Please use this identifier to cite or link to this item: http://dspace.unipampa.edu.br:8080/jspui/handle/riu/4170
metadata.dc.type: Trabalho de Conclusão de Curso
Title: Estudo da evasão de alunos de graduação utilizando Educational Data Mining
metadata.dc.creator: Fernandes, Karina Casola
metadata.dc.contributor.advisor1: Oliveira, Alessandro Bof de
metadata.dc.description.resumo: A problemática da evasão é o objeto de estudo de diversas áreas e uma preocupação recorrente em Instituições Federais de Ensino Superior (IFESs), pois, está associada com a perda social e de recursos de todos os envolvidos no processo de ensino. A análise de maneira ágil e contundente de dados que as Instituições dispõem é de suma importância para se efetivar ações preventivas para o problema. Nesse sentido, esse trabalho objetiva o estudo da evasão utilizando a Educational Data Mining (EDM) do curso de Ciência da Computação da Universidade Federal do Pampa (Unipampa), sob dois aspectos: a análise do perfil socioeconômico dos ingressantes através dos dados Sistema de Seleção Unificada (SiSU)/Exame Nacional do Ensino Médio (ENEM), referente aos anos de 2010 a 2018 e a situação dos alunos matriculados no primeiro ano nos componentes curriculares referentes aos dois primeiros semestres no eixo temporal de 2009 a 2018. As análises do perfil ingressante e discente foram feitas de maneira separada não tendo, portanto, o cruzamento de informações. Na análise socioeconômica foi apurado que mesmo que a evasão de maneira geral tenha um alto índice, existem grupos de maior risco que necessitam de um olhar mais atendo da Instituição. As notas nas competências por área da avaliação ENEM/SiSU, não tem um impacto tão considerável na permanência desse discente. Na análise do perfil do discente do curso, foi demonstrado que existe um padrão que pode ser mapeado utilizando os modelos preditivos explicitados nesse trabalho, com a utilização de métodos supervisionados obtendo uma excelente acurácia.
Abstract: The problem of evasion is the object of study of several areas and a recurring concern in Federal Institutes of Higher Education in Brazil, because it is associated with the social and resources losses of all those involved in the teaching process. The agile and conclusive analysis of data that the Institutions have is extremely important to carry out preventive actions for the problem. In this sense, this work aims at the study of dropout using the EDM of the Computer Science program of the Federal University of Pampa (Unipampa), under two aspects: the analysis of the socioeconomic profile of the entrants through the data SiSU/ENEM, referring to the years 2010 to 2018 and the situation of the students enrolled in the first year in the curricular components referring to the first two semesters in the time axis from 2009 to 2018.The analyses of the entrants and enrolled students profiles were done separately and therefore it was not possible cross the information. In the socioeconomic analysis it was found that even if the dropout in general has a high index, there are groups of higher risk that need a closer look of the Institution. The mark in the competences by area of evaluation ENEM/SiSU, does not have such a considerable impact on the permanence of this student. In the analysis of the profile of the student of the program, it was demonstrated that there is a pattern that can be mapped using the predictive models explained in this work, with the use of supervised methods obtaining an excellent accuracy.
Keywords: Ciência da computação
Educational Data Mining
Evasão universitária
Computer science
University dropout
metadata.dc.subject.cnpq: CNPQ::CIENCIAS EXATAS E DA TERRA
metadata.dc.language: por
metadata.dc.publisher.country: Brasil
Publisher: Universidade Federal do Pampa
metadata.dc.publisher.initials: UNIPAMPA
metadata.dc.publisher.department: Campus Alegrete
Citation: FERNANDES, Karina Casola. Estudo da evasão de alunos de graduação utilizando Educational Data Mining. Orientador: Alessandro Bof de Oliveira. 2019. 93 p. Trabalho de Conclusão de Curso (Bacharel em Ciência da Computação) - Universidade Federal do Pampa, Curso de Ciência da Computação, Alegrete, 2019.
metadata.dc.rights: Acesso Aberto
URI: http://dspace.unipampa.edu.br:8080/jspui/handle/riu/4170
Issue Date: 26-Jun-2019
Appears in Collections:Ciência da Computação

Files in This Item:
File Description SizeFormat 
Karina Casola Fernandes - 2019.pdf1,43 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.