Please use this identifier to cite or link to this item: http://dspace.unipampa.edu.br:8080/jspui/handle/riu/3332
metadata.dc.type: Trabalho de Conclusão de Curso
Title: Definição da exponencial na aritmética intervalar RDM e aplicação em problemas com distribuição de probabilidade
metadata.dc.creator: Santos, Tiago Domingos dos
metadata.dc.contributor.advisor1: Finger, Alice Fonseca
metadata.dc.description.resumo: Problemas numéricos em sistemas digitais acontecem devido a característica destes operarem sobre o conjunto dos números reais, obrigando-os a discretizar este conjunto por intermédio de truncamentos e arredondamentos. Devido a restrições da máquina, nem sempre é possível representar valores em ponto flutuante de maneira exata. A aritmética intervalar surgiu como uma ferramenta que possibilita a solução destes problemas numéricos, tratando imprecisões e propiciando um controle automático de erros, através da aproximação de um número real por um intervalo com limites superior e inferior. Entretanto, o modelo da aritmética intervalar de Moore apresenta algumas limitações, como, por exemplo, o excesso de largura deste intervalo e dependência de dados. Com o objetivo de corrigir estes e outros problemas foi desenvolvida a Relative-Distance-Measure (RDM) interval arithmetic. Trabalhos atuais provam que essa nova aritmética retorna resultados mais exatos quando comparados com Moore. O objetivo deste trabalho é definir a exponencial natural para aritmética RDM e aplicar em problemas com distribuição de probabilidade esperando obter resultados mais exatos. Por fim, foi feita a verificação da qualidade dos resultados obtidos através da aplicação de métricas de qualidade ao intervalos resultantes das aplicações desenvolvidas com os métodos de integração de Rall, de Bedregal e de Simpson Intervalar, bem como a comparação destes resultados entre as aritméticas de Moore e RDM e análise de complexidade da exponencial RDM que foi definida neste trabalho.
Abstract: Numerical problems in digital systems happen due to their characteristic operate on the set of real numbers, forcing them to discretize this set by means of truncations and rounding. Due to machine constraints, it is not always possible to represent floating point values exactly. Interval arithmetic emerged as tool that allows the solution of these numerical problems, treating inaccuracies and providing an automatic error control, by approaching a real number by a range with upper and lower limits. However, Moore’s interval arithmetic model has some limitations, such as the excess width of this interval and dependence on data. In order to correct these and other problems the Relative-Distance- Measure (RDM) interval arithmetic was developed. Current works prove that this new arithmetic returns more accurate results when compared to Moore. The objective of this work is to define the natural exponential for RDM arithmetic and to apply probabilities with probability distribution hoping to obtain more exact results. Finally, we verified the quality of the results obtained by applying quality metrics to the intervals resulting from the applications developed with the integration methods of Rall, Bedregal and Simpson Intervalar, as well as the comparison of these results among the arithmetic of Moore and RDM and complexity analysis of the exponential RDM that was defined in this work.
Keywords: Ciência da computação
Computação científica
Aritmética
Computer science
Scientific computing
Arithmetic
metadata.dc.subject.cnpq: CNPQ::CIENCIAS EXATAS E DA TERRA
metadata.dc.language: por
metadata.dc.publisher.country: Brasil
Publisher: Universidade Federal do Pampa
metadata.dc.publisher.initials: UNIPAMPA
metadata.dc.publisher.department: Campus Alegrete
Citation: SANTOS, Tiago Domingos dos. Definição da exponencial na aritmética intervalar RDM e aplicação em problemas com distribuição de probabilidade. 124 p. 2018. Trabalho de Conclusão de Curso (Graduação em Ciência da Computação) – Universidade Federal do Pampa, Campus Alegrete, Alegrete, 2018.
metadata.dc.rights: Acesso Aberto
URI: http://dspace.unipampa.edu.br:8080/jspui/handle/riu/3332
Issue Date: 28-Jun-2018
Appears in Collections:Ciência da Computação

Files in This Item:
File Description SizeFormat 
Tiago Domingos dos Santos 2018.pdf1,29 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.