL Software Product Lines

SPLA Software Product Line Architecture

SPLE Software Product Line Engineering

VSM Vector Space Model

TABLE OF CONTENTS

1 INTRODUCTION . 21
1.1 Motivation . 21
1.2 Objectives . 22
1.3 Methodology . 22
1.4 Organization . 23

2 BACKGROUND . 25
2.1 Software Product Line . 25
2.1.1 Software Product Line Engineering 25
2.1.1.1 Domain Engineering . 26
2.1.1.2 Application Engineering . 27
2.1.2 Software Product Line Re-engineering 27
2.1.2.1 Feature Retrieval Techniques . 28
2.1.3 Feature Model . 30
2.2 Software Process . 31
2.3 Chapter Lessons . 32

3 RELATED WORK . 33
3.1 A Systematic Literature Review 33
3.1.1 Planning Review . 33
3.1.1.1 Scope and Objective . 33
3.1.1.2 Question Structure . 33
3.1.1.3 Research Questions . 34
3.1.1.4 Search Process . 34
3.1.1.5 Inclusion and Exclusion Criteria . 34
3.1.1.6 Quality Assessment Criteria . 35
3.1.1.7 Selection Process . 36
3.1.2 SLR Conduction . 37
3.2 Discussing Related Work . 38
3.2.1 Artifacts and Strategies for Feature Retrieval 38
3.2.2 Studies Main Contribution . 39
3.2.3 Applicability in Different Scenarios 40
3.3 Chapter Lessons . 41

4 THE PREPARE, ASSEMBLE AND EXECUTE PROCESS . 43
4.1 Process Overview . 43
4.1.1 Process Structure . 43
4.1.2 Actors/Roles . 44
4.1.3 Artifacts . 44

4.1.3.1 Input Artifacts . 45
4.1.3.2 Output Artifacts . 45
4.1.3.3 Generic and Assembled Processes 46
4.2 Phases and Activities . 47
4.2.1 Prepare . 48
4.2.1.1 Collect Team Information . 48
4.2.1.2 Assign Roles . 48
4.2.1.3 Perform Documentation Analysis 48
4.2.1.3.1 Collect Domain Information . 49

4.2.1.3.2 Register Domain Constraints and Vocabulary 50

4.2.1.3.3 Collect Requirements Information . 50

4.2.1.3.4 Register Architectural Information . 50

4.2.1.3.5 Collect Artifact Information . 51

4.2.1.3.6 Register Development Information . 51

4.2.1.3.7 Register Technological Information . 51

4.2.2 Assemble . 52
4.2.2.1 Select Techniques . 52
4.2.2.2 Assemble Techniques . 52
4.2.2.3 Assign Tasks . 53
4.2.3 Execute . 54
4.2.3.1 Execute Assembled Process . 54
4.2.3.2 Document Feature Artifacts . 54
4.2.3.3 Document Process Experience . 54
4.3 Guidelines . 55
4.3.1 Static Analysis . 55
4.3.1.1 Clustering . 56
4.3.1.2 Dependency Analysis . 56
4.3.1.3 Data Flow Analysis . 57
4.3.2 Information Retrieval . 58
4.3.2.1 Formal Concept Analysis . 58
4.3.2.2 Latent Semantic Indexing . 59
4.3.2.3 Vector Space Model . 60
4.3.3 Support Techniques . 60
4.3.3.1 Expert-Driven . 61
4.3.3.2 Heuristics . 61
4.3.3.3 Rule-based . 61
4.3.4 Support Checklist . 61
4.4 Chapter Lessons . 63

5 ASSESSING OUR PROPOSAL 65

5.1 Survey . 65
5.1.1 Participants Profile . 65
5.1.2 Results . 67
5.1.3 Results Analysis . 68
5.1.4 Process Improvements considering the Survey Results 69
5.2 Case Study . 70
5.2.1 Rationale and Preparation . 70
5.2.1.1 Objectives and Research Questions 71

5.2.1.2 Context and Units of Analysis . 72

5.2.1.3 Case Study Protocol . 73

5.2.1.4 Data Collection . 73

5.2.1.5 Quality Metrics . 74

5.2.2 Conduction . 75
5.2.3 Collected Data . 76
5.2.3.1 Time Spent . 76

5.2.3.2 Quality of Generated Artifacts . 76

5.2.3.3 Use of Generated Artifacts . 83

5.2.3.4 Surveys Answers . 85

5.2.4 Results and Discussion . 87
5.2.4.1 RQ1. What is the impact/relevance level of the artifacts generated

by PAxSPL execution in terms of re-engineering? 87

5.2.4.2 RQ2. What is the quality of the generated artifacts? 90

5.2.4.3 RQ3. What is the effort needed to perform each phase of PAxSPL? 91

5.2.4.4 RQ4. What is the reuse capability of PAxSPL? 94

5.2.5 Threats to Validity . 96
5.3 Chapter Lessons . 97

6 FINAL CONSIDERATIONS . 99

BIBLIOGRAPHY . 101

APPENDIX 107

APPENDIX A – TEMPLATE FOR TEAM INFORMATION
REPORT . 109

APPENDIX B – TEMPLATE FOR ARTIFACTS TYPE SPEC-
IFICATION 111

APPENDIX C – TEMPLATE FOR RETRIEVAL TECHNIQUES
REPORT . 113

APPENDIX D – TEMPLATE FOR FEATURE REPORT . 115

APPENDIX E – TEMPLATE FOR PROCESS EXECUTION
REPORT . 117

Index . 119

21

1 INTRODUCTION
The increasing demand for quality software and the concern of software develop-

ment companies in lowering project costs has led to the emergence of software engineer-
ing solutions such as Software Product Line Engineering (SPLE) (LINDEN; SCHMID;
ROMMES, 2007). As happened in the automobile industry, the introduction of product
lines in software production caused big changes to the software industry. As Pohl, Böckle
e Linden (2005) highlighted, the benefits and motivation for adopting Software Product
Lines (SPL) are many, such as: reduced maintenance effort, reduced complexity, increased
reusability and better cost estimates.

Pohl, Böckle e Linden (2005) discussed the many benefits from implementing SPL.
A great example of these benefits is the cost reduction in comparison to single systems.
In the case of a few systems, the costs for SPLE are relatively high, however, they are
significantly lower for larger quantities.

The Software Re-engineering process is defined by Chikofsky e Cross (1990) as
“the examination and alteration of a system to reconstitute it in a new form”. In the SPL
context, however, this definition is more specific. It could be described as the process
of evolving legacy systems into SPL by identifying and extracting common and variable
points (LAGUNA; CRESPO, 2013). Whatever definition is used, the goal of the SPL
Re-engineering process is to take a number of product variants and transform them into
SPL with the use of techniques, methods and tools (ASSUNÇÃO et al., 2017). This goal
is achieve through the analysis and extraction of features from those product variants
(feature retrieval).

With the understanding of the importance of the SPL Re-engineering process to
migrate from a set of system variants to SPL (KRUEGER, 2001), we decided to propose
a work that intends to reduce the effort of performing this process.

With our process, we intend to provide enough flexibility with regard to artifacts,
strategies and techniques used for feature retrieval. The flexibility in this case would be
the capacity of the process to be easily modified according to users needs. This flexibility
is given by allowing the choice and combination of different techniques for feature retrieval
based on information gathered during the process execution. This information includes:
team experiences and skills, domain engineering artifacts, requirements artifacts, product
artifact types and extensions, and technologies used to develop the products. We created
a set of guidelines to help whoever is performing our process to choose the techniques
that better fit their context.

1.1 Motivation

While many systems are now being developed proactively as a SPL, there are
still those that emerge when a company has one or more software products and wants to
create a software product line out of them. Should they start from scratch or can they

22 Chapter 1. Introduction

use those software products and transform them into SPL? If they choose to transform
their products into a product line, how can they do it?

A possible answer to the latter question in the SPL Re-engineering process. The
extractive SPL approach (KRUEGER, 2001) might be used to transform such already
developed software products into SPL. This approach uses the SPL re-engineering process
to take a number of product variants and transform them into SPL with the use of
techniques, methods and tools (ASSUNÇÃO et al., 2017).

To the best of our knowledge, a flexible and well defined process for performing
feature retrieval in the SPL re-engineering process has not been proposed yet. Otsuka et
al. (2011) and Ziadi et al. (2012) argue that a set of guidelines is needed to formalize this
process. Kang et al. (2005) advocate that guidelines are needed for evaluating product line
assets, making those assets more reliable. Other authors, such as Martinez et al. (2015)
and Stoermer e O’Brien (2001), have pointed that guidelines may lead to an automated
support for this process.

The proposal of SPL re-engineering process would be a relevant contribution for
the SPLE field because it may reduce the complexity and effort of SPL Re-engineering. In
addition, a flexible process may be performed and replicated in different scenarios. This
would reduce cost and effort because software engineers may use an already-performed
process instead of planning it all from scratch. A scenario may be different of another by
considering many points: different systems being re-engineered, different artifacts being
used to extract features or even a different team working to create the SPL.

1.2 Objectives

The main objective of this work is to propose a process that prepares, assembles
and executes feature retrieval for SPL re-engineering. Our process main goal is to assemble
different feature retrieval processes for different scenarios, aiming for a high level reuse.
The assembled process will be executed to detect and extract features from a set of product
variants. This objective is divided into the following specific goals:

∙ Assemble a feature retrieval process for different scenario and execute it;

∙ Create a set of guidelines to support the process assembly. These guidelines will
focus on the retrieval techniques selection;

∙ Perform a case study to collect exploratory evidence and evaluate our proposal in
a real development environment.

1.3 Methodology

The methodology used in this work is presented in the following topics: Analyze
related work: we conducted a systematic literature review to identify and analyze the

1.4. Organization 23

main contributions to the field; Create the process: based on the information col-
lected from related works, our process was created and documented; Map the retrieval
techniques and create a set of guidelines: we mapped the most used and combined
techniques for feature retrieval into a set of guidelines; Obtain an early feedback of
the proposal: a survey was applied in researchers of the area to measure the impact and
contribution of our proposal; Evaluate the proposal in a real development envi-
ronment: a case study was performed to collect exploratory evidence about our process
in the industry.

1.4 Organization

This document is organized according to the following:

∙ Chapter 2: Background - Details of main concepts related to our work, such as,
SPL and feature retrieval strategies;

∙ Chapter 3: Related Work - Works similar to ours ranked by quality criteria;

∙ Chapter 4: Proposal - Description of our proposed process and its guidelines;

∙ Chapter 5: Assessing Our Proposal - We describe a survey applied to re-
searchers of the SPLE field to validate our proposals impact and relevance; In
addition we report a case study performed in the industry to collect exploratory
evidence about our proposal;

∙ Chapter 6: Final Considerations - We present the conclusions obtained by
executing the evaluations of our proposal and planned future work as well.

25

2 BACKGROUND
In this chapter we review the terminology and describe the main concepts ad-

dressed throughout this work such as SPL in Section 2.1. In Section 2.1.1 the main con-
cepts of SPLE are presented. Section 2.1.2 presents the process of SPL Re-engineering.
Lastly, the definition and characteristics of Feature Models are showed in Section 2.1.3.

2.1 Software Product Line

To the best of our knowledge, the product line concept and its characteristics came
from the automobile industry. Henry Ford introduced product lines to car manufacturing
in 1913, hoping to meet the great demand of the time. Product lines introduced two
characteristics: platform and variability (POHL; BÖCKLE; LINDEN, 2005).

A platform is a technology or process on which other processes or even other
technologies are built. It is usually what is called “core of the system”, which contains
the common features that are shared by all systems of that family. Variability refers to
the flexibility, in other words, the ability to create artifacts to be reused among different
products of the same family (KANG et al., 1990).

The SPL is defined by Clements e Northrop (2002) as “a set of software-intensive
systems that share a common, managed set of features satisfying the specific needs of a
particular market segment or mission”. Some of the main benefits for implementing SPL
are: long-term cost reduction, significant quality improvement of the products and reduc-
tion of the time-to-market (POHL; BÖCKLE; LINDEN, 2005). As it happens with regular
software products, SPL also need a development process (KANG et al., 2005) (MAR-
TINEZ et al., 2015) (OTSUKA et al., 2011) (STOERMER; O’BRIEN, 2001) (ZIADI et
al., 2012). In this case, it is a special process because SPL cannot be developed as a
regular software (LINDEN; SCHMID; ROMMES, 2007). The field dedicated to the study
of this development is SPLE. However, a common practice in the SPL development is to
get a set of product variants and extract their variabilities to create the SPL. This process
is called Software Product Line Re-engineering (ASSUNÇÃO et al., 2017). For both pro-
cess a variability mechanism is used to manage the features of the SPL. This mechanism
is usually a feature model, which can be created using different notations. SPLE, SPL
re-engineering and feature model concepts are described in the following sections.

2.1.1 Software Product Line Engineering

SPLE is the paradigm responsible for the development and study of SPL. It utilizes
platforms and mass customization concepts (DAVIS, 1989) to enable variability manage-
ment. Plenty of technologies are used in SPLE as facilitators, making the SPL creation
process easier. From these technologies, we can highlight: component-based architec-
ture, software project patterns and the object-oriented paradigm (LINDEN; SCHMID;

26 Chapter 2. Background

ROMMES, 2007).
A model for SPLE, illustrated in Figure 1 was proposed by Pohl, Böckle e Linden

(2005); this model is divided between domain engineering and application engineering,
which are described below.

Figure 1 – The two-life-cycle model of SPLE.

Source: (POHL; BÖCKLE; LINDEN, 2005)

2.1.1.1 Domain Engineering

The life-cycle of Domain Engineering focus on the definition of the SPL scope and
common assets generation, from requirements to testing, that compose the SPL platform.
We present a briefly description adapted from Pohl, Böckle e Linden (2005) of each sub-
process below:

∙ Product Management: the product management sub-process aims to define the
scope of the SPL and manages the organization of the product portfolio. This
process generates the product roadmap, defining the common and variable features
of the products. It also generates the schedule of each product release and the list
of reusable artifacts;

2.1. Software Product Line 27

∙ Domain Requirements Engineering: the product roadmap is used to elicitate, docu-
ment, negotiate, validate and verify, and manage the requirements, a set of common
variables, well-defined requirements and the SPL variability model;

∙ Domain Design: during this sub-process, domain requirements are used alongside
the SPL variability model to define the Software Product Line Architecture (SPLA);

∙ Domain Realisation: in this sub-process, the SPLA and other domain assets are
analyzed to design and implement the software components of the SPL domain;

∙ Domain Testing: the domain testing sub-process is when the realisation components
are tested alongside their specifications. The main goal is to create reusable test
artifacts, aiming to reduce cost and effort during application testing.

2.1.1.2 Application Engineering

In the application engineering life-cycle, the common and variable assets developed
in the Domain Engineering are combined with specific assets to create a SPL product.
The application engineering is composed by four sub-processes are briefly described as
follows:

∙ Application Requirements Engineering: during this sub-process the domain require-
ments and the SPL roadmap are used alongside the target application’s specific
requirements. This sub-process generates the requirements of a specific product.

∙ Application Design: during the application design sub-process, the architecture of
a specific application is created by using the SPLA. This is done by selecting the
desired parts from the SPLA and adding some adaptations related to the specific
product.

∙ Application Realisation: the main goal of this sub-process is to generate an exe-
cutable software product. This generation is done by using the application architec-
ture and the domain realisation. At the end of this sub-process a software product
should be generated by simply selecting components to realize each interface.

∙ Application Testing: here, the software product generated is tested by utilizing the
domain test artifacts and the application realisation product.

2.1.2 Software Product Line Re-engineering

According to Krueger (2001), there are three possible approaches for an organiza-
tion moving from traditional software to SPL: proactive, reactive, and extractive.

28 Chapter 2. Background

By using the proactive approach, an organization would plan, analyze, design and
develop a complete SPL including the whole scope of their products. With the reac-
tive approach, the organization would increase their SPL development in order to reach
the demand for new products, or emerging new requirements. The extractive approach,
however, is used on an organization already has all its products developed in a non sys-
tematic manner. The extraction of common and varying source code is performed and
their products are transformed into a SPL.

However, an extractive approach is the most indicated when the organization
already has a set of software variants because it is easy to identify and extract the com-
monalities and the variabilities among them. This process of extraction is called SPL
re-engineering.

The term re-engineering can be described as “the examination and alteration of a
subject system to reconstitute it in a new form and the subsequent implementation of the
new form” (CHIKOFSKY; CROSS, 1990). In the SPL context, re-engineering is used to
transform a system, system family, or system variants into a SPL as illustrated in Figure 2.
According to Assunção et al. (2017), the SPL re-engineering process is composed of three
main phases, described below:

∙ Detection: during the detection phase, variabilities and commonalities of the prod-
ucts are identified and extracted throughout the use of feature retrieval techniques.
These variabilities and commonalities are represented in the form of features. Tech-
niques and methods used during this phase aim to extract data from artifacts, such
as class diagrams and source code.

∙ Analysis: it is where the information extracted is used to design and organize the
functional features into a variability model, usually a feature model.

∙ Transformation: it is when artifacts linked to these features, such as source code
and requirements list, are managed, refactored and modified in order to create the
SPL.

During the first two phases of this process, feature retrieval techniques are used
to retrieve the variabilities and commonalities of the products.

2.1.2.1 Feature Retrieval Techniques

Based in Assunção et al. (2017), we classified the feature retrieval strategies in
three groups: Static Analysis, Information Retrieval and Support Strategies.

The first strategy is Static Analysis, done by analyzing a program without its
execution (CHRISTENSEN; MØLLER; SCHWARTZBACH, 2003). Information analyzed
may include structural information and static artifacts. Static analysis techniques are
recommended when analyzing source code. Furthermore, it is recommended that the

2.1. Software Product Line 29

Figure 2 – SPL Re-engineering process.

Source: (ASSUNÇÃO et al., 2017)

used source code possesses low coupling and high cohesion. There are a lot of different
Static Analysis techniques, from which we highlight:

∙ Clustering: group a set of objects (e.g., features) based on their similarities in groups
called clusters (JAIN; DUBES, 1988);

∙ Dependency analysis: leverages static dependencies among program elements. It
may be used to validate and describe the interdependence between elements (KLATT;
KROGMANN; SEIDL, 2014);

∙ Data-flow analysis: gather information about possible values calculated at differ-
ent points of a software system. This information is used to determine in which
parts of that program a particular value might propagate (RYSSEL; PLOENNIGS;
KABITZSCH, 2011).

The Information Retrieval strategy collects and analyzes information in artifacts
considering text structure, text similarity, etc (FRAKES; BAEZA-YATES, 1992). Infor-
mation retrieval techniques commonly use documents written in natural language. They
are also generally used in requirements artifacts; however, they can also be used in source
code. To do that, both the source code and the requirements must have meaningful names.
Information retrieval techniques are commonly used alongside Static Analysis techniques
such as clustering. From the Information Retrieval techniques, we give emphasis on:

∙ Formal Concept Analysis (FCA): a mathematical method that provides a way to
identify “meaningful groupings of objects that have common attributes” (STUMME,
2009);

30 Chapter 2. Background

∙ Latent Semantic Indexing (LSI): an indexing and retrieval method that uses a
mathematical technique to identify patterns in the relationships between the terms
and concepts contained in an unstructured collection of text (DUMAIS, 2004);

∙ Vector Space Model (VSM): an algebraic model for representing text documents
in a way where the objects retrieved are modeled as elements of a vector space
(SALTON; WONG; YANG, 1975).

For the last group, support strategies, we have the Expert-Driven Extraction,
Heuristics and Rule-based techniques. Expert-Driven Extraction is based on knowledge
and experience of experts such as domain engineers, software engineers, and stakeholders.
To apply the Expert-Driven strategy, it is highly recommended that the team should have
skills and knowledge involving the SPL re-engineering process. Heuristics are proposed
by many authors (RUBIN; CHECHIK, 2012b) (BÉCAN et al., 2013). They are used
alongside other techniques to improve the retrieval results. The Rule-based techniques
(MU; WANG; GUO, 2009) are similar to heuristics, because they are also used alongside
other techniques. Usually these rules are created to guide and help whoever is performing
the feature extraction.

2.1.3 Feature Model

Feature model is one of the most used mechanisms to represent the SPL variability
(CLEMENTS; NORTHROP, 2002). To the best of our knowledge the first feature model
notation, Feature-Oriented Domain Analysis (FODA) was presented by Kang et al. (1990).
The feature model is represented in a tree structure, where its root, in the SPL context, is
usually the SPL being modeled. This notation introduced some concepts that are shared
by other feature model notation such as:

∙ Mandatory Features: features shared by all products of the SPL;

∙ Optional Features: features that can be present in the SPL realisation or not based
on the stakeholders choice;

∙ Alternative xor-group: this features are always part of a group where only one of
them must be part of the product realisation;

∙ Composition Rule: rules that define whether a feature will be required or excluded
from the product;

∙ Rationale: these descriptive rules serve as indications of possible products realisa-
tions based of features selection.

A feature model constructed using the FODA notation is illustrated in Figure 3.
The car represents the SPL, transmission and horsepower are mandatory features, air

2.2. Software Process 31

conditioning is an optional feature, and manual and automatic are an alternative xor-
group. In addition, a composition rule and a rationale are showed.

Figure 3 – A feature model of a car.

Source: (KANG et al., 1990)

Other notations, such as Generative Programming presented by Czarnecki e Eise-
necker (1999) added another important concept to feature models: or-features. The
or-features are a group of features similar to alternative xor-features, however, in an or-
group, more than one feature can be selected. An example of a Generative Programming
feature model is presented in Figure 4, where 𝑓9 and 𝑓10 represent an or-group.

Figure 4 – A feature model created using the Generative Programming notation.

Source: (CZARNECKI; EISENECKER, 1999)

2.2 Software Process

The term software process is defined by Feiler e Humphrey (1993) as “a set of
partially ordered steps intended to reach a goal... For software development, the goal is

32 Chapter 2. Background

production or enhancement of software products...”. In addition, Pressman (2005) defines
process as “a framework for the tasks that are required to build high-quality software”.
As the definition may change, a process, in the software context, is used to create artifacts
related with software development.

Despite its definition, some aspects related with software process may be consid-
ered its main areas of investigation. As presented by Fuggetta e Nitto (2014), these areas
are: process modeling and support, including techniques and languages to give support
for the design of software processes; process improvement, which concerns the constant
investigation to find points for improvement within a process; metrics and empirical stud-
ies, which includes the creation and use of quality metrics and execution of experiments
and case studies to evaluate a process; “real” processes, process which had passed by
the three aspects mentioned early, also called “concrete” processes, such as the Rational
Unified Process (KRUCHTEN, 2004).

The software process methodology may have follow different strategies. There is
the traditional software development process, which give a similar priority for both soft-
ware production and software documentation (PRESSMAN, 2005). We can also highlight
agile software processes, usually intending to be iterative and focusing on software delivery
(MARTIN, 2002), such as Scrum (SCHWABER; BEEDLE, 2002).

2.3 Chapter Lessons

In this chapter, we explored main concepts of our work. The SPL, SPLE and
SPL Re-engineering process concepts are important for understanding the impact of our
proposal.

Nonetheless, the feature model and feature retrieval techniques concepts are crucial
for us to develop our process because both concepts must be acknowledged when we start
the analysis of related work to extract such information. We noticed that are different kind
of techniques that can be used for different scenarios. Lastly, software process concept is
important because we are designing our own process based on approaches found in the
literature.

33

3 RELATED WORK
In this chapter we describe and discuss a systematic literature review performed

to search for studies related to ours. Section 3.1.1 describes the protocol used during
the review, including the scope and objective in Section 3.1.1.1, the research questions in
Section 3.1.1.3, our selection process in Section 3.1.1.4, the criteria used in Section 3.1.1.5
and Section 3.1.1.6. The conduction of the review is detailed in Section 3.1.2 and the
related work selected is discussed in Section 3.2.

3.1 A Systematic Literature Review

According to Kitchenham et al. (2009), a Systematic Literature Review (SLR)
is a method to examine in-depth and describe the methodology and the results of the
primary studies. It provides a complete summary of a research area, identifying most
relevant studies and reviewing their contributions. It differs from other methods, such
as a Systematic Mapping Study (SMS) (PETERSEN et al., 2008), because it has more
specific research questions related to a study giving a deeper analysis about the scope
being investigated, while SMS gives a wider view.

3.1.1 Planning Review

This SLR was adapted from the SMS performed by Assunção et al. (2017), which
mapped processes for SPL re-engineering. We also wanted to retrieve this proposals,
however, we want more specific processes such as flexible and adaptable processes for
different scenarios. For this reason, we decided to extend Assunção et al. (2017) SMS
adding more criteria, and applying our own Quality/Assessment Criteria (QA) to select
more specific works. We also replicate their protocol in proposal of the years 2016 and
2017 because those studies were not part of the Assunção et al. (2017) SMS protocol. To
that, we followed the SLR process proposed by Kitchenham et al. (2009).

3.1.1.1 Scope and Objective

In our SLR we were looking for the main contributions in the SPL re-engineering
process area. The main objective of the SLR is to make a deep and detailed analysis in
this kind of proposals.

3.1.1.2 Question Structure

The research questions were structured according to four criteria:

∙ Population: Research in SPL re-engineering process;

∙ Intervention: Processes containing guidelines for the SPL re-engineering;

34 Chapter 3. Related Work

∙ Outcome: The expected results are flexible or adaptable processes containing guide-
lines that are used for SPL re-engineering;

∙ Context: Identify which flexible or adaptable processes containing guidelines for
SPL re-engineering process had been proposed.

3.1.1.3 Research Questions

To compare the retrieved studies with our work, we created three Research Ques-
tion (RQ)s. These RQs will be used to obtain the main objective of the SLR, which is to
make a detailed analysis in studies that propose a flexible or adaptable process containing
guidelines for SPL re-engineering. The RQs are as follows:

RQ1. What are the strategies and artifacts used for the proposals?

RQ2. What are the main contributions of these proposals for SPL re-engineering?

RQ3. Are these proposals applicable in more than one scenario?

3.1.1.4 Search Process

To avoid rework we used the 119 studies mapped in Assunção et al. (2017) SMS
for the years prior to 2016. For the years 2016 and 2017 we re-applied Assunção et al.
(2017) protocol adding our criteria. We used similar databases as them, which included
the ACM Digital Library, IEEE Xplore, Springer Link, Scopus, Science Direct and Google
Schoolar.

We also used the same search string as them, which is showed in Table 1. We
adapted the string for each database as the database search engine allowed.

Some databases have a limit of character for the search string. In those cases, we
used the string showed in Table 2.

3.1.1.5 Inclusion and Exclusion Criteria

The Inclusion Criteria (IC) and Exclusion Criteria (EC) are used during a SLR
to remove or maintain studies in the SLR analysis. Some of our criteria were taken from
the Assunção et al. (2017) SMS, as we intended to apply these criteria in studies of 2016
and 2017. We also created our own EC, and applied them in the mapped studies of
(ASSUNÇÃO et al., 2017) and in the studies of 2016 and 2017. To be included, the study
should answer Yes for all IC and No for all EC. The criteria of our SLR are:

IC1. The study must propose a process for SPL re-engineering;

IC2. The proposed process must present some kind of flexibility/adaptability (e.g., use
of different artifacts or techniques);

3.1. A Systematic Literature Review 35

Table 1 – Base Search String.

Search String
(“feature location” OR “concept location” OR “concern location” OR “feature
mining” OR “feature identification” OR “feature mapping”) AND (reengineering
OR refactoring OR reconstruction OR migration OR migrating OR evolution OR
legacy OR restructuring OR “re-engineering” OR “re-structuring”) AND
(“application engineering” OR “commonality” OR “core asset” OR “domain
analysis” OR “domain engineering” OR “feature analysis” OR “feature based”
OR “feature diagram” OR “feature model” OR “feature modeling” OR “feature
oriented” OR “highly-configurable system” OR “process family” OR “product
family” OR “product line” OR “product line engineering” OR “software family”
OR “software product family” OR “software product line” OR “software reuse”
OR “SPL” OR “variability” OR “variability analysis” OR “variability
management” OR “variability modeling” OR “variability-intensive system” OR
“variant” OR “variation” OR “variation point”)

Source: (ASSUNÇÃO et al., 2017)

Table 2 – Reduced search string.

Search String
(“feature location” OR “concept location” OR “concern location” OR “feature
mining”) AND (reengineering OR refactoring OR reconstruction OR migration OR
migrating) AND (“product line” OR “product-line” OR “product family” OR
“product family”)

Source: (ASSUNÇÃO et al., 2017)

IC3. The study must be written in English;

IC4. The study must be available in electronic format;

EC1. The proposed process does not include the detection and analysis phases of the SPL
re-engineering;

EC2. The study must propose/use at least two different techniques for feature extraction;

EC3. The study is not a primary study;

EC4. The main contribution of the study is not a process for SPL re-engineering

EC5. The study does not contain some type of evaluation: examples, case study, exper-
iment, or proof of concept. The evaluation must contain some kind of analysis,
showing the achieved results.

3.1.1.6 Quality Assessment Criteria

To rank the retrieved studies, and also to apply a final exclusion to not relevant
studies we defined five QA. For each of them, the following scoring was used: Y (yes) =

36 Chapter 3. Related Work

1; P (partially) = 0.5, N (no) = 0. Hence, the total score, sum of five questions, could
result in: 0 to 1.0 (very poor); 1.5 or 2.5 (poor); 2.5 or 3.0 (fair); 3.5 or 4.0 (good) and
4.5 or 5.0 (excellent). In order to grade each study, we considered the following criteria:

QA1. Is the proposed process applicable in more than one scenario?

Evaluation - Y: the proposed process provides evidence of its applicability in more
than one scenario; P: the proposed process appears to be applicable in more than
one scenario; N: the proposed process is not applicable in more than one scenario;

QA2. Does the proposed process provide some flexibility with regard to the artifacts used?

Evaluation - Y: the proposed process provides/recommends non mandatory artifacts
and allows the use of others; P: the proposed process provides/recommends non
mandatory artifacts; N: the proposed process provides/recommends only mandatory
artifacts;

QA3. Does the proposed process provide some flexibility with regard to the feature re-
trieval techniques used?

Evaluation - Y: the proposed process provides/recommends non mandatory tech-
niques for feature retrieval and allows the use/combination of others; P: the proposed
process provides/recommends non mandatory techniques for feature retrieval; N:
the proposed process provides/recommends only mandatory techniques for feature
retrieval;

QA4. Does the proposed process provide some or recommends the use of guidelines to
support its execution?

Evaluation - Y: the proposed process provides/recommends formalized guidelines
to help its execution; P: the proposed process provides/recommends some kind of
guideline to help its execution; N: the proposed process does not provide/recommend
the use of guidelines;

QA5. Does the study present some kind of analysis, showing the achieved results?

Evaluation - Y: the study presents some kind of analysis or shows the achieved
results; P: only a summary of the achieved results is presented; N: neither analysis
nor results are specified.

3.1.1.7 Selection Process

Our selection process is divided in 5 steps:

1. Search databases: Initially, strings were generated by means of the selected keywords
and synonyms and the selection of studies of 2016 and 2017 was performed;

3.1. A Systematic Literature Review 37

2. Eliminate redundancies: There were some redundancies since same studies were
returned by different search engines. In this step, we eliminated those;

3. Intermediate selection: The title and the abstract (reading the introduction and
conclusion when necessary) were read for each study returned by the search engines
and studies were excluded based on the criteria mentioned in Section 3.1.1.5;

4. Merge: The selected studies of 2016 and 2017 were merged with studies mapped by
(ASSUNÇÃO et al., 2017);

5. Detailed selection: The remaining studies were full analyzed and the IC and EC
were applied again;

6. Final selection: Based on the quality criteria (see Section 3.1.1.6), we evaluated the
quality of studies that were read in the Final Selection step. We ranked the studies
based on the criteria and analyzed them to answer our RQs.

3.1.2 SLR Conduction

The SLR was conducted between July/2017 and September/2017 according to the
selection process presented in Section 3.1.1.7. In total, 354 works were found from the
years 2016 and 2017. We merged the 119 works mapped by (ASSUNÇÃO et al., 2017),
and 13 studies remained for the QA application. Table 3 shows the number of returned
works for each database (between 2016 and 2017).

Table 3 – Retrieved studies by database.

Database Number of Studies
ACM 2
IEE 1
Google Scholar 74
Science Direct 133
Scopus 124
SpringerLink 20
Total 354

Source: Author.

The summary of the selection process can be seen in Table 4. We analyzed the
total of 354 studies from 2016 and 2017, plus the 119 studies mapped by (ASSUNÇÃO
et al., 2017). All studies were analyzed by two researchers and their results were merged.
If they had disagreed in something a third research would decide whether to include the
work or not. In the end of the process, a total of 13 studies were analyzed and ranked
according to QA (Table 5), and we selected 5 studies (ranked as good or excellent) to
analyze and include as a work related to ours. This small number of studies selected may
indicates that there are few works similar to ours.

38 Chapter 3. Related Work

Table 4 – Summary of the selection process.

Step Remaining Studies
Search Databases 354
Eliminate Redundancies 306
Intermediate Selection 26
Merge 145
Detailed Selection 13
Final Selection 5

Source: Author.

Table 5 – Quality assessment result.

Study QA1 QA2 QA3 QA4 QA5 Rank
Acher et al. (2012) P P P Y Y Good
Acher et al. (2013) Y Y N P Y Good
Araar e Seridi (2016) Y N N Y Y Fair
Assunção et al. (2016) Y N N P Y Fair
Assunção (2017) Y N N P Y Fair
Bécan et al. (2013) Y P P P Y Good
Kulesza et al. (2007) P N N Y Y Fair
Kumaki et al. (2012) P P N P Y Fair
Martinez et al. (2015) P Y Y Y Y Excellent
Merschen et al. (2011) N P P P Y Fair
Polzer et al. (2012) N P P P Y Fair
Santos et al. (2013) Y P P Y Y Good
Tang e Leung (2015) Y N P P Y Fair

Source: Author.

3.2 Discussing Related Work

In this section, we discuss each one of the five related works selected during the
SLR process. The works were analyzed to compare their main contributions and their
flexibility as well. We have focused on the following topics:

∙ Artifacts and strategies used for feature retrieval (RQ1);

∙ The main contribution of each study (RQ2);

∙ Applicability in different scenarios (RQ3).

3.2.1 Artifacts and Strategies for Feature Retrieval

We summarize the artifacts used for each process proposed in Table 6, in which
we can see that most of the studies focused on design models and requirements as input
artifacts. However, (MARTINEZ et al., 2015) (SANTOS et al., 2013) had used also

3.2. Discussing Related Work 39

source code, giving their process more flexibility in this topic. However, the works present
some lack of flexibility. For instance, even the most flexible (MARTINEZ et al., 2015)
(SANTOS et al., 2013), require the use of specific artifacts types (e.g., requirements list),
ignoring the use of some artifacts (e.g., reference architecture). On the other hand, our
process intends to make use of all available artifacts, to obtain the highest precision when
retrieving features.

With regard to the strategies used for feature retrieval, most of the studies make
use of Expert-Driven Extraction. However, this strategy is used alongside another, as
Table 7 shows, (ACHER et al., 2012) (ACHER et al., 2013) (BÉCAN et al., 2013)
(MARTINEZ et al., 2015) used static analysis techniques, such as structural similar-
ity, and (SANTOS et al., 2013) used information retrieval techniques to complement the
expert-driven method. Similar to artifacts, our process intends to make use of all pos-
sible strategies. In the selected studies, however, usually one strategy is used alongside
Expert-Driven as a support strategy.

Table 6 – Artifacts used for each study.

Study Artifacts

Design Models Domain
Information Requirements Source Code

Acher et al. (2012) X X
Acher et al. (2013) X X
Bécan et al. (2013) X
Martinez et al. (2015) X X X
Santos et al. (2013) X X X

Source: Author.

Table 7 – Retrieval strategies used for each study.

Study Strategies
Expert
Driven Static Analysis Information

Retrieval
Acher et al. (2012) X
Acher et al. (2013) X X
Bécan et al. (2013) X
Martinez et al. (2015) X X
Santos et al. (2013) X X

Source: Author.

3.2.2 Studies Main Contribution

Considering the main contributions of the proposals, Acher et al. (2012) had pro-
posed a retrieval process focusing on plugin-based systems. Their process automati-

40 Chapter 3. Related Work

cally extracts architectural feature models by combining several sources of information.
These sources include software architecture, plugin dependencies and software architec-
tural knowledge. Their proposal also aims to give the architect the freedom to remove or
create new features based on their knowledge.

Acher et al. (2013) work presents a process, alongside a language and tool to
extract the variability of the products. They used products specification and description
to extract and synthesize a feature model. These products artifacts may be of different
types, however the techniques used its always the merging of products descriptions using
structural similarity.

Bécan et al. (2013) propose a generic and ontological-aware procedure that guides
users to identify siblings and parent candidates for a feature. They created and evaluated
a series of heuristics for clustering and syntactic and semantic relationships. Their tech-
niques may be applicable without prior knowledge, reducing the effort in comparison to
other proposals.

The main contribution of the work presented in Martinez et al. (2015) is a generic
and extensible framework for SPL re-engineering. Their main goal is to reduce the high
investment required to adopt the SPLE. The proposed framework may be easily adapted
to different artifacts types and integrates state-of-the-art algorithms and visualization
paradigms. The work also presents a realisation of the framework, called Bottom-Up
Technologies for Reuse (BUT4Reuse).

The last selected work, (SANTOS et al., 2013), proposes to use testing to support
the feature retrieval process. They use testing as main input for feature extraction, and
other artifacts (e.g., use cases) to complement the feature retrieval process. Heuristics
are used on requirements or design models, the features are mapped and test artifacts are
used to expand the quality of the features retrieved.

Some studies presented similar proposals (BÉCAN et al., 2013) (MARTINEZ et
al., 2015), which intend to be generic and extensible. There are also the use of different
artifacts as main input, testing (SANTOS et al., 2013) and product descriptions (ACHER
et al., 2013). Aside these differences, the main contributions of the studies could be
summarized as reduce the effort and guide the users to retrieve the features, which is
similar to our main goal.

3.2.3 Applicability in Different Scenarios

Some of the selected works aim to be applicable in different scenarios and had
evidenced it with empirical evaluations (ACHER et al., 2013) (BÉCAN et al., 2013)
(SANTOS et al., 2013). While Acher et al. (2012) Martinez et al. (2015) only indicate
their possible applicability without giving any evidence. Most of these different scenarios,
however, are different systems used as main input for the proposals. They do not consider
different artifacts of the same systems, or a different team performing the re-engineering

3.3. Chapter Lessons 41

either. The work of Acher et al. (2012) however, is specifically created to be applied only in
plugin-based systems. The work of (MARTINEZ et al., 2015) was created with the goal of
be extensible in many different scenarios and situations, being the most adaptable/flexible
of the selected works.

Comparing to our work, however, the proposals do not include a step/phase to col-
lect information about the experience applying the retrieval process (see Section 4.2.3.3).
This information may be used during the re-applicability in a different scenario, reducing
the effort and improving precision.

3.3 Chapter Lessons

In this chapter we presented a SLR, with its protocol (Section 3.1.1), the SLR
conduction (see Section 3.1.2) and its results. The results showed that exists a considerable
number of works focusing on process for SPL re-engineering. During this SLR, 354 studies
from 2016 and 2017 were analyzed then merged with the 119 studies from the SMS of
Assunção et al. (2017). At the end, 13 studies were analyzed according to QA and 5 studies
were selected to be discussed as a related work in Section 3.2. These 5 selected studies
were analyzed to compare their artifacts and strategies used for feature retrieval, main
contribution, and applicability in different scenarios. The analysis results indicated that
the studies present some kind of flexibility (e.g., use of different type of artifacts), however
this flexibility could be improved. Considering the main contribution, all studies intend
to reduce the effort of feature retrieval. Lastly, the applicability in different scenarios was
evaluated by some studies (ACHER et al., 2013) (BÉCAN et al., 2013) (SANTOS et al.,
2013), while others only indicated the possibility (ACHER et al., 2012) (MARTINEZ et
al., 2015).

43

4 THE PREPARE, ASSEMBLE AND EXECUTE PROCESS
This chapter introduces the Prepare Assemble and Execute Process for Software

Product Line Re-engineering (PAxSPL). The content presented here, describes the rele-
vance of this work and our expectations. In Section 4.1, we present our proposed process.
In Section 4.3 we present the guidelines created to support the process. Lastly, in Sec-
tion 4.4, we present challenges and missing work.

4.1 Process Overview

PAxSPL is a process that assembles and executes a feature retrieval process for
SPL re-engineering. Our process takes as an input a set of similar systems that have po-
tential to become SPL. We designed our process to allow adaptation and re-applicability
according to different scenarios. This may reduce the cost and the effort of re-applying
this process in different or similar scenarios. Our process analyzes data such as team
experience, team skills, and products documentation. This information is used to choose
most recommended retrieval techniques for a given scenario. These techniques are assem-
bled in different activities of our generic process, generating an assembled process. Then,
this process is executed to retrieve features of the product variants. At the end, our pro-
cess generates a feature retrieval process that is assembled for the specific scenario. This
feature retrieval process generates a feature diagram of the future SPL. The information
presented in the following sections represents the documentation of our process, which is
also available in a repository1.

4.1.1 Process Structure

The process can be divided in:

∙ Actors/Roles: roles assign to team members, responsible for executing the activities;

∙ Artifacts: concrete artifacts used by activities or produced by them;

∙ Phases: there are three main phases in our process, each one of them contain a set
of activities;

∙ Activities/Sub-process: main activities of the process which may include more ac-
tivities within;

∙ Guidelines: a set of mapped strategies and techniques containing information about
them and recommended situations.

In the following sub-sections we describe in detail each actor/role, artifacts, phase,
activity/sub-process and guidelines.
1 <https://github.com/HestiaProject/PAxSPL/>

https://github.com/HestiaProject/PAxSPL/

44 Chapter 4. The Prepare, Assemble and Execute Process

4.1.2 Actors/Roles

We established a set of six roles for our process. However, aiming to give more
flexibility we encourage the creation of more roles or even the modification of those six.
The roles are all optional and they can be performed by more than one team member.
Also, one team member may assume more then one role. The six roles defined for our
process are:

∙ Domain Engineer: possesses valid knowledge related to an area of human endeavour,
an autonomous computer activity, or other specialized discipline. Basically, it must
be expert in the software domain;

∙ Architect: has valid knowledge related to software architecture, design and archi-
tectural patterns. It is recommended to be the same person(s) who developed the
individual systems architecture;

∙ Analyst: specialist in the requirements of the systems being re-engineered. It should
be aware of functional and non functional requirements;

∙ Developer: possesses programming languages and technologies knowledge. May be
the same person(s) who developed the source code of the individuals systems;

∙ Feature Checker: must know domain glossary, domain constraints, and requirements
information. It will be responsible for verifying the features retrieved to look for
problems;

∙ Feature Retriever: must have knowledge about feature retrieval strategies and tech-
niques. It is going to apply the selected techniques to identify and extract the
features from the systems being re-engineered.

4.1.3 Artifacts

The artifacts of our process can be divided in input and output artifacts. To extend
the flexibility in this point, we utilized the feature model classification (Section 2.1.3) to
classify the input artifacts in: mandatory, optional and alternative or-group. In this case,
mandatory artifacts must be used, optional may be used or not, and in an alternative
or-group, at least one artifacts should be used as input. There are many kinds of artifacts
to be used, and many variations (e.g., use cases or user stories as requirements artifacts).
The team performing the process will have to use the product artifacts possesses by them.
In the following sub-sections we give more details about input and output artifacts. We
also describe three important artifacts of our process: documentation set, generic and
assembled process.

4.1. Process Overview 45

4.1.3.1 Input Artifacts

Input Artifacts are the artifacts collected from the products variants used in the
re-engineering process. Some artifacts, such as domain information, may be used either
as input or output.

∙ Source Code: code that implements the software products being re-engineered;

∙ Requirements: requirements of the software products. Requirements can be de-
scribed using different ways, such as a list that contains functional and non func-
tional requirements of the system. They can be ordered by priority, cost or prefer-
ence by the stakeholder;

∙ Design Models: models designed during the project of the products used in the
re-engineering process (e.g., class diagrams, state machine diagrams, activity dia-
grams);

∙ Domain Information: artifacts created during the domain engineering, focusing on
the development of reusable assets such as reference architecture or reference re-
quirements.

4.1.3.2 Output Artifacts

Output artifacts are the artifacts generated during the process execution. Many
of them may also be used as input in some activities.

∙ Feature Artifacts: are generated from the application of the feature retrieval tech-
niques. Each technique may generate different artifacts such as graph representation
of features or feature descriptions;

∙ Variability Reports: reports of the variability of the SPL. Written in natural lan-
guage, they contain information such as how some features were extracted and why
they should be mandatory or not;

∙ Modified Product Artifacts: product artifacts modified to include feature entry
points. These entry points are the location where the feature was discovered in the
artifacts. They may be source code comments, use case annotations, etc;

∙ Team Information Report: report(s) containing information such as team experi-
ence, team skills and team knowledge. This document should contain the informa-
tion of all team members;

∙ Domain Artifacts: the artifacts shared by all systems of the future SPL. They
usually describe domain constraints, domain glossary;

46 Chapter 4. The Prepare, Assemble and Execute Process

∙ Artifacts Types Specification: information about artifacts types such as extensions,
formats and templates used.

∙ Development Information: design patterns, architectural patterns, programming
patterns, programming and development paradigms and even technological infor-
mation can be included.

4.1.3.3 Generic and Assembled Processes

The assembled process is the result of the tailoring performed by the team during
Assemble where techniques are selected and placed into the Generic Process according
to team’s decisions. As showed in Figure 5, the Generic Process of PAxSPL contains the
four main phases identified by analyzing the process proposed in the literature. During
extract (see Figure 5), features are identified and feature entry points are added to product
artifacts. In the categorize activity, features are classified as mandatory, optional, etc.
Group is when the features are separated according to their relations and dependencies.
At last, the feature model is created. After each activity, a check is made to verify
if problems or inconsistencies exists. The user may decide how to perform this check
activity.

Figure 5 – The generic process for feature retrieval.

Source: Author.

The Generic Process is used to tailor the Assembled Process that generates the
extracted features and the feature model. We give an example of the assembled process
in Figure 6, in which FCA and clustering can be assembled as extraction techniques to
retrieve the features and create the Feature Model. In this particular case the tasks
were not assign to a specific actor, which means they may be performed by anyone. As
Figure 6 shows, a concept lattice is checked to find problems. Then, the extracted features
are grouped into clusters and a check for inconsistencies is performed. The clusters are
refined, the features are categorized and validated with the domain specialist. Lastly, the
feature model is created and checked, and the process ends.

4.2. Phases and Activities 47

Figure 6 – An example of assembled process.

Source: Author.

4.2 Phases and Activities

Our process is divided in three sequential phases, as illustrated in Figure 7:
Prepare, Assemble and Execute. During Prepare, information is collected and analyzed
to prepare artifacts that will help the process assembly. Assemble is when the techniques
are selected and the retrieval process is created. This retrieval process is performed dur-
ing Execute phase. Also, there is some information collected during this phase such as
the process execution experience. We detail the activities of each phase in the following
sub-sections. For each activity we give the actors and the artifacts directly related to the
activity.

Figure 7 – The PAxSPL process.

Source: Author.

48 Chapter 4. The Prepare, Assemble and Execute Process

4.2.1 Prepare

In the first phase of our process, information is collected in order to prepare the pro-
cess assembly. This phase is divided in three main activities: Collect Team Information,
Assign Roles, and Perform Documentation Analysis. The latter, Perform Documentation
Analysis is actually a sub-process that contains activities within.

4.2.1.1 Collect Team Information

Information about the team which will execute the process is collected. This infor-
mation includes team members experience, team members skills, team members knowl-
edge and preferences of each member. The information is registered in a document, the
Team Information Report (see Appendix A).

∙ Actors: Any;

∙ Optional Inputs: Project plan, business organization chart, team members profile,
any other team member relevant information;

∙ Outputs: Team Information Report.

4.2.1.2 Assign Roles

Roles are assigned based on the information collected on the previous activity.
Usually, team members that posses more knowledge about the software domain may
assume the role of Domain Engineer, members that worked in the individual systems
analysis and requirements specifications may assume the role of Analyst, and so on. These
roles are related with the next activity, which is Perform Documentation Analysis.

∙ Actors: All;

∙ Optional Inputs: Project plan, business organization chart, team members profile,
any other team member relevant information;

∙ Mandatory Inputs: Team Information Report;

∙ Outputs: Team Information Report updated.

4.2.1.3 Perform Documentation Analysis

During this sub-process the re-engineering documentation is collected and com-
piled. All activities of this sub-process are optional and they can be performed at the same
time. Collected information may include domain information, requirements information
of the products, and information about architecture, technologies and artifacts. All these
information, alongside the team information report, are added to the Documentation

4.2. Phases and Activities 49

Set. Figure 8 gives an overview of this sub-process, which is detailed in the following
sub-sections.

∙ Actors: All;

∙ Outputs: Documentation Set updated.

Figure 8 – Documentation analysis sub-process.

Source: Author.

4.2.1.3.1 Collect Domain Information

This is an optional activity and will or will not be performed based on the need of
its outputs artifacts. In other words, if domain information such as reference architecture
or reference requirements are needed, this activity may be performed. During this activity,
domain information is collected and registered. This information can be used as an input
for some extraction techniques. According to Assunção et al. (2017), domain artifacts
may contain information such as products description, user comments, documentation of
systems in specific domain, and domain analysis.

∙ Actors: Domain Engineer;

50 Chapter 4. The Prepare, Assemble and Execute Process

∙ Alternative Inputs: Reference architecture, reference requirements, domain realisa-
tion, domain tests;

∙ Outputs: A set of domain artifacts.

4.2.1.3.2 Register Domain Constraints and Vocabulary

This is also an optional activity, where a list of constraints and terms related to
the systems domain is collected and registered. These constraints may be collected in the
system business rules or even non functional requirements.

∙ Actors: Domain Engineer;

∙ Alternative Inputs: Reference architecture, reference requirements, domain realisa-
tion, domain tests;

∙ Outputs: Domain glossary and constraints list.

4.2.1.3.3 Collect Requirements Information

This is an optional activity where requirements information is collected and regis-
tered. This information should be collected from all systems being re-engineered, however,
sometimes the systems do not have this kind of documentation. The ideal scenario when
this documentation is missing is to create it.

∙ Actors: Analyst;

∙ Alternative Inputs: requirements list, use cases, business rules, and other require-
ments artifacts;

∙ Outputs: Requirements specification.

4.2.1.3.4 Register Architectural Information

This is other optional activity where architectural information is collected and
registered. This information also may be missing from some products being re-engineered.
The ideal scenario would be the identification of this missing information.

∙ Actors: Architect;

∙ Alternative Inputs: Class diagrams, state machine diagrams, activity diagrams, or
any other design model of the individual systems;

∙ Outputs: Development information.

4.2. Phases and Activities 51

4.2.1.3.5 Collect Artifact Information

This is another optional activity where information about artifacts types (e.g.,
extensions, formats, structures, etc) is collected and registered. This information may be
used to decide which extraction techniques should be considered or excluded from the
assemble process.

∙ Actors: Architect, Analyst, Developer;

∙ Alternative Inputs: Class diagrams, state machine diagrams, requirements specifi-
cation, or any other artifact that contains relevant information about the individual
systems;

∙ Outputs: Artifacts type specification.

4.2.1.3.6 Register Development Information

This is another optional activity where information about the developed products
will be collected and registered. This information will also be a decision point when choos-
ing the techniques. This information may include programming patterns, programming
and development paradigms.

∙ Actors: Developer;

∙ Mandatory Input: source code;

∙ Optional Inputs: class diagrams, activity diagrams, state machine diagrams, or any
other artifacts containing information about the products development;

∙ Outputs: artifacts type specification, development information.

4.2.1.3.7 Register Technological Information

This is another optional activity where information about technologies used in
each product are collected and registered. This information may exclude the use of some
techniques, or even give more priority to others.

∙ Actors: Developer;

∙ Mandatory Input: source code;

∙ Optional Inputs: reference architecture;

∙ Outputs: development information.

52 Chapter 4. The Prepare, Assemble and Execute Process

4.2.2 Assemble

In this phase, the information collected is analyzed and techniques are selected
and assembled into the generic process. This phase could be considered the tailoring of
the feature retrieval process. This tailoring is done by selecting techniques and placing
them into each phase of the generic process. The activities of this phase are detailed in
the following sub-sections.

4.2.2.1 Select Techniques

During this activity the information collected during Prepare is analyzed to help
the selection of techniques for the feature retrieval.

First, a candidate technique is selected to be analyzed, as illustrated in Figure 9.
This selection is made based on artifacts from the documentation set, (e.g., team members
experience with the technique). After the candidate technique is selected, it must be an-
alyzed considering three points: practical examples, which are examples of the technique
use found in the literature; comparison among technique recommended scenarios with
current scenario, also found in the literature. The users should analyze whether their
scenario contain some similarity in comparison with the scenarios where the technique
had being used or not; and check available product artifacts with technique artifacts, for
instance whether a technique uses requirements artifacts they should be available to use.

Based on the analysis performed consider those three points, the user must decide
to use the techniques or not. If the technique qualify to be used, it is included as a
selected technique, them related and support techniques are analyzed to decided whether
they may be candidate techniques. Then, the decision of including or not the technique
must be registered along with its reasons. If another technique is considered a candidate,
then the process repeats.

∙ Actors: Any;

∙ Mandatory Input: Documentation set;

∙ Optional Inputs: Any artifact the team decide to use;

∙ Outputs: A feature model showing the selected techniques.

4.2.2.2 Assemble Techniques

The techniques chosen are assembled inside our generic process. The assembled
process will be customized according to the scenario where our process has been applied,
giving our process flexibility to be applied in different situations. In each activity of the
Generic Process one or more techniques must be placed.

4.2. Phases and Activities 53

Figure 9 – Select techniques sub-process.

Source: Author.

∙ Actors: All;

∙ Mandatory Input: Selected techniques;

∙ Optional Inputs: a draft of the assembled process;

∙ Outputs: the assembled process for feature extraction.

4.2.2.3 Assign Tasks

Each member of the team should receive a task to perform during the process
execution. One member can perform more than one task and a task can be performed by
multiple members. The team is totally free to divide the tasks, create pairs or sub-teams
to perform task, or use any other kind of strategy.

∙ Actors: All;

∙ Mandatory Input: the assembled process for feature extraction;

∙ Optional Inputs: documentation set;

∙ Outputs: the assembled process updated.

54 Chapter 4. The Prepare, Assemble and Execute Process

4.2.3 Execute

During this phase, the assembled process is executed and the feature artifacts are
collected. Also, reports are created to document the experience of the process execution.
The activities of this phase are detailed below.

4.2.3.1 Execute Assembled Process

The assembled process is executed to retrieve the features from the systems being
re-engineered.

∙ Actors: Any;

∙ Mandatory Input: the assembled process for feature extraction;

∙ Outputs: feature artifacts, feature model.

4.2.3.2 Document Feature Artifacts

Feature artifacts are documented in a structured way. These artifacts will depend
on the techniques selected.

∙ Actors: Any;

∙ Mandatory Input: the assembled process for feature extraction, feature artifacts,
feature model.

∙ Outputs: feature artifacts formalized.

4.2.3.3 Document Process Experience

Reports are created to document the experience of the process execution. These
reports may be used in future re-executions of the process, reducing cost and effort.
Experience reported may include: mainly difficulties during the execution, important
decision factors that led to chose a technique for extraction, and any information the
team thinks is relevant for future executions.

∙ Actors: Any;

∙ Optional Input: lessons learned during the process execution;

∙ Outputs: process execution report.

4.3. Guidelines 55

4.3 Guidelines

We created a guidelines documentation to help choosing strategies, describe each
technique, give examples, supporting tools, define recommended scenarios and give a
prioritization assemble order when assembling a technique into the generic process. In
our guidelines we also included basic information about SPL, re-engineering, variability
management, a feature model notations. This information in important for user with low
experience with SPL re-engineering and may decrease their difficulty when performing
PAxSPL. Within our guidelines we also included a checklist (see Section 4.3.4) to give
support during the process execution.

With this kind of documentation, we intend to give as much help as possible for
the team make the best decisions when selecting the techniques for feature retrieval. We
also created a feature model of Feature Retrieval Techniques that formalizes possible tech-
niques and makes possible to calculate how many different combinations can be chosen.
We grouped the techniques based on their strategy, as shown in Figure 10:

∙ Static Analysis: Dependency Analysis and its variations, Data-Flow analysis and
its variations, and Clustering;

∙ Information Retrieval: LSI, VSM and FCA;

∙ Support Strategies: Rule-Based Techniques, Expert-Driven Extraction and Heuris-
tics.

Figure 10 – A feature model of retrieval techniques.

Source: Author.

4.3.1 Static Analysis

Static analysis is done by analyzing a program without its execution. Information
analyzed may include structure and static artifacts. Static analysis techniques are recom-
mended when analyzing source code. Furthermore, is recommended that the used source

56 Chapter 4. The Prepare, Assemble and Execute Process

code possesses low coupling and high cohesion to improve the precision. The use of static
analysis is also recommended alongside at least one information retrieval technique such
as formal concept analysis.

4.3.1.1 Clustering

The definition of clustering is to group elements, in this case features, based on
their dependencies in groups called clusters.

∙ Variations: (i) Agglomerative Hierarchical Clustering (AHC): A “bottom up” ap-
proach where each observation starts in its own cluster, and pairs of clusters are
merged as one moves up the hierarchy. (ii) Divisive Hierarchical Clustering (DHC):
A “top down” approach where all observations start in one cluster, and splits are
performed recursively as one moves down the hierarchy.

∙ Priority Order: Group >Extraction >Categorize.

∙ Inputs: Source Code.

∙ Outputs: Feature tree, feature clusters, dendrogram tree.

∙ Examples: (ALVES et al., 2008) (EYAL-SALMAN; SERIAI; DONY, 2014) (CHEN
et al., 2005) (DAMAŠEVIČIUS et al., 2012) (KELLY et al., 2011) (NÖBAUER;
SEYFF; GROHER, 2014b) (RUBIN et al., 2012) (WESTON; CHITCHYAN; RASHID,
2009) (BÉCAN et al., 2013).

∙ Tools: Cluster 3.0, Pycluster, C Clustering Library2.

∙ Related Techniques: FCA.

∙ Recommended Situations: Clustering is highly recommended in products that pos-
sesses high level of dependencies among feature implementations. Besides that, a
good documentation is not required when applying this technique.

∙ Not Recommended Situations: As a static analysis technique, clustering may be
unable to find all elements related to the same feature when applied in source code
where the implementation of a feature is spread across several modules.

4.3.1.2 Dependency Analysis

Can be defined as the act of leverages static dependencies among program ele-
ments. Can be used to validate and describe the interdependence among elements.
2 <http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm>

http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm

4.3. Guidelines 57

∙ Variations: (i) Data Analysis. (ii) Control Analysis. (iii) Structural Dependency:
A metric that represents how much of the structural context of a feature can be
mapped from a set of program elements.

∙ Priority Order: Extraction >Categorize >Group.

∙ Inputs: Source Code.

∙ Outputs: Dependence graph.

∙ Examples: (ALI et al., 2011) (NÖBAUER; SEYFF; GROHER, 2014a) (KLATT;
KROGMANN; SEIDL, 2014) (LINSBAUER et al., 2014).

∙ Tools: Dependency Finder3, Java Dependency Analysis Tool, eDepend.

∙ Related Techniques: FCA.

∙ Recommended Situations: To perform Dependency Analysis is almost mandatory
that the products have high level of dependencies among feature implementations.
Besides that, a good documentation is not required when applying this technique.

∙ Not Recommended Situations: As a static analysis technique, dependency analysis
may be unable to find all elements related to the same feature when applied in
source code where the implementation of a feature is spread across several modules.

4.3.1.3 Data Flow Analysis

Data Flow Analysis may be defined as the collection of information about possible
values calculated at different points of a software system. This information is used to
determine in which parts of that program a particular value might propagate.

∙ Variations: (i) Forward Analysis: Calculates for each program point the set of
definitions that may potentially reach this program point. (ii) Backward Analy-
sis: Calculates for each program point the variables that may be potentially read
afterwards before their next write update.

∙ Priority Order: Extraction >Categorize >Group.

∙ Inputs: Source Code.

∙ Outputs: Code fragments related to a feature.

∙ Examples: (BAYER et al., 2004).

∙ Tools: InputTracer4.
3 <http://depfind.sourceforge.net/>
4 <http://ieeexplore.ieee.org/document/6392112/>

http://depfind.sourceforge.net/
http://ieeexplore.ieee.org/document/6392112/

58 Chapter 4. The Prepare, Assemble and Execute Process

∙ Related Techniques: Clustering.

∙ Recommended Situations: As any static analysis technique, data flow analysis may
be apply in a satisfactory way, when source code is well written. Also, better results
can be reached when source code possesses high level of dependencies among feature
implementations.

∙ Not Recommended Situations: If the source code possesses a high variable flow data
flow analysis may have uncertain results.

4.3.2 Information Retrieval

This strategy collects and analyzes information in artifacts considering text struc-
ture, similarity, etc. Information retrieval techniques commonly use documents written
in natural language, generally used in requirements artifacts. However, they can also
be used in source code, but to do that, either source code and requirements must have
meaningful names. Is also recommend to use information retrieval techniques alongside
at least one static analysis technique, such as clustering.

4.3.2.1 Formal Concept Analysis

FCA is a mathematical method that provides a way to identify “meaningful group-
ings of objects that have common attributes”.

∙ Variations: (i) Clarified: The context does not have duplicate rows or columns.
(ii) Reduced: No context rows can be expressed as intersection of other rows. The
lattice of such context is meet-reduced. No context columns can be expressed as
intersection of other columns. The lattice of such context is join-reduced.

∙ Priority Order: Extraction >Categorize >Group.

∙ Inputs: Source Code, Requirements, Design Models, or any textual artifact.

∙ Outputs: Concept lattice.

∙ Examples: (EISENBARTH; KOSCHKE; SIMON, 2001) (YANG; PENG; ZHAO,
2009) (EYAL-SALMAN; SERIAI; DONY, 2014) (EYAL-SALMAN; SERIAI; DONY,
2013a) (AL-MSIE’DEEN et al., 2013) (AL-MSIE’DEEN et al., 2012) (XUE; XING;
JARZABEK, 2012) (MAAZOUN; BOUASSIDA; BEN-ABDALLAH, 2014) (MAÂ-
ZOUN; BOUASSIDA; BEN-ABDALLAH, 2014) (MEFTEH; BOUASSIDA; BEN-
ABDALLAH, 2014).

∙ Tools: We found an extensive list of FCA supporting tools5.
5 <http://www.upriss.org.uk/fca/fcasoftware.html>

http://www.upriss.org.uk/fca/fcasoftware.html

4.3. Guidelines 59

∙ Related Techniques: LSI, Clustering.

∙ Recommended Situations: FCA is recommended when program elements (e.g.,
classes, methods, etc.) have meaningful names (e.g., “attribute” instead of “atr” or
“home” instead of “hm”). Besides that, is highly recommended to use this technique
in products well documented.

∙ Not Recommended Situations: As an information retrieval technique, FCA can-
not achieve quality results when applied to products with no documentation and
no meaningful identifiers names. For that reason it is not recommended in those
situations.

4.3.2.2 Latent Semantic Indexing

LSI an indexing and retrieval method that uses a mathematical technique to iden-
tify patterns in the relationships between the terms and concepts contained in an unstruc-
tured collection of text.

∙ Variations: (i) Semantic Hashing: Documents are mapped to memory addresses by
means of a neural network in such a way that semantically similar documents are
located at nearby addresses.

∙ Priority Order: Extraction >Categorize >Group.

∙ Inputs: Source Code, Requirements, Design Models, or any textual artifact.

∙ Outputs: Occurrence matrix.

∙ Examples: (AL-MSIE’DEEN et al., 2013) (XUE; XING; JARZABEK, 2012) (EYAL-
SALMAN; SERIAI; DONY, 2013b) (EYAL-SALMAN; SERIAI; DONY, 2013a)
(AL-MSIE’DEEN et al., 2012) (MAAZOUN; BOUASSIDA; BEN-ABDALLAH,
2014) (MAÂZOUN; BOUASSIDA; BEN-ABDALLAH, 2014) (ALVES et al., 2008).

∙ Tools: Ultimate Keyword Hunter6, Infomap NLP Software7, LSA of Colorado Uni-
versity8

∙ Related Techniques: FCA, Clustering.

∙ Recommended Situations: LSI, same as FCA is recommended when program ele-
ments (e.g., classes, methods, etc.) have meaningful names (e.g., “attribute” instead
of “atr” or “home” instead of “hm”). Besides that, is highly recommended to use
this technique in products well documented.

6 <http://ultimatekeywordhunter.com/>
7 <http://infomap-nlp.sourceforge.net/>
8 <http://lsa.colorado.edu/>

http://ultimatekeywordhunter.com/
http://infomap-nlp.sourceforge.net/
http://lsa.colorado.edu/

60 Chapter 4. The Prepare, Assemble and Execute Process

∙ Not Recommended Situations: As an information retrieval technique, LSI cannot
achieve quality results when applied to products with no documentation and no
meaningful identifiers names. For that reason it is not recommended in those situ-
ations.

4.3.2.3 Vector Space Model

VSM is an algebraic model for representing text documents in a way where the
objects retrieved are modeled as elements of a vector space.

∙ Variations: N/A.

∙ Priority Order: Extraction >Categorize >Group.

∙ Inputs: Source Code, Requirements, Design Models, or any textual artifact.

∙ Outputs: Vectors representing the objects retrieved.

∙ Examples: (KUMAKI et al., 2012) (EYAL-SALMAN; SERIAI; DONY, 2013b)
(ALVES et al., 2008).

∙ Related Techniques: FCA, Clustering.

∙ Recommended Situations: Same as LSI and FCA, VSM is recommended when
program elements (e.g., classes, methods, etc.) have meaningful names (e.g., “at-
tribute” instead of “atr” or “home” instead of “hm”). Besides that, is highly rec-
ommended to use this technique in products well documented.

∙ Not Recommended Situations: The use of VSM has some limitations which may be
considering when selecting this technique, such as: (i) Long documents are poorly
represented because they have poor similarity values; (ii) Search keywords must
precisely match document terms: word sub-strings might result in a “false positive
match”; (iii) Semantic sensitivity: documents with similar context but different
term vocabulary won’t be associated, resulting in a “false negative match”; (iv)
The order in which the terms appear in the document is lost in the vector space
representation.

4.3.3 Support Techniques

These techniques are used alongside information retrieval or static analysis tech-
niques. Their goal is to improve the results of some techniques. Support techniques may
never be performed alone.

4.3. Guidelines 61

4.3.3.1 Expert-Driven

This technique is based on knowledge and experiences of specialists, such as do-
main engineers, software engineers, stakeholders, etc. This may include the addition of
techniques that are not in this process documentation, if the specialist decide to use them.
To apply the expert-driven technique is highly recommended to have a team with skills
and knowledge involving the re-engineering process of SPL. We also recommend to use
Expert-Driven as a support technique along Static Analysis and Information Retrieval.

4.3.3.2 Heuristics

Heuristics are proposed approaches that use a practical method not guaranteed
to be perfect, but sufficient to obtain immediate goals. We mapped a set of heuristics
proposed by different works in the SPL re-engineering area, we give some examples:

H1 Filtering: Filter elements that do not contribute directly to the feature retrieved
(RUBIN; CHECHIK, 2012b).

H2 Score Modification: Rank elements based on their lexical and syntactical properties,
eliminating not relevant elements (RUBIN; CHECHIK, 2012b).

H3 Compare: Calculates the similarity degree for each pair of input model elements
(RUBIN; CHECHIK, 2012a).

H4 Match: Use empirical similarity thresholds and analyze a pair of model elements,
returning pairs that are considered similar in a match result (RUBIN; CHECHIK,
2012a).

We decided to include heuristics in our process documentation because we think
they can be combined with any other feature retrieval technique, giving our process more
flexibility.

4.3.3.3 Rule-based

Similar to heuristics, this techniques uses a set of rules is to guide and help whoever
is performing the feature extraction. One example may be seen in the work of Mu, Wang
e Guo (2009), where these rules are applied in source code and requirements to extract
the features alongside static analysis techniques.

4.3.4 Support Checklist

This checklist was created to give support during PAxSPL execution. It contains
items for each activity of our process and may reduce the difficult to conduct the process
and to make some decisions as well. The checklist is described as follows:

62 Chapter 4. The Prepare, Assemble and Execute Process

1. Prepare Phase

1.1. Is the team information (members skills, experience, roles) registered?

1.2. Does the company possesses a business organization chart?

1.3. Is the team information registered using a template?

1.4. Are all the roles assigned to team members?

1.5. Do all team members possess at least one role?

1.6. Are the assigned roles related to team members experience, skills, or role in
the company?

1.7. Are the Feature Retriever and Feature Testes roles assigned to different team
members?

1.8. Documentation Analysis

1.8.1. Do the system variants possess important domain information?
1.8.2. Do the system variants need a domain glossary?
1.8.3. Do the system variants need a domain constraints list?
1.8.4. Are the requirements well documented?
1.8.5. Is the architectural information well documented?
1.8.6. Is the artifacts type information registered in a document?
1.8.7. Is the development and technological information (programming patterns,

programming and development paradigms) registered?

2. Assemble Phase

2.1. Select Techniques

2.1.1. Is the candidate technique related to some team member skill or experi-
ence?

2.1.2. Is the candidate technique related to other selected technique?
2.1.3. Were the technique practical examples analyzed?
2.1.4. Are the practical examples somehow similar to the current scenario(s)?
2.1.5. Is the candidate technique recommended scenarios similar to the current

scenario(s)?
2.1.6. Are the candidate technique input artifacts available from the system vari-

ants artifacts?
2.1.7. Does the candidate technique have related techniques?
2.1.8. Is a support technique needed?

2.2. Assemble Techniques

4.4. Chapter Lessons 63

2.2.1. Is the technique priority to be assembled for extraction?
2.2.2. Is the technique priority to be assembled for categorization?
2.2.3. Is the technique priority to be assembled for group?
2.2.4. Can the techniques be combined for one activity (extract, categorize or

group)?
2.2.5. Are there techniques assembled for the three first activities (extract, cat-

egorize or group) of the generic process?

2.3. Are all activities of the assembled process assigned to at least one team mem-
ber?

3. Execute Phase

3.1. Was the assembled process executed without major problems?

3.2. Were the retrieved features verified by the feature tester?

3.3. Are the feature artifacts well documented?

3.4. Was a feature diagram of the retrieved features created?

3.5. Was the process preparation, assembly and execution experience registered?

4.4 Chapter Lessons

In this chapter we described our work main proposal: PAxSPL. PAxSPL is a
process that assembles a feature retrieval process for SPL re-engineering. We described
our process structure including its roles/actors, artifacts, phases, activities and guidelines.
The guidelines documentation aims to guides the team applying the process, reducing
effort.

65

5 ASSESSING OUR PROPOSAL
We applied a survey1 in researchers of the SPLE and Re-engineering field to eval-

uate the impact, relevance and originality of our proposal in the SPL re-engineering field.
We also conducted a Case Study to collect evidence about PAxSPL applicability in com-
parison to when no process is given. In this chapter we explain the survey structure,
Section 5.1, discuss the participants profile, Section 5.1.1, list and discuss the questions
and its results, Section 5.1.2, and analyze the survey and its results in Section 5.1.3. In
regard to the Case Study (see Section 5.2), we present its planning in Section 5.2.1, the
conduction is presented in Section 5.2.2, and its results are discussed in Section 5.2.4.

5.1 Survey

We split the survey in six sections intending to better organize the information,
and get better understanding from the participants. The first section is an introduction
of the survey, briefly showing the goals of our research and the survey goals as well. The
second section of the survey had questions with regard to the participants information
such as academic degree, knowledge and experience in the SPLE area. The third section
had our process documentation, being responsible for giving participants, the information
needed to answer the later questions. Fourth and fifth sections contained questions to
assess our process. We have used Likert Scale (LIKERT, 1932) to give participants options
to rate the answers based on their opinion, in which the number one (1) represents a low
degree of agreement and number five (5) represents a high degree of agreement with the
question. The last sections was created to ask for feedback with regard to the survey,
such as clarity of the questions, comments about the survey, and comments about our
process.

5.1.1 Participants Profile

To answer our survey we considered researchers working on either the SPLE or
the re-engineering field. We invited authors of relevant studies in both SPL and re-
engineering fields. Within the survey we included questions to obtain information about
the participants degree, knowledge, skills and experience. The total number of answers
was eleven.

With regard to the academic degree, 27% of the participants were undergraduate
students, 27% were graduated, 27% were PhD and 19% held a Master degree. This
information is important, because it indicates the degree of confidence that we may obtain
from the answers.

Regarding the experience with SPL, we have asked how many years the partici-
pants have been working or researching in the SPL engineering field. The answers were
1 <http://tiny.cc/surveyluciano>

http://tiny.cc/surveyluciano

66 Chapter 5. Assessing our Proposal

Table 8 – Experience applying/performing/monitoring:

Topic Yes No
SPL engineering process 55% 45%
Re-engineering process 55% 45%
SPL Re-engineering process 55% 45%

Source: Author.

satisfactory for us, because 64% of the participants have been working or researching in
this field for 1 to 5 years. For the rest, 26% have being working or researching for less than
1 year, and 10% for more than 5 years. We believe this information is crucial, because
if most of the participants had not enough experience with SPL they would possibly not
have enough knowledge to understand and contribute to our survey.

We have also asked if the participants have applied, performed or monitored a SPL
engineering process. For this questions, 55% answered yes (Table 8), same result of the
question regarding if they have applied, performed, or monitored a re-engineering process
or a SPL Re-engineering process.

The last part of the participants profile questions was about their technical knowl-
edge related to topics of interest for this work, shown in Figure 11. For the first topic, SPL,
90% of the participants have checked as part of their knowledge. Both Re-engineering
process and Process Documentations topic were checked by 45% of the participants. 36%
checked the SPL Re-engineering topic, 27% checked Feature Retrieval, and 18% checked
Feature Retrieval Techniques. These results indicated that the participants that have
answered our survey were able to asses our process with a good level of confidence.

Figure 11 – Participants technical knowledge.

20% 40% 60% 80% 100%

Process Documentation

Retrieval Techniques

Feature Retrieval

SPL Re-engineering

Re-engineering

SPL

45

18

27

36

45

90

Source: Author.

5.1. Survey 67

5.1.2 Results

The results analysis of this section is based on the numbers presented in Figure 12.
The first four questions were related to the relevance of our proposal. We asked whether a
generic process for performing SPL re-engineering would be a relevant contribution to the
field (Q01). Most of the participants answered with 4 (54.5%) or 5 (45.5%), as illustrated
in Figure 12. These results indicate that a generic process would be relevant.

Figure 12 – Frequency diagram of the quantitative questions.

10% 20% 30% 40% 50% 60% 70% 80% 90%

Q10

Q09

Q08

Q07

Q06

Q05

Q04

Q03

Q02

Q01

18.1

9

54.5

18.1

45.5

9

36.4

54.5

45.5

36.4

45.5

18.1

27.3

45.5

72.7

45.5

18.1

45.5

54.5

45.5

27.3

18.1

45.5

9

18.1

36.4

36.4

18.1

9

9

9

9

9

Q
ua

nt
ita

tiv
e

Q
ue

st
io

ns

1-Low degree 2 3 4 5-High degree

* Some percentages generate a recurring decimal which do not result in a 100% total.
Source: Author.

The second question was still related with the relevance; however, it was specific
for the customization and applicability of the process in different scenarios (Q02). We
have also obtained similar results as it happened in the first question, where 45.5% of
the participants selected 4 and 54.5% answered with 5. For the third question, we asked
if our process is a novel contribution to the field (Q03). For this question, we obtained
mixed results: most of the participants answered with 3 or 5 (36.4% each); The option
4 was selected by a smaller group (18.1%); Lastly, the option 1 was selected by only 9%
of the participants and despite being an exception to the answers, it is still a not desired
result. We still think, however, that as most of the answers were 3 or higher, our process
may be a novel contribution.

The fourth question was related with the impact of our proposed process (Q04).
This impact would be the importance of our proposal for the SPL re-engineering field.
The option 4 (45.5%) and 3 (36.4%) was checked by most of the participants and the
options 2 and 5 were both selected by only 9% each. These results also proved to be good

68 Chapter 5. Assessing our Proposal

because the majority of the answers indicate that PAxSPL would have a good impact for
the SPL re-engineering.

For the second part of the questions, showed in Figure 12, we asked a question
related with the flexibility of our process to collect information about the team, assign
roles and define tasks (Q05). The goal of this question is to evaluate the flexibility level
of our process exclusively for those topics. We obtained good results again, as the great
majority of the participants chose the option 4 (72.7%), with a few choosing 3 (18.1%)
and only 9% choosing 2. This implies that our process provides flexibility regarding the
team management topic.

For the next two questions, we have asked exclusively about the artifacts docu-
mented within our process. The first question was regarding the relevance of a process
that provides flexibility for the artifacts used (Q06). Both the options 5 and 4 were
selected by most of the answers (45.5% each) and 3 was selected by only 9% of the partic-
ipants. The second question was whether the participants thought that our process is a
novel contribution in regards only to its flexibility related with artifacts (Q07). We have
obtained another mixed set of answers, as most of the participants chose 3 (45.5%), the
option 4 was selected by 27.3%, option 5 was selected by 18.1% and option 2 was selected
by 9%. As it happened with the flexibility of the team management topic, we conclude
that, although our process is flexible in the artifacts topic, it could be improved.

For the next two questions, we asked if, considering the flexibility related with
techniques for feature retrieval, a SPL re-engineering process is a relevant contribution
(Q08). Once again we got mixed answers, where most of the participants, chose the
option 5 (54.5%). The options 3 and 4, got the same amount of answers (18.1% each) and
9% of the participants selected option 2. We have also asked if, regarding the flexibility
related with techniques for feature retrieval, our process is a novel contribution to the SPL
re-engineering field (Q09). For this question, most of the participants have answered with
4 (45.5%), following by a smaller group answering with 3 (27.3%), 18.1% have answered
with 2 and also 9% of the participants answering with 5. Once again we obtained mixed
answers; though most of them were positive, we think that some improvements should be
made to make our process more flexible in those topics.

The last question was related with the applicability of our process (Q10). For this
question, a great majority of the participants have answered with 3 (45.5%), following by
participants that selected 4 (36.4%) and 5 (18.1%). This indicates that for most of the
participants, our process is considerably applicable.

5.1.3 Results Analysis

In the last section of the survey we have placed two open questions to give partic-
ipants the opportunity to leave comments and suggestions for our process. Most of the
suggestions were related to expand the flexibility of our proposal. Some participants in-

5.1. Survey 69

dicated the need for improving some aspects of the documentation to obtain more clarity
about how flexible the process really is.

Another suggestion was related to the process been specific in some points such
as artifacts used by some retrieval techniques. Some participants suggested to define this
techniques in a generic way and provide supporting tools and methods as a recommenda-
tion for executing each technique.

By analyzing the results of the questions and the comments and suggestions as
well, we have concluded that our process is on the right direction towards our main goal.
We could noticed that there is still some lack of flexibility in some points. Despite these
problems, the results indicated the impact, relevance and originality of our proposal.

For the first topic, we could see with the results of the questions that a generic
process that provides flexibility for SPL Re-engineering would make impact in the field.
This indicates that the motivation for creating our process makes sense and we have been
doing a significant research in the area.

With regard to the relevance of our proposal, the results showed that our proposal
is being developed towards the direction we intended. We concluded, however, that our
proposal may not be a novel contribution as we toughed. However, we do not think this
is a problem, because our process will be improved and expanded in future works, what
may turn it into an unique proposal.

5.1.4 Process Improvements considering the Survey Results

The process presented in Chapter 4 is the result of the changes made after the
survey application, thus it is the latest version of our process. We think, however, that
it is important to present the first version of our process pointing the main differences
between each version.

The first version of our process had only three activities in the main flow, as
Figure 13 shows. There are some artifacts showed in the figure (Team Information Report,
Modified Product Artifacts, Variability Reports, Feature Artifacts) that are still part of
our process (see Section 4.1.3), and some activities (Planning, Documentation Analysis) as
well. The first version, however, did not include a feature model as an output artifact. In
the first version we did not intend to generate a feature model, only retrieve the features,
without further analysis.

Another difference is the artifact called Assembled Process (see Section 4.1.3.3),
which was not present in the first version of our proposal. The reason to create this process
is related with some comments of the survey that pointed to the need of formalizing the
techniques selection. In the first version, we did not have an artifact to formalize the
selected techniques. This selection was made during an activity called Feature Search,
as illustrated in Figure 14. With the introduction of the Assembled Process, we provide
to the team a way to assemble the selected techniques into a process. We still, however,

70 Chapter 5. Assessing our Proposal

Figure 13 – First version of our process.

Source: Author.

maintain flexibly because they may assemble the techniques as they prefer.

Figure 14 – First version of our process (Feature Search Activity).

Source: Author.

Another difference is the introduction of new sections in the guidelines documen-
tation (see Section 4.3), such as the feature model for retrieval techniques, and the tools
recommendation for each technique.

5.2 Case Study

5.2.1 Rationale and Preparation

To further evaluate PAxSPL we conducted a case study in a real development
environment. To the best of our knowledge there is not a process that gives support to
feature retrieval according to a specific scenario. Thus we decided to collect evidence of

5.2. Case Study 71

PAxSPL when applied in an organization that does not have a re-engineering process.
We also wanted to collect evidence about the reuse capability provided by PAxSPL when
performed in a different scenario. As an exploratory evaluation, this Case Study was
focused in qualitative results rather than quantitative. Based on this we formulated our
objectives, RQs and data collection mechanisms.

5.2.1.1 Objectives and Research Questions

The main objective of the Case Study is to evaluate how PAxSPL may help a
team with little or no experience in SPL re-engineering to perform feature retrieval in a
set of system variants. We wanted to collect exploratory evidence about the most relevant
PAxSPL artifacts, the quality of these artifacts, effort to apply PAxSPL, and PAxSPL
reuse capability when re-applied in a different scenario.

Based on the objectives we formulated the following RQs:

RQ1. What is the impact/relevance of the artifacts generated by PAxSPL execution in
terms of re-engineering?

RQ2. What is the quality of the generated artifacts?

RQ3. What is the effort needed to perform each phase of PAxSPL?

RQ4. What is the reuse capability of PAxSPL?

The impact/relevance of the artifacts generated during PAxSPL execution is mea-
sured in terms of the re-engineering process (RQ1). We want to measure how many times
and in which activities each artifact was used. We also asked the participants about their
opinion of each artifact relevance/impact when choosing techniques for feature retrieval.

In regard to the quality of the generated artifacts (RQ2), we created quality metrics
(see Section 5.2.1.5). We used these metrics to measure how much the generated artifacts
are satisfactory for the process execution in terms of re-engineering, giving us evidence to
answer RQ3 and RQ4 without have to consider quality differences.

The effort comparison of each phase (RQ3) is in terms of: time spent to learn con-
cepts needed to perform feature retrieval and analyze product documentation (Prepare
phase); time spent to select techniques and assemble them before retrieve the features
(Assemble phase); and time spent to perform the retrieval techniques to generate the
feature artifacts (Execute phase); In addition, we also considered the complexity of each
activity in regard to the participants opinion.

To gather information for RQ4, we considered which artifacts could be reused
without any modification. We also considered the participants opinion about artifacts
reusability. To maintain the quality level for both phases, we considered the artifacts
quality scores from both phases.

72 Chapter 5. Assessing our Proposal

5.2.1.2 Context and Units of Analysis

The organization where the case study was applied is a startup called Porthal2.
Porthal posses a web-based enterprise resource planning system called ICode. ICode
can be used for managing registration of customers, suppliers, tax accounts, finances,
schedules, products, sales and electronic invoice generation. ICode was developed using
a modular architecture, composed of six different modules:

∙ Cadastro3: this module contains all features relate with registers of clients, products,
suppliers, customers, and so on;

∙ Tributário: in this module features related to accountant are implemented, such as
taxation related functionalities;

∙ Financeiro: module composed by features related with finances, such as bank and
cards account information;

∙ NFe: module in which all features related with electronic invoice are implemented,
such as generation and validation of electronic invoice;

∙ Agenda: module compose by features related with schedule plans and appointments;

∙ Pedido: module where sales requests and generation of related documents are per-
formed.

ICode was developed using JAVA, using the JAVA EE API, and Java Server Faces
(JSF). The current version of ICode is composed of more than two hundred JAVA class
and has a database with more than sixty tables.

Porthal attends more than fifty clients and distributes different configurations of
ICode (products) according to their clients’ needs. For instance, a product may have
three modules (Cadastro, Financeiro and Agenda). However, this product configuration
is performed in a manual way. No systematic solution, such as SPL, is used. In addition,
there is no artifacts created to model the variability among the possible configurations.
These characteristics make ICode have potential to become SPL, being a good choice
for this case study. However, Porthal had not applied or even selected a re-engineering
process. Therefore we decided to observe how the software engineers would perform the
feature retrieval using PAxSPL.

With regard to the participants, they were software engineers from the organization
where the case study was applied. They have experience working as software developers,
and were grouped in a team.
2 <http://porthal.com.br/>
3 When describing the system modules and features, we used the system’s original language, which is

Portuguese.

http://porthal.com.br/

5.2. Case Study 73

5.2.1.3 Case Study Protocol

The case study protocol was divided in two phases. During Phase 1, PAxSPL
was performed in five different products of ICode. These five products were analyzed and
the feature retrieval process was executed. The five first products were composed by a
different combination of four modules:

∙ Product 1: Cadastro and Tributário;

∙ Product 2: Cadastro and Financeiro;

∙ Product 3: Cadastro, Tributário, Financeiro and NFe;

∙ Product 4: Cadastro, Tributário and NFe;

∙ Product 5: Cadastro, Tributário and Financeiro;

In Phase 2, we re-applied PAxSPL adding five more products, thus the partici-
pants should use ten different products of ICode as input for the feature retrieval. The
five products added in Phase 1 were composed by a different combination of six modules:

∙ Product 6: Cadastro, Tributário, NFe and Agenda;

∙ Product 7: Cadastro, Financeiro and Pedido;

∙ Product 8: Cadastro, Tributário, Financeiro, NFe and Agenda;

∙ Product 9: Cadastro, Tributário, Financeiro, NFe, Agenda and Pedido;

∙ Product 10: Cadastro, Tributário, Financeiro and Pedido;

The documentation generated during the first execution was used, allowing to
reuse the generated artifacts in a different set of system variants.

We did not set any time limit for the participants, and the case study was per-
formed during the organization working hours (8 hours a day). We still, however, regis-
tered the time spent for each activity of PAxSPL.

5.2.1.4 Data Collection

To increase the precision and strengthen the validity of our case study we per-
formed the data collection taking multiple perspectives, thus allowing triangulation (RUNE-
SON et al., 2012). Therefore we collected data using different sources: observing and doc-
umenting information in real time, applying different surveys4, and analyzing PAxSPL
generated artifacts. In regard to information documented while observing, we monitored
4 The surveys are available at <https://goo.gl/uFPQXH>

https://goo.gl/uFPQXH

74 Chapter 5. Assessing our Proposal

and registered the time spent in each activity of PAxSPL. We also kept track of each
artifact used during each activity, registering how often and in how many activities an
artifact was used. During Phase 2 of the case study we compared these information to
answer RQ4.

We applied three surveys in different moments of the case study. Survey 1 was
applied before Phase 1 aiming to collect information about the participants. Survey 2
was applied before Phase 2 to collect the information gathered during Phase 1, aiming
to answer RQ1, RQ2 and RQ3. Lastly, Survey 3 was applied after Phase 2 to collect
information related to RQ4. The artifacts were analyzed only at the end of the whole
execution, aiming to measure their quality.

5.2.1.5 Quality Metrics

To measure the quality of the artifacts generated during PAxSPL we created a
Quality Metrics (QM). For each QM we have three possible scores: Total (T) which
scores 1, Partial (P) which scores 0.5, and Nothing (N) which scores 0 (zero). The QMs
are described as follows:

QM1. Are the PAxSPL mandatory artifacts well documented following their templates?

Evaluation - T: all mandatory artifacts are documented and follow their templates
when provided; P: a few mandatory artifacts were not documented or did not follow
their templates; N: most of the mandatory artifacts were not documented;

QM2. Are all the team members roles and tasks documented in the team information
report?

Evaluation - T: all team members mandatory information is registered in the team
information report; P: some mandatory information is missing from the team infor-
mation report; N: the team information report was not documented at all;

QM3. Were all needed product artifacts analyzed/documented during the documentation
analysis?

Evaluation - T: every needed product artifact of the documentation analysis activity
was analyzed/documented; P: not all product artifacts were not analyzed/documented;
N: only a few needed product artifacts were analyzed/documented;

QM4. Were the decision and reasons to select or not select a technique for feature retrieval
documented?

Evaluation - T: the decisions and reasons to select or not every candidate technique
were documented; P: most of decisions and reasons to select or not a technique were
documented; N: only a few candidate techniques had its reasons for select it or not
documented;

5.2. Case Study 75

QM5. Was the assembled process documented following a process structure?

Evaluation - T: the assembled process was documented following a structure showing
its activities, roles, work-flow and artifacts; P: not all details of the assembled
process were documented; N: none document was created for the assembled process.

QM6. Were all the retrieval techniques output artifacts documented?

Evaluation - T: every retrieval technique output artifact was documented; P: most
retrieval techniques output artifacts were documented; N: only a few retrieval tech-
niques output artifacts were documented.

QM7. Were all feature entry points from the retrieved features documented?

Evaluation - T: all feature entry points from the retrieved features were documented;
P: most feature entry points from the retrieved features were documented; N: only
a few feature entry points from the retrieved features were documented.

QM8. Were all features from the system variants retrieved?

Evaluation - T: all features from the system variants were retrieved and documented;
P: most features from the system variants were retrieved and documented; N: only
a few features from the system variants were retrieved and documented.

QM9. Was a feature diagram created to represent system variants as SPL?

Evaluation - T: a feature diagram was created following a feature model notation;
P: a feature diagram was created, however none feature model notation or rules was
followed; N: a feature diagram was not created.

QM10. Was the process execution experience documented?

Evaluation - T: the process execution experience and all decision points were docu-
mented following a template; P: the process execution experience was documented,
however no template was used; N: the process execution experience was not docu-
mented at all.

We used these ten QMs to measure and compare the quality of the generated
artifacts during the two phases of our case study (RQ2).

5.2.2 Conduction

Before the case study execution, we did not gave any kind of training or intro-
duction to basic SPL or re-engineering concepts to the participants. At the beginning of
Phase 1, the participants received PAxSPL documentation and the five first products of
ICode. The ICode artifacts were composed by source code, requirements list and some
architecture diagrams.

76 Chapter 5. Assessing our Proposal

During PAxSPL execution, we observed and documented the information that
would be used to answer the RQs.

At the beginning of Phase 1, we gave to the participants five more products of
ICode, composed by the same types of artifacts. They also could use the documentation
generated during Phase 1. We collected the same kind of information, allowing us to
perform some comparison between both phases.

5.2.3 Collected Data

The data collected to answer the RQs can be categorized in four different cate-
gories: time spent, quality of artifacts, use and reuse of artifacts, and the answers from
the surveys. This data is detailed in the following sub-sections.

5.2.3.1 Time Spent

The case study was executed during two weeks. Table 9 details the information
about the time spent in each phase and activity of PAxSPL during both phases of the
case study. In total, Phase 1 was performed in thirteen and a half hours, while for
Phase 2, only four and a half hours were needed. For both execution phases, the most
time consuming phase of PAxSPL was Execute (eight hours for Phase 1 and three and
a half hours for Phase 2), mainly because the Execute Assembled Process activity,
which was reduced in thee hours. Two activities were reduced by one hour during Phase
2: Perform Documentation Analysis was performed and one and a half hour during
Phase 1 and half an hour during Phase 2, while Document Feature Artifacts reduced
from two hours to one. Another important information is the activities where no time
was spent during Phase 2 of the case study. During these activities (Collect Team
Information, Assign Roles and Select Techniques), the artifacts from Phase 1 were
reused, justifying the time saved.

Table 9 – Time spent in each activity of PAxSPL during both phases of case study.

Activity/Time Spent (Hours)
Prepare Assemble Execute TotalCollect

Team
Info.

Assign
Roles

Perform
Doc.
Analysis

Select
Tec.

Assemble
Tec.

Assign
Tasks

Exec.
Assembled
Process

Doc.
Feature
Artifacts

Doc.
Process
Exp.

P1 0.5 0.5 1.5 1.5 1 0.5 5 2 1 13.5
P2 0 0 0.5 0 0.2 0.3 2 1 0.5 4.5

P1 - Phase 1; P2 - Phase 2.

Source: Author.

5.2.3.2 Quality of Generated Artifacts

During execution of both phases of the case study more than 30 artifacts from
PAxSPL were generated. This however, does not give evidence that the process was fol-

5.2. Case Study 77

lowed as required. In addition, the generation of an artifact does not indicated its usability
and quality. Thus, at the end of the case study we analyzed the artifacts and applied ten
QMs (see Section 5.2.1.5) to give evidence that the artifacts were generated according to
the process guidelines. The score obtained from Phase 1 of the case study was 9.5 while
from Phase 2 was 10, as showed in Table 10. The only difference between both phases
was in QM6, where some feature artifacts were not documented during Phase 1.

Table 10 – Quality of PAxSPL artifacts generated during
both phases of case study.

QMs/Scores
1 2 3 4 5 6 7 8 9 10 Total Score

P1 T T T T T P T T T T 9.5
P2 T T T T T T T T T T 10

P1 - Phase 1; P2 - Phase 2.
T - Total Score; P - Partial Score.

Source: Author.

Among the generated artifacts5, at least one was generated during each activity
of PAxSPL. For the first two activities, Collect Team Information and Assign Roles
we have the Team Information Report. As is showed in Figure 15, the report was docu-
mented following its template (see Appendix A), indicating that the process description
was followed for those activities. The artifact described members (for ethical reasons we
asked the participants to do not use their names), their roles, experience working with
SPL and knowledge with feature retrieval techniques. The generated artifact in both
phases of the case study was the same, because the team members did not change.

Another important artifact is the retrieval techniques report, alongside the con-
figured feature model of retrieval techniques. Both artifacts are generated during Select
Techniques sub-process. For the first artifact, the retrieval techniques report, showed
in Figure 16, we also noticed that the template (see Appendix C) was followed and all
candidate retrieval techniques were documented describing the reasons for their selection
or not. In this case, the candidate techniques were FCA, Clustering and Expert-Driven
Extraction which were selected, and LSI which was not.

Besides these artifacts importance during PAxSPL execution, the feature retrieval
artifacts generated by the application of retrieval techniques have direct relation with the
final output of PAxSPL, which is a feature model.

For each retrieval technique applied (with exception of expert-driven extraction)
at least one artifact was generated. For instance, as showed in Figure 17, a concept lattice
generated during Phase 2 of the case study. This lattice presents an ordered hierarchy of
the features extracted from ten different products of ICode. In this case, the more close
5 All artifacts available at <https://github.com/HestiaProject/PAxSPL/tree/master/process/case%

20study/Generated%20Artifacts>

https://github.com/HestiaProject/PAxSPL/tree/master/process/case%20study/Generated%20Artifacts
https://github.com/HestiaProject/PAxSPL/tree/master/process/case%20study/Generated%20Artifacts

78 Chapter 5. Assessing our Proposal

Figure 15 – Team information report generated during case study.

Source: Author.

to the top the features are showed, the more products of ICode they are part of. For
instance, features Veiculo, Cidade, Estado, Pais, Vendedor, Unid Medida, Tranportadora,
Forncedor, Produto and Cliente are shared among all ten products. Features such as
Tarefas, Historico and Geral are shared only by v6, v8 and v9, while Status Pedido,
Gerar NFe and Realizar Pedido are shared only by v7, v10 and v9.

The concept lattice, however, is not a mandatory artifacts and was generated be-
cause the participants selected FCA as an extraction technique. By using the information
analyzed from the lattice, the participants were able to create clusters, validate them with
the Domain Specialist, and generate the feature model.

The final output of PAxSPL, which is the feature model of the extracted features,
was did not suffer much change during both phases of the case study. The main difference
between Phase 1 (Figure 18) and Phase 2 (Figure 19), was the addition of the features
(Pedido, Agenda and their sub-features) extracted from the new products included in
Phase 2. Considering the similar features, we have Cadastro and its sub-features as
mandatory, because they were present in all products. NFe and Pedido are part of an
or-alternative group, because at least one of them must be present when the optional
feature Documento is part of the product. We have the abstract feature Operacoes, which
is mandatory and compose of an or-alternative group of the sub-features Tributario and
Financeiro. There is also the optional feature Agenda (only in feature model from Phase

5.2. Case Study 79

Figure 16 – Retrieval techniques report generated during case study.

Source: Author.

2). Also, some restriction were documented in the feature model: if the features Finan-
ceiro or NFe are part of a product, than the feature Cond Pag must also be a part of
that product. The feature NFe requires the features Tributario and Transporte. Lastly,
the feature Gerar NFe requires NFe.

80 Chapter 5. Assessing our Proposal

Figure 17 – Concept lattice of features extracted from ten different products of ICode.

Source: Author.

5.2.
C

ase
Study

81

Figure 18 – ICode feature model from Phase 1.

Source: Author.

82
C

hapter
5.

A
ssessing

our
Proposal

Figure 19 – ICode feature model from Phase 2.

Source: Author.

5.2. Case Study 83

5.2.3.3 Use of Generated Artifacts

We also collected the number of uses of each artifact during each activity of
PAxSPL. As presented in Table 12, the artifacts most used, used in six different ac-
tivities, were Team Information report, Assembled Process, Process Documentation and
PAxSPL Guidelies. The artifact less used was Development Information Report. Despite
these results, this does not give enough evidence of the impact/relevance level of the
artifacts, we still had to consider the surveys answers (see Section 5.2.3.4).

Another type of data collected was the reusability of the generated artifacts. We
documented, as showed in Table 11, the use condition of the artifacts during Phase 2 of
the case study. Only one artifact from Phase 1 was not used (Development Information
Report). Four artifacts were reused with no need to perform modifications. Most of
the artifacts generated during Phase 2 were updated, needing some modification during
Phase 2.

Table 11 – Artifacts reused during Phase 2.

Condition of use during Phase 2

Artifact Used without
modification Updated Not

Used
Team Information
Report X

Artifacts Type
Specification X

Development
Information Report X

Domain Glossary X
Domain
Constraints List X

Requirements
Specification X

Retrieval
Techniques Report X

FM of Retrieval
Tec. Configured X

Assembled Process X
Process
Documentation X

Feature Report X
Feature Model X

Source: Author.

84
C

hapter
5.

A
ssessing

our
Proposal

Table 12 – Use of artifacts for each activity of PAxSPL.

Activities/Use

Artifact
Collect
Team

Information

Assign
Roles

Perform
Documentation

Analysis

Select
Techniques

Assemble
Techniques

Assign
Tasks

Exec.
Assembled

Process

Document
Feature

Artifacts

Document
Process

Experience
Total

Team
Information
Report

P1, P2 P1, P2 P1 P1 6

Artifacts
Type
Specification

P1,P2 P1 3

Development
Information
Report

P1 P1 2

Domain
Glossary P1,P2 P1 3

Domain
Constraints
List

P1,P2 P1 3

Requirements
Specification P1,P2 P1 P1,P2 5

Retrieval
Techniques
Report

P1,P2 P1 P1 4

FM of Retrieval
Tec. Configured P1,P2 P1,P2 4

Assembled
Process P1,P2 P1,P2 P1,P2 6

Process
Documentation P1,P2 P1,P2 P1,P2 6

Feature
Report P1,P2 P1,P2 4

Feature
Model P1,P2 P1,P2 4

PAxSPL
Guidelines P1,P2 P1,P2 P1,P2 6

P1 - Used during Phase 1; P2 - Used during Phase 2.

Source: Author.

5.2. Case Study 85

5.2.3.4 Surveys Answers

Survey 1 was designed to collect information about the participants and their
knowledge about SPL, thus its answers were almost not used for the triangulation analysis
of artifacts.

Otherwise, Survey 2 had a higher contribution to the analysis of the collected data.
The first questions we highlight are related with the importance/relevance of PAxSPL
artifacts. We asked the participants to list the most important artifacts in terms of
re-engineering. The cited artifacts were: team information report, requirements specifi-
cation, assembled process and PAxSPL guidelines.

We also asked them to give a score (1 to 5) about the relevance of each artifact.
These same questions were also part of Survey 3 and were used to answer RQ1. We
calculate the average of each survey and then the average considering both surveys. As
presented in Table 13, the most relevant artifacts in terms of re-engineering according
to the survey results are the requirements specification, the assembled process, the do-
main constraints list, the retrieval techniques report, and the PAxSPL guidelines. The
less relevant artifacts are: artifacts type specification, development information report,
domain glossary and feature model of retrieval techniques configured. Other artifacts can
be considering as mid-level relevance: team information report, process documentation
and feature report.

Table 13 – Relevance of artifacts according to survey results.

Relevance Level
Artifact Survey 2 average Survey 3 average Total average
Team Information Report 3 3 3
Artifacts Type Specification 2 2 2
Development Information Report 3 1 2
Domain Glossary 2 3 2.5
Domain Constraints List 4 4 4
Requirements Specification 5 5 5
Retrieval Techniques Report 3 5 4
FM of Retrieval Tec. Configured 2 2 2
Assembled Process 5 5 5
Process Documentation 4 3 3.5
Feature Report 3 4 3.5
PAxSPL Guidelines 5 3 4

1 - Very low relevance; 5 - Very high relevance.

Source: Author.

Another important question present in both surveys (2 and 3) was related to the
complexity to perform each PAxSPL activity. The participants should give a score (1
to 5) according to the complexity they had to perform each activity. Table 14 shows
that according to the answers, the most complex activities are: Select Techniques and
Assemble Techniques. Activities such as Collect Team Information, Assign Roles,
Assign Tasks and Document Process Experience have a lower level of complexity. In

86 Chapter 5. Assessing our Proposal

addition Perform Documentation Analysis, Execute Assembled Process and Document
Feature Artifacts are categorized as mid-level of complexity to be performed. We plan
to use these information to help us answer RQ3.

Table 14 – Complexity level of each PAxSPL activity according to survey an-
swers.

Complexity Level
Activity Survey 2 average Survey 3 average Total average
Collect Team Information 1 1 1
Assign Roles 2 1 1.5
Perform Doc. Analysis 4 3 3.5
Select Techniques 5 5 5
Assemble Techniques 5 4 4.5
Assign Tasks 2 2 2
Execute Assembled
Process 4 3 3.5

Document Feature
Artifacts 3 2 2.5

Document Process Exp. 2 1 1.5
1 - Very low complexity; 5 - Very high complexity.

Source: Author.

Survey 3 focused on questions about the reuse capability of PAxSPL, aiming to
give us information to help answer RQ4. We asked which PAxSPL artifacts from Phase
1 of the case study provided the most level of reuse. According to the participants these
artifacts are: team information report, retrieval techniques report and assembled process.
Table 15 summarizes the answers according to the level of relevance of each artifact
generated during the Phase 1 of the case study.

Table 15 – Reusability level of PAxSPL generated
artifacts according to survey 3 results.

Reusability Level
Artifact Average
Team Information Report 5
Artifacts Type Specification 5
Development Information Report 5
Domain Glossary 3
Domain Constraints List 2.5
Requirements Specification 2
Retrieval Techniques Report 5
FM of Retrieval Tec. Configured 5
Assembled Process 4.5
Process Documentation 3.5
Feature Report 2.5
Feature Model 4

1 - Low reusability; 5 - High reusability.

Source: Author.

5.2. Case Study 87

The artifacts with higher reusability are: team information report, artifacts type
specification, development information, retrieval techniques report, feature model of re-
trieval techniques configured, assembled process and feature model. The less reusable
artifacts are: domain glossary, domain constraints list, requirements specification and
feature report.

5.2.4 Results and Discussion

To achieve the information required to answer the RQs, we perform a cross-analysis
among the data collected from different sources during the case study. Thus, we analyzed
and merged data collected in real time, survey answers, and generated artifacts analysis.
As this case study was an exploratory study, the main goals of the RQs are related to
find evidence about opportunities to improve PAxSPL. The cross-examination of those
data is detailed in the following sections.

5.2.4.1 RQ1. What is the impact/relevance level of the artifacts generated
by PAxSPL execution in terms of re-engineering?

The objective of this RQ is to collect evidence about which PAxSPL artifacts are
more relevant during the execution of the process. The reason to calculate this relevance
is to give focus on this artifacts for future improvements. We also wanted to identify which
artifacts have more impact during Select Techniques sub-process. To answer this first
question, we perform a cross-analysis in data presented in Table 12 and Table 13, alongside
additional information gathered during the survey answers and artifacts analysis.

Considering Table 12, which presents the number of uses for each activity of
PAxSPL, we could analyzed how useful an artifact may be for each part of the pro-
cess. This information, however, is not enough to indicate the relevance of the artifacts.
Hence, by merging this information with Table 13, which presents the relevance of each
artifact according to participants opinion, we can identify if the use of each artifact is
somehow related with its relevance. In addition, by considering the artifacts used during
Select Techniques, we could indicate the impact level of those artifacts while selecting
the retrieval techniques.

To calculate the relevance of the artifacts we applied a score count on them. We
considered how many times the artifact was used for each phase of PAxSPL (Prepare,
Assemble and Execute), we also considered the total number of uses. The total number
of uses from the artifacts presented in Table 12 had a range from two to six uses. Thus,
the numerical range was composed by five numbers which were used when calculating the
score. Therefore, if an artifact was used two times, we added 1 point to the relevance
score, if it was used six times, we added 5 points. Considering PAxSPL phases, however,
the numerical range was between zero and 4. Thus, when calculating the relevance for

88 Chapter 5. Assessing our Proposal

each phase individually, if an artifact was used four times in a specific phase it would
receive a score of 5, if it was not used would receive 1 point.

We merged these points with the relevance level given by the participants in the
survey (1 to 5), giving the possibility for each artifact get a total score of 10. In addition,
we considered if the artifact was listed as most important, in a different survey question.
Thus, the final score of each artifact could reach a maximum of 12 points. As presented
in Table 16, the artifacts which obtained the higher scores are: team information report,
requirements specification, assembled process and PAxSPL guidelines.

Table 16 – Relevance score of each artifact.

Number of Uses Survey
Score

Listed as
most relevant

Score
(P/A/E/T)Artifact P A E T

Team
Information
Report

4 2 0 6 3 X 10/8/6/10

Artifacts Type
Specification 2 1 0 3 2 5/4/2/4
Development
Information
Report

1 1 0 2 2 4/4/2/3

Domain
Glossary 2 1 0 3 2.5 5.5/4.5/3.5/4.5
Domain
Constraints
List

2 1 0 3 4 7/6/4/6

Requirements
Specification 2 1 2 5 5 X 10/9/10/11
Retrieval
Techniques
Report

2 2 0 4 4 7/7/4/7

FM of
Retrieval Tec.
Configured

2 2 0 4 2 5/5/2/5

Assembled
Process 0 2 4 6 5 X 7/10/12/12
Process
Doc. 0 2 4 6 3.5 3.5/6.5/8.5/8.5
Feature Report 0 0 4 4 3.5 3.5/3.5/8.5/6.5
PAxSPL
Guidelines 2 2 2 6 4 X 9/9/9/11

P - Prepare; A - Assemble; E - Execute; T - Total;

Source: Author.

To categorize the artifacts, considering the re-engineering, we created four levels
of relevance, based on the score:

1. Not relevant: artifact was not used.

2. Useful: artifact was used and scored 4 relevance points or less.

3. Helpful: artifact was used and scored between more than 4 and a maximum of 8
relevance points.

4. Relevant: artifact was used and scored more than 8 relevance points.

5.2. Case Study 89

We categorized the artifacts considering PAxSPL phases individually (e.g, devel-
opment information report was not used during Execute) and in general. We summa-
rize these results in Table 17, showing the relevance level of each artifact for Prepare,
Assemble and Execute phases, and overal relevance as well.

The information in Table 17 indicates that artifacts such as team information
report, requirements specification and PAxSPL guidelines are more relevant during the
preparation before assembling the process. In addition, requirements specification, as-
sembled process and PAxSPL guidelines are more important during the assembly of the
retrieval process. For the execution of the feature retrieval, artifacts such as the re-
quirements specification, assembled process, process documentation, feature report and
PAxSPL guidelines are more relevant. Considering the overall relevance, the more impor-
tant artifacts are: team information report, requirements specification, assembled process,
process documentation and the PAxSPL guidelines.

Table 17 – Relevance level of each artifact during PAxSPL execution.

Relevance Level
Artifact Prepare Assemble Execute Overal
Team Information Report Relevant Helpful Not Relevant Relevant
Artifacts Type Specification Helpful Useful Not Relevant Useful
Development Information Report Useful Useful Not Relevant Useful
Domain Glossary Helpful Helpful Not Relevant Helpful
Domain Constraints List Helpful Helpful Not Relevant Helpful
Requirements Specification Relevant Relevant Relevant Relevant
Retrieval Techniques Report Helpful Helpful Not Relevant Helpful
FM of Retrieval Tec. Configured Helpful Helpful Not Relevant Helpful
Assembled Process Not Relevant Relevant Relevant Relevant
Process Documentation Not Relevant Helpful Relevant Relevant
Feature Report Not Relevant Not Relevant Relevant Helpful
PAxSPL Guidelines Relevant Relevant Relevant Relevant

Source: Author.

We also analyzed the artifacts used only during the Select Techniques sub-
process to categorize their impact level when selecting techniques. For this analysis, we
found important evidence in the retrieval techniques report, where the reasons for selecting
a technique are documented. Considering this information, we tabulated the impact level
of each artifact when deciding which technique to use for feature retrieval. As showed
in Table 18, team information report and requirements specification have both a high
level of impact. Domain glossary and domain constraints analysis have a medium level
of impact when selecting techniques. Lastly, artifacts type specification and development
information have a low level of impact.

The cross-analysis performed to answer RQ1 helped us understand which artifacts
are more important during the re-engineering. As an exploratory case study, this give us
initial evidence about the important of PAxSPL generated artifacts. Because this is the

90 Chapter 5. Assessing our Proposal

Table 18 – Impact level of artifacts when selecting techniques.

Impact Artifacts

High Team Information Report;
Requirements Specification;

Medium Domain Glossary;
Domain Constraints List;

Low Artifacts Type Specification;
Development Information Report;
Source: Author.

first time that our proposal is performed in a real development environment, this kind of
feedback gives evidence to establish three preliminary conclusions:

1. No artifact is useless: all artifacts indicate to contribute somehow to the re-
engineering process. Although there are artifacts that are used only in specific
phases, they are still useful during that phase.

2. Collect team information before starting the re-engineering is relevant: as
showed in Table 17 and Table 18, the team information report have high relevance
when conducting the re-engineering, specially when selecting retrieval techniques to
be used. Despite its importance, this kind of artifact was not present in any of the
studies found in the literature (ASSUNÇÃO et al., 2017).

3. PAxSPL guidelines are very helpful for both the re-engineering, and the
retrieval techniques selection: the guidelines of our proposal were created to
give additional support when performing the re-engineering. The collected evidence
indicates that they are fulfilling their goal.

In addition, planning the improvement of PAxSPL, we now have evidence that
indicates which artifacts we should give more attention. Now, we can plan to focus the
activities where these artifacts are generated by, improve their templates, create sup-
porting tools and also indicate to future users which artifacts they could give special
treatment.

5.2.4.2 RQ2. What is the quality of the generated artifacts?

This question was created with two objectives: (i) measure the quality of artifacts
to indicate that PAxSPL was performed as expected, thus decreasing the chances to
invalidate the results of RQ3 (effort). (ii) compare the quality of artifacts generated
during both case study phases, analyzing if the results were satisfactory, in order to
compare both the time difference (effort), and reusable elements (RQ4).

5.2. Case Study 91

Considering these two objectives, we could consider RQ2 a secondary research
question, used to give support to other two (RQ3 and RQ4). Hence, the analysis presented
in this section may be considered an introduction to both following RQs.

As presented in Table 10, during both phases of the case study the generated
artifacts achieve satisfactory results, considering our QM. During Phase 1, artifacts
obtained a total score of 9.5 out of 10. This 0.5 reduction was consequence of the lack of
feature artifacts documentation, which in this case were generated with the application
of clustering. During Phase 2, however, the score was a perfect 10 out of 10.

We can analyze these results considering, individually, the topics of the next ques-
tions:

∙ Effort (time spent): the quality of the generated artifacts is important when
considering the effort comparison. The reason is because it give us evidence to
indicate that independently of the time spent, the process was performed as expected
if the quality results were satisfactory. We can consider the artifacts quality both
for the each phase of the case study individually, and for comparing them. To
individually compare each phase, we have to consider if, despite the time spent in
each activity, the artifacts generated by that activity. The artifacts had to obtained
a satisfactory quality score, otherwise, it does not really matters in how long time
that activity was performed. To compare both phases, however, we have to analyze
the quality score difference between them. For instance, Phase 2 was performed in
less than half the time in comparison with Phase 1. This result, however, would
not be relevant if the artifact quality of Phase 2 was not satisfactory.

∙ Reusability comparison: for analyzing the reusability of artifacts, the quality is
also important. An artifact that indicates being reusable (participants opinion and
real time observation) decreases its importance if it does not receive a good score
considering its quality.

After analyzing the results of the quality metrics, we could conclude that the
comparisons of effort and reusability could be performed without any interference from
artifacts with low quality, because for both phases, we achieve good quality results. The
analysis for these two topics are detailed in the following sections.

5.2.4.3 RQ3. What is the effort needed to perform each phase of PAxSPL?

The main objective of this RQ is to identify which PAxSPL activities demand more
effort. We wanted to collect evidence to compare the activities and phases of our process
in terms of effort. This comparison will allow us to improve some aspects of PAxSPL. As
we described regarding the artifacts relevance in RQ1, by identifying the activities that
demand more effort we can give special attention to them, or even split them in more

92 Chapter 5. Assessing our Proposal

activities. The results regarding effort showed in this section are not related to the real
effort needed to perform an activity. This measure, however, can be used to analyze the
effort difference among the activities.

To calculate the effort, we performed a cross-analysis in the information collected
in real time (see Table 9), and the information gathered with the survey answers (see
Table 14). We considered the average time spent for each activity during both phases
of the case study. We also considered only the average complexity level collected in the
survey answers. To merge both results, we multiplied the complexity level by the time
spent and called the resulting number as effort score. All this information is summarized
in Table 19, showing that the Execute Assembled Process activity obtained the highest
effort score (12.25) points. Collect Team Information, however, obtained the lower
score, only 0.25 effort points.

Table 19 – Effort score of each PAxSPL activity.

Activity Time
Spent (Hours)

Survey
Complexity Score

Effort
Score

Collect Team Information 0.25 1 0.25
Assign Roles 0.25 1.5 0.375
Perform Doc. Analysis 1 3.5 3.5
Select Techniques 0.75 5 3.75
Assemble Techniques 0.6 4.5 2.7
Assign Tasks 0.4 2 0.8
Execute Assembled
Process 3.5 3.5 12.25

Document Feature
Artifacts 1.5 2.5 3.75

Document Process Exp. 0.75 1.5 1.125
Total 9 28.5

Source: Author.

The effort percentage of each activity in relation of the total effort is showed
in Figure 20. Execute Assembled Process consists of 43% of the total effort. This
first number is really expressive because this activity was also pointed as one of the
most relevant in RQ1. Select Techniques and Document Feature Artifacts represent
13% each, while Perform Documentation Analysis is 12%, and Assemble Techniques
consists of 10% of the total effort. These four activities have similar numbers, however,
they represent less then a half of Execute Assembled Process. By considering the similar
results (between 10% and 13%) of the latter activities we can look into splitting Execute
Assembled Process into more activities that would obtained similar scores.

For the last activities, Document Process Experience (4%), Assign Tasks (3%),
Assign Roles (1%) and Collect Team Information (1%), we have the opposite situation.
These four activities present less than a half effort score than the activities we consider
more balanced (between 10% and 13%).

5.2. Case Study 93

Figure 20 – Effort percentage of each PAxSPL activity.

Source: Author.

By analyzing the total effort of each PAxSPL phase, as illustrated in Figure 21, we
see that Execute represents 60%, Assemble represents 26% and Prepare only 14% of the
total. This major difference between Execute and the others was already expected when
we first created PAxSPL. Although we planned the three phases to have similar relevance
(as showed in RQ1 answer) the Execute is when the feature retrieval is performed so is
understandable why its complexity and manly its spent time is so higher than the other
two phases.

Figure 21 – Effort percentage of each PAxSPL phase.

Source: Author.

As result of the analysis of this RQ we can formulate two conclusions:

1. Execute Assembled Process demands more than twice the effort of other
activities: this conclusion give us evidence to plan to perform modification in the
Execute phase. Although Execute Assembled Process effort difference should still
be higher, we can look into splitting this activity or reallocating some of its sub-
activities to other, aiming to reduce its total effort. We can also plan to develop
supporting tools for this activity before the others.

2. Some activities require almost insignificant effort to be performed: even if
we merge the effort of Document Process Experience, Assign Tasks, Assign Roles

94 Chapter 5. Assessing our Proposal

and Collect Team Information the result would be lower than other activities.
This may indicate that these activities should be reformulated, maybe combined
with others or we could even consider to remove some of them from the process and
reallocate its generated artifacts to other activities.

In addition, we can include some of this effort information within PAxSPL guide-
lines to give future users some basis about how much percentage of the total time they
would spent for each activity.

5.2.4.4 RQ4. What is the reuse capability of PAxSPL?

To measure the reuse capability (reusability) of PAxSPL we gave special focus on
its generated artifacts. The main objective here is to understand how the re-application
of PAxSPL can be benefited by the reuse of generated artifacts.

We conducted a cross-analysis of information collected in real time (see Table 11)
and the survey answers regarding reusability (see Table 15). To calculate the reusability
of the artifacts, we considered their condition of use during Phase 2 which could be: used
without modification, updated or not used. If an artifact was used without modification, it
would receive 3 reusability points. If an artifact was updated it would receive 1 reusability
point. Artifacts not used would receive zero reusability points. These points were added
to the reusability score (1 to 5) given by participants in the survey answers. We also gave
2 extra points for artifacts cited in the survey results as more important during PAxSPL
re-application.

Table 20 shows the results of the reusability score calculation. Team information
report and retrieval techniques report obtained the maximum possible score, ten points
each. Artifacts type specification and feature model of retrieval techniques configured also
obtained good scores, eight points each. Requirements specification, with three points,
and feature report and domain constraints list, with three and a half points each obtained
the lower results.

We created four categories to group the artifacts based on their reusability score:

1. Not reusable: artifacts not reused during the Phase 2 of the case study, despite
its reusability score.

2. Low level of reuse: artifacts used during Phase 2 and that scored 4 reusability
points or less.

3. Mid level of reuse: artifacts used during Phase 2 and that scored between more
than 4 and less than 8 reusability points.

4. High level of reuse: artifacts used during Phase 2 and that scored at least 8
reusability points.

5.2. Case Study 95

Table 20 – Reusability score of PAxSPL artifacts.

Artifact Survey
Score

Phase 2
Condition Score

Extra
Points*

Total
Score

Team Information Report 5 3 X 10
Artifacts Type Specification 5 3 8
Development Information Report 5 0 5
Domain Glossary 3 1 4
Domain Constraints List 2.5 1 3.5
Requirements Specification 2 1 3
Retrieval Techniques Report 5 3 X 10
FM of Retrieval Tec. Configured 5 3 8
Assembled Process 4.5 1 X 7.5
Process Documentation 3.5 1 4.5
Feature Report 2.5 1 3.5
Feature Model 4 1 5

* 2 extra points were given to artifacts listed as most important during PAxSPL
re-application.

Source: Author.

The results related with this classification are showed in Table 21. We plan to
include this information within PAxSPL guidelines to help future users of our process to
identify which artifacts they could focus when re-applying PAxSPL.

Table 21 – Reusability level of PAxSPL artifacts.

Reusability Level Artifacts

High

Team Information Report;
Artifacts Type Specification;
Retrieval Techniques Report;
FM of Retrieval Tec. Configured;

Medium
Assembled Process;
Process Documentation;
Feature Model;

Low

Domain Glossary;
Domain Constraints List;
Requirements Specification;
Feature Report;

Not Reusable Development Information Report;
Source: Author.

Based on the results of the analysis performed to answer this RQ, we formulated
two conclusions:

1. The reusability has high impact on the selection of techniques: among the
artifacts that were categorized as having a high level of reuse, we have the retrieval
techniques report and feature model of retrieval techniques configured. These two
artifacts are both generated during Select Techniques activity. As this activity
was also found to be the second needing more effort to be performed (see Figure 20),

96 Chapter 5. Assessing our Proposal

the reusability of its artifacts was the main reason for the time saved (see Table 9)
during Phase 2 of the case study.

2. PAxSPL reusability indicates its capability to maybe be applied using
the SPL reactive approach: if we analyze the difference between both phases of
the case study, the main difference is the inclusion of new features. This scenario is
similar to when the SPL reactive approach is applied in an organization (e.g. new
requirements arise and new functionalities are implemented). Thus, as showed in
(see Table 9), the only activities that demand some time during Phase 2 of the case
study were those when new requirements or features had to be analyzed. Although,
our main goal was to create a process to give support to the SPL extractive approach,
the reusability results give us initial evidence about PAxSPL benefits when applied
in a SPL reactive scenario. This allow us to further investigate the real benefits
when using PAxSPL in a reactive approach scenario.

5.2.5 Threats to Validity

In this sub-section we discuss the main threats to the validity of this case study
and present how we mitigated these threats based on Runeson e Höst (2009) and Wohlin
et al. (2012).

Construct Validity: the first main concern was the misinterpretation of the
survey questions by the participants. Aiming to mitigate this problem, we formulated
different questions asking the same kind of information and included them in both Survey
2 and 3. We also analyzed the results from all participants and compared if their answers
indicated the same level of understandability.

Internal Validity: a possible threat were possible errors when documented in-
formation in real time. Trying to mitigate the problem generated by the results of these
errors, we analyzed the information collected in real time considering the quality of the
artifacts and the survey answers also. With this kind of strategy (triangulation), we could
mitigate any problem related with any kind of erroneous or misinterpreted information.
Another possible threat was how poor quality of the generated artifacts would impact the
results of ours RQ. We mitigated this problem by creating ten QM (see Section 5.2.1.5),
and applying in both phases of the case study. The satisfactory results gave us confidence
to perform the analysis to answer the RQ.

External Validity: considering the relevance of findings for other cases. We per-
formed, through cross-analysis, different methods to calculate relevance level, reusability
and quality of the generated artifacts. We also applied cross-analysis to identify the effort
required to perform the activities of PAxSPL. These methods may be used in other cases
(e.g., cases evaluating similar proposals).

Relibiality: a possible threat are possible problems related with the data depen-

5.3. Chapter Lessons 97

dency related with the researchers conducting the case study. Trying to mitigate this
problem, we created the QMs, creating a reliably mechanism to evaluate the generated
artifacts. Data triangulation was also used to mitigate possible research bias.

5.3 Chapter Lessons

In this chapter we showed an early validation of our proposal impact, relevance,
contribution and flexibility. We could obtain enough confidence to continue our research
from the answers. We also identify some points that need improvement, such as flexibility
of techniques. We showed and explained the main changes applied in the first version of
our process that resulted in the version being presented in this work. We have also con-
ducted and reported a case study to further evaluate our process. The evidence collected
will help us improve some aspects of PAxSPL such as its generated artifacts in terms of
relevance and reusability. We also identified opportunities for improvement in terms of the
effort needed to perform some activities. The analysis results gives additional information
to be included in the guidelines of our proposal. For instance, we can indicate to future
users which artifacts they should give more attention when deciding which techniques
should be used. By summarizing the case study results we can conclude that PAxSPL
obtained good results in terms of re-engineering. In addition, it gives evidence about its
capability to be applied in a SPL reactive approach.

99

6 FINAL CONSIDERATIONS
SPL are a systematic way to reuse software products aiming to reduce the cost of

mass customization. The SPL extractive approach emerged as a solution for organizations
that have a set of similar products with potential to become SPL. SPL re-engineering
processes may have a huge contribution for this field, with techniques, technologies and
guidelines to help users to perform feature retrieval.

Through the analysis of a set of SPL re-engineering processes mapped by Assunção
et al. (2017), we categorized and grouped the most used techniques for feature retrieval.
We also created a set of guidelines based on the information collected from those processes.
With the objective to create a flexible and customizable process for SPL re-engineering
we proposed PAxSPL.

PAxSPL is a process that gives support to prepare, assemble and execute feature
retrieval in a set of system variants for SPL re-engineering. PAxSPL aims to give enough
flexibility for those that may execute it to reduce cost and effort when performing the SPL
re-engineering process. This flexibility is made possible through team information collec-
tion, product documentation analysis, different options of feature retrieval techniques,
and process dynamic assembly. We also created a set of guidelines help those that may
execute it to decide which techniques should be selected and how to assemble them into
our generic process.

To initially evaluate our proposal we applied a survey in experts of the SPL re-
engineering field. We obtained an early feedback from these experts giving evidence about
PAxSPL contributions and suggesting improvements. Most of the participants agreed that
our process provides flexibility, and with the help of our guidelines it may be a relevant
contribution to the SPL re-engineering field.

In addition, we conducted and reported a case study in a real development environ-
ment. The organization where the case study was performed is a startup, called Porthal.
Porthal works developing a web based enterprise resource planning system called ICode.
ICode its distributed to Porthal‘s clients in at least ten different configurations (differ-
ent products) in a no systematic way. These characteristics shows ICode‘s potential to
become SPL. We performed PAxSPL into ten different products generated from ICode,
and collect information about: relevance of each PAxSPL artifact, quality of PAxSPL
generated artifacts, effort spent to perform each PAxSPL activity, and reuse capability of
PAxSPL.

We divided the case study in two phases, focusing Phase 2 in the reusability
of our process. The analysis of the information collected during the case study gave us
evidence to achieve some important conclusions:

1. In regard to the artifacts, they are all useful somehow. Some artifacts indicated to
have a high relevance in terms of re-engineering, such as team information report,
requirements specification and PAxSPL guidelines. The results also indicated that

100 Chapter 6. Final Considerations

the guidelines our very helpful during the retrieval techniques selection.

2. Considering the quality of the generated artifacts it was satisfactory for both phases
of the case study. This information was important because if we obtained bad results
in regard with the quality of artifacts, some of our RQ would lose relevance.

3. In terms of effort to perform each PAxSPL activity, Execute Assembled Process
received more than twice the effort of the second most effort needed activity. With
this result we can plan to split this activity and even to create supporting tools to
automatize it. Some activities also indicate to require almost insignificant effort to
be performed. In this case, we have to analyze if such activities should be merged
to another or even consider to remove them from PAxSPL.

4. Considering the reusability, the results indicated that PAxSPL, when re-applied in
a different but similar scenario, saves time by reusing some of its artifacts. This
kind of result give us opportunity to investigate the possible benefits of PAxSPL
when applied following a reactive SPL approach.

Some of the results of the information collected during the case study were already
included into PAxSPL guidelines.

A preliminary result (the work containing the first version of our process (Sec-
tion 5.1.4)) was published in the Escola Regional de Engenharia de Software (ERES
2017)1. We have also submitted part of the work presented here as a paper for the 33rd
ACM/SIGAPP Symposium On Applied Computing (SAC 2018)2 and for the XXXII Sim-
pósio Brasileiro de Engenharia de Software (SBES)3.

For future work, we plan to continue improving PAxSPL. This improvement will
be performed by changing, creating and merging some PAxSPL activities or sub-processes.
In addition we will revise the use and template of its generated artifacts in order to make
them more relevant. We also plan to develop supporting tools to automatize and reduce
the effort of some activities of our process.

1 <https://eventos.unipampa.edu.br/eres/chamada-de-trabalhos/forum-de-graduacao/>
2 <https://www.sigapp.org/sac/sac2018/>
3 <http://cbsoft2018.icmc.usp.br/sbes_pt.html>

https://eventos.unipampa.edu.br/eres/chamada-de-trabalhos/forum-de-graduacao/
https://www.sigapp.org/sac/sac2018/
http://cbsoft2018.icmc.usp.br/sbes_pt.html

101

BIBLIOGRAPHY
ACHER, M. et al. Extraction and evolution of architectural variability models in
plugin-based systems. Software & Systems Modeling, Springer, v. 13, n. 4, p.
1367–1394, 2013. Cited 4 times in pages 38, 39, 40, and 41.

ACHER, M. et al. On extracting feature models from product descriptions. In: 6th
International Workshop on Variability Modeling of Software-Intensive
Systems. [S.l.]: ACM, 2012. p. 45–54. Cited 4 times in pages 38, 39, 40, and 41.

AL-MSIE’DEEN, A. et al. Feature location in a collection of software product variants
using formal concept analysis. 2013. Cited 2 times in pages 58 and 59.

AL-MSIE’DEEN, R. et al. An approach to recover feature models from object-oriented
source code. Actes de la Journée Lignes de Produits, p. 15–26, 2012. Cited 2
times in pages 58 and 59.

ALI, N. et al. Moms: Multi-objective miniaturization of software. In: 27th IEEE
International Conference on Software Maintenance. [S.l.]: IEEE, 2011. p.
153–162. Cited in page 57.

ALVES, V. et al. An exploratory study of information retrieval techniques in domain
analysis. In: 12th International Software Product Line Conference. [S.l.]: IEEE,
2008. p. 67–76. Cited 3 times in pages 56, 59, and 60.

ARAAR, I. E.; SERIDI, H. Software features extraction from object-oriented source code
using an overlapping clustering approach. Informatica (Slovenia), Slovenian Society
Informatika/Slovensko drustvo Informatika, v. 40, n. 2, p. 245–255, 2016. Cited in page
38.

ASSUNÇÃO, W. et al. Reengineering legacy applications into software product lines:
a systematic mapping. Empirical Software Engineering, Springer, p. 1–45, 2017.
Cited 13 times in pages 21, 22, 25, 28, 29, 33, 34, 35, 37, 41, 49, 90, and 99.

ASSUNÇÃO, W. K. et al. Multi-objective reverse engineering of variability-safe
feature models based on code dependencies of system variants. Empirical Software
Engineering, Springer, p. 1–32, 2016. Cited in page 38.

ASSUNÇÃO, W. K. G. ModelVars2SPL: an automated approach to reengineer model
variants into software product lines. 2017. Cited in page 38.

BAYER, J. et al. Definition of reference architectures based on existing systems.
IESE-Report, Citeseer, 2004. Cited in page 57.

BÉCAN, G. et al. Breathing ontological knowledge into feature model management.
2013. Cited 6 times in pages 30, 38, 39, 40, 41, and 56.

CHEN, K. et al. An approach to constructing feature models based on requirements
clustering. In: Requirements Engineering, 2005. Proceedings. 13th IEEE
International Conference on. [S.l.]: IEEE, 2005. p. 31–40. Cited in page 56.

CHIKOFSKY, E.; CROSS, J. Reverse engineering and design recovery: A taxonomy.
IEEE software, IEEE, v. 7, n. 1, p. 13–17, 1990. Cited 2 times in pages 21 and 28.

102 Bibliography

CHRISTENSEN, A.; MØLLER, A.; SCHWARTZBACH, M. Precise analysis of string
expressions. Static Analysis, Springer, p. 1076–1076, 2003. Cited in page 28.

CLEMENTS, P.; NORTHROP, L. Software product lines. [S.l.]: Addison-Wesley„
2002. Cited 2 times in pages 25 and 30.

CZARNECKI, K.; EISENECKER, U. W. Components and generative programming. In:
SPRINGER-VERLAG. ACM SIGSOFT Software Engineering Notes. [S.l.], 1999.
v. 24, n. 6, p. 2–19. Cited in page 31.

DAMAŠEVIČIUS, R. et al. Automatic extraction of features and generation of feature
models from java programs. Information Technology And Control, v. 41, n. 4, p.
376–384, 2012. Cited in page 56.

DAVIS, S. From “future perfect”: Mass customizing. Planning review, MCB UP Ltd,
v. 17, n. 2, p. 16–21, 1989. Cited in page 25.

DUMAIS, S. Latent semantic analysis. Annual review of information science and
technology, Wiley Online Library, v. 38, n. 1, p. 188–230, 2004. Cited in page 30.

EISENBARTH, T.; KOSCHKE, R.; SIMON, D. Derivation of feature component maps
by means of concept analysis. In: Software Maintenance and Reengineering, 2001.
Fifth European Conference on. [S.l.]: IEEE, 2001. p. 176–179. Cited in page 58.

EYAL-SALMAN, H.; SERIAI, D.; DONY, C. Feature-to-code traceability in a collection
of software variants: Combining formal concept analysis and information retrieval. In:
14th International Conference on Information Reuse and Integration. [S.l.]:
IEEE, 2013. p. 209–216. Cited 2 times in pages 58 and 59.

EYAL-SALMAN, H.; SERIAI, D.; DONY, C. Identifying traceability links between
product variants and their features. In: 1st International workshop on Reverse
Variability Engineering. [S.l.: s.n.], 2013. p. 17–22. Cited 2 times in pages 59 and 60.

EYAL-SALMAN, H.; SERIAI, D.; DONY, C. Feature location in a collection of product
variants: Combining information retrieval and hierarchical clustering. In: Software
Engineering and Knowledge Engineering. [S.l.: s.n.], 2014. p. 426–430. Cited 2
times in pages 56 and 58.

FEILER, P. H.; HUMPHREY, W. S. Software process development and enactment:
Concepts and definitions. In: IEEE. Software Process, 1993. Continuous Software
Process Improvement, Second International Conference on the. [S.l.], 1993. p.
28–40. Cited in page 31.

FRAKES, W.; BAEZA-YATES, R. Information retrieval: data structures and algorithms.
Prentice Hall PTR, 1992. Cited in page 29.

FUGGETTA, A.; NITTO, E. D. Software process. In: ACM. Proceedings of the on
Future of Software Engineering. [S.l.], 2014. p. 1–12. Cited in page 32.

JAIN, A. K.; DUBES, R. C. Algorithms for clustering data. [S.l.]: Prentice-Hall,
Inc., 1988. Cited in page 29.

KANG, K. et al. Feature-oriented domain analysis (FODA) feasibility study.
[S.l.], 1990. Cited 3 times in pages 25, 30, and 31.

Bibliography 103

KANG, K. et al. Feature-oriented re-engineering of legacy systems into product line
assets–a case study. In: International Conference on Software Product Lines.
[S.l.]: Springer, 2005. p. 45–56. Cited 2 times in pages 22 and 25.

KELLY, M. et al. Recovering a balanced overview of topics in a software domain.
In: Source Code Analysis and Manipulation (SCAM), 2011 11th IEEE
International Working Conference on. [S.l.]: IEEE, 2011. p. 135–144. Cited in
page 56.

KITCHENHAM, B. et al. Systematic literature reviews in software engineering–a
systematic literature review. Information and software technology, Elsevier, v. 51,
n. 1, p. 7–15, 2009. Cited in page 33.

KLATT, B.; KROGMANN, K.; SEIDL, C. Program dependency analysis for
consolidating customized product copies. In: IEEE International Conference on
Software Maintenance and Evolution. [S.l.]: IEEE, 2014. p. 496–500. Cited 2 times
in pages 29 and 57.

KRUCHTEN, P. The rational unified process: an introduction. [S.l.]:
Addison-Wesley Professional, 2004. Cited in page 32.

KRUEGER, C. Easing the transition to software mass customization. In: SPRINGER.
International Workshop on Software Product-Family Engineering. [S.l.], 2001.
p. 282–293. Cited 3 times in pages 21, 22, and 27.

KULESZA, U. et al. Mapping features to aspects: A model-based generative approach.
In: Early Aspects Workshop. [S.l.]: Springer, 2007. p. 155–174. Cited in page 38.

KUMAKI, K. et al. Supporting commonality and variability analysis of requirements
and structural models. In: 16th International Software Product Line Conference-
Volume 2. [S.l.]: ACM, 2012. p. 115–118. Cited 2 times in pages 38 and 60.

LAGUNA, M. A.; CRESPO, Y. A systematic mapping study on software product line
evolution: From legacy system reengineering to product line refactoring. Science of
Computer Programming, Elsevier, v. 78, n. 8, p. 1010–1034, 2013. Cited in page 21.

LIKERT, R. A technique for the measurement of attitudes. Archives of psychology,
1932. Cited in page 65.

LINDEN, F. Van der; SCHMID, K.; ROMMES, E. Software product lines in action:
the best industrial practice in product line engineering. [S.l.]: Springer Science
& Business Media, 2007. Cited 3 times in pages 21, 25, and 26.

LINSBAUER, L. et al. Recovering feature-to-code mappings in mixed-variability
software systems. In: Software Maintenance and Evolution (ICSME), 2014
IEEE International Conference on. [S.l.]: IEEE, 2014. p. 426–430. Cited in page
57.

MAAZOUN, J.; BOUASSIDA, N.; BEN-ABDALLAH, H. A bottom up spl
design method. In: Model-Driven Engineering and Software Development
(MODELSWARD), 2014 2nd International Conference on. [S.l.]: IEEE, 2014.
p. 309–316. Cited 2 times in pages 58 and 59.

104 Bibliography

MAÂZOUN, J.; BOUASSIDA, N.; BEN-ABDALLAH, H. Feature model recovery
from product variants based on a cloning technique. In: Software Engineering and
Knowledge Engineering. [S.l.: s.n.], 2014. p. 431–436. Cited 2 times in pages 58
and 59.

MARTIN, R. C. Agile software development: principles, patterns, and
practices. [S.l.]: Prentice Hall, 2002. Cited in page 32.

MARTINEZ, J. et al. Bottom-up adoption of software product lines: a generic and
extensible approach. In: ACM. Proceedings of the 19th International Conference
on Software Product Line. [S.l.], 2015. p. 101–110. Cited 6 times in pages 22, 25,
38, 39, 40, and 41.

MEFTEH, M.; BOUASSIDA, N.; BEN-ABDALLAH, H. Feature model extraction from
documented uml use case diagrams. ADA USER, v. 35, n. 2, p. 107, 2014. Cited in
page 58.

MERSCHEN, D. et al. Experiences of applying model-based analysis to support the
development of automotive software product lines. In: 5th Workshop on Variability
Modeling of Software-Intensive Systems. [S.l.]: ACM, 2011. p. 141–150. Cited in
page 38.

MU, Y.; WANG, Y.; GUO, J. Extracting software functional requirements from free
text documents. In: Information and Multimedia Technology, 2009. ICIMT’09.
International Conference on. [S.l.]: IEEE, 2009. p. 194–198. Cited 2 times in pages
30 and 61.

NÖBAUER, M.; SEYFF, N.; GROHER, I. Inferring variability from customized standard
software products. In: International Software Product Line Conference-Volume
1. [S.l.]: ACM, 2014. p. 284–293. Cited in page 57.

NÖBAUER, M.; SEYFF, N.; GROHER, I. Similarity analysis within product line
scoping: An evaluation of a semi-automatic approach. In: International Conference
on Advanced Information Systems Engineering. [S.l.]: Springer, 2014. p. 165–179.
Cited in page 56.

OTSUKA, J. et al. Small inexpensive core asset construction for large gainful product
line development: developing a communication system firmware product line. In: 15th
International Software Product Line Conference, Volume 2. [S.l.]: ACM, 2011.
p. 20. Cited 2 times in pages 22 and 25.

PETERSEN, K. et al. Systematic mapping studies in software engineering. In: EASE.
[S.l.: s.n.], 2008. v. 8, p. 68–77. Cited in page 33.

POHL, K.; BÖCKLE, G.; LINDEN, F. van D. Software product line engineering:
foundations, principles and techniques. [S.l.]: Springer Science & Business Media,
2005. Cited 3 times in pages 21, 25, and 26.

POLZER, A. et al. Managing complexity and variability of a model-based embedded
software product line. Innovations in Systems and Software Engineering, Springer,
v. 8, n. 1, p. 35–49, 2012. Cited in page 38.

Bibliography 105

PRESSMAN, R. S. Software engineering: a practitioner’s approach. [S.l.]:
Palgrave Macmillan, 2005. Cited in page 32.

RUBIN, J.; CHECHIK, M. Combining related products into product lines. In: Inter.
Conf. on Fundamental Approaches to Software Engineering. [S.l.]: Springer,
2012. p. 285–300. Cited in page 61.

RUBIN, J.; CHECHIK, M. Locating distinguishing features using diff sets. In: 27th
IEEE/ACM International Conference on Automated Software Engineering.
[S.l.]: ACM, 2012. p. 242–245. Cited 2 times in pages 30 and 61.

RUBIN, J. et al. Managing forked product variants. In: 16th International Software
Product Line Conference-Volume 1. [S.l.]: ACM, 2012. p. 156–160. Cited in page
56.

RUNESON, P.; HÖST, M. Guidelines for conducting and reporting case study research
in software engineering. Empirical software engineering, Springer, v. 14, n. 2, p. 131,
2009. Cited in page 96.

RUNESON, P. et al. Case study research in software engineering: Guidelines
and examples. [S.l.]: John Wiley & Sons, 2012. Cited in page 73.

RYSSEL, U.; PLOENNIGS, J.; KABITZSCH, K. Extraction of feature models from
formal contexts. In: 15th International Software Product Line Conference. [S.l.]:
ACM, 2011. p. 4. Cited in page 29.

SALTON, G.; WONG, A.; YANG, C.-S. A vector space model for automatic indexing.
Communications of the ACM, ACM, v. 18, n. 11, p. 613–620, 1975. Cited in page
30.

SANTOS, A. et al. Test-based spl extraction: an exploratory study. In: 28th Annual
ACM Symposium on Applied Computing. [S.l.]: ACM, 2013. p. 1031–1036. Cited
4 times in pages 38, 39, 40, and 41.

SCHWABER, K.; BEEDLE, M. Agile software development with Scrum. [S.l.]:
Prentice Hall Upper Saddle River, 2002. v. 1. Cited in page 32.

STOERMER, C.; O’BRIEN, L. Map-mining architectures for product line evaluations.
In: IEEE. Software Architecture, 2001. Proc.. Working IEEE/IFIP Conference
on. [S.l.], 2001. p. 35–44. Cited 2 times in pages 22 and 25.

STUMME, G. Formal concept analysis. In: Handbook on ontologies. [S.l.]: Springer,
2009. p. 177–199. Cited in page 29.

TANG, Y.; LEUNG, H. Top-down feature mining framework for software product line.
In: ICEIS (2). [S.l.: s.n.], 2015. p. 71–81. Cited in page 38.

WESTON, N.; CHITCHYAN, R.; RASHID, A. A framework for constructing
semantically composable feature models from natural language requirements. In:
13th International Software Product Line Conference. [S.l.]: Carnegie Mellon
University, 2009. p. 211–220. Cited in page 56.

WOHLIN, C. et al. Experimentation in Software Engineering. [S.l.]: Springer,
2012. 236 p. Cited in page 96.

106 Bibliography

XUE, Y.; XING, Z.; JARZABEK, S. Feature location in a collection of product variants.
In: Reverse Engineering (WCRE), 2012 19th Working Conference on. [S.l.]:
IEEE, 2012. p. 145–154. Cited 2 times in pages 58 and 59.

YANG, Y.; PENG, X.; ZHAO, W. Domain feature model recovery from multiple
applications using data access semantics and formal concept analysis. In: Reverse
Engineering, 2009. WCRE’09. 16th Working Conference on. [S.l.]: IEEE, 2009.
p. 215–224. Cited in page 58.

ZIADI, T. et al. Feature identification from the source code of product variants. In:
16th European Conference on Software Maintenance and Reengineering. [S.l.]:
IEEE, 2012. p. 417–422. Cited 2 times in pages 22 and 25.

Appendix

109

APPENDIX A – TEMPLATE FOR TEAM INFORMATION REPORT

Figure 22 – Template for Team Information Report

111

APPENDIX B – TEMPLATE FOR ARTIFACTS TYPE
SPECIFICATION

Figure 23 – Template for Artifacts Type Specification

113

APPENDIX C – TEMPLATE FOR RETRIEVAL TECHNIQUES
REPORT

Figure 24 – Template for Retrieval Techniques Report

115

APPENDIX D – TEMPLATE FOR FEATURE REPORT

Figure 25 – Template for Feature Report

117

APPENDIX E – TEMPLATE FOR PROCESS EXECUTION REPORT

Figure 26 – Template for Process Execution Report

119

INDEX
EC, 34, 37

FCA, 29, 46, 55–60, 77, 78
FODA, 30

IC, 34, 37

LSI, 30, 55, 59, 60, 77

PAxSPL, 43, 46, 55, 61, 63, 65, 68, 70–78,
83, 85–91, 93–97, 99, 100

QA, 33, 35, 37, 41
QM, 74, 75, 77, 91, 96, 97

RQ, 34, 37, 71, 74–76, 85–87, 89–93, 95,
96, 100

SLR, 33, 34, 37, 38, 41
SMS, 33, 34, 41
SPL, 21–23, 25–28, 30, 32–35, 41, 43, 45,

55, 61, 63, 65–69, 72, 75, 77, 85,
96, 97, 99, 100

SPLA, 27
SPLE, 21–23, 25, 26, 32, 40, 65

VSM, 30, 55, 60

	Title page
	Approval
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	
	List of abreviations
	List of simbols
	Table of Contents
	Introduction
	Motivation
	Objectives
	Methodology
	Organization

	Background
	Software Product Line
	Software Product Line Engineering
	Domain Engineering
	Application Engineering

	Software Product Line Re-engineering
	Feature Retrieval Techniques

	Feature Model

	Software Process
	Chapter Lessons

	Related Work
	A Systematic Literature Review
	Planning Review
	Scope and Objective
	Question Structure
	Research Questions
	Search Process
	Inclusion and Exclusion Criteria
	Quality Assessment Criteria
	Selection Process

	SLR Conduction

	Discussing Related Work
	Artifacts and Strategies for Feature Retrieval
	Studies Main Contribution
	Applicability in Different Scenarios

	Chapter Lessons

	The Prepare, Assemble and Execute Process
	Process Overview
	Process Structure
	Actors/Roles
	Artifacts
	Input Artifacts
	Output Artifacts
	Generic and Assembled Processes

	Phases and Activities
	Prepare
	Collect Team Information
	Assign Roles
	Perform Documentation Analysis
	Collect Domain Information
	Register Domain Constraints and Vocabulary
	Collect Requirements Information
	Register Architectural Information
	Collect Artifact Information
	Register Development Information
	Register Technological Information

	Assemble
	Select Techniques
	Assemble Techniques
	Assign Tasks

	Execute
	Execute Assembled Process
	Document Feature Artifacts
	Document Process Experience

	Guidelines
	Static Analysis
	Clustering
	Dependency Analysis
	Data Flow Analysis

	Information Retrieval
	Formal Concept Analysis
	Latent Semantic Indexing
	Vector Space Model

	Support Techniques
	Expert-Driven
	Heuristics
	Rule-based

	Support Checklist

	Chapter Lessons

	Assessing our Proposal
	Survey
	Participants Profile
	Results
	Results Analysis
	Process Improvements considering the Survey Results

	Case Study
	Rationale and Preparation
	Objectives and Research Questions
	Context and Units of Analysis
	Case Study Protocol
	Data Collection
	Quality Metrics

	Conduction
	Collected Data
	Time Spent
	Quality of Generated Artifacts
	Use of Generated Artifacts
	Surveys Answers

	Results and Discussion
	RQ1. What is the impact/relevance level of the artifacts generated by PAxSPL execution in terms of re-engineering?
	RQ2. What is the quality of the generated artifacts?
	RQ3. What is the effort needed to perform each phase of PAxSPL?
	RQ4. What is the reuse capability of PAxSPL?

	Threats to Validity

	Chapter Lessons

	Final Considerations
	Bibliography
	Appendix
	Template for Team Information Report
	Template for Artifacts Type Specification
	Template for Retrieval Techniques Report
	Template for Feature Report
	Template for Process Execution Report

	Index

