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ABSTRACT

This work aims to showcase an Artificial Neural Network model to estimate the

probability of residual syntax elements for the AV1 standard. Since the beginning of

the 21st century, the usage of platforms that utilize video resources has been increasing.

With the arrival of YouTube in 2005, it became possible to notice a growing usage

of videos for entertainment and other mundane tasks. Over time, with the increase

of social media and streaming applications, video traffic has become a large portion

of global data traffic. In this context, it is recognized that there is a need for a video

coding solution that can achieve a high level of compression. Codecs are a set of tools

that are designed to significantly reduce the size of a video sequence. Although codecs

that achieve a high compression rate are already available, many of them are locked

down through royalty fees, which limits their usage. In 2018, the Alliance for Open

Media (AOM) consortium created the codec AOMedia Video 1 (AV1) with the goal

of providing a high-compression, royalty-free, open-source video format. As AV1 is

a relatively new codec, finding new ways to improve its compression rate is a desired

goal. In the AV1 context, residual syntax elements make up most of the entropy coded

syntax elements, with entropy encoding being the last stage in the codec workflow.

Therefore, accurately estimating their occurrence probabilities is crucial for obtaining

a highly compressed bitstream (i.e., entropy encoding relies on these probabilities to

compress the input data). To achieve this requisite, a total of 26 Artificial Neural Network

models were evaluated, resulting in a final model that was capable of estimating the CDF

of the DC_sign Syntax element, with an error of 0.11% when compared to the actual CDF.

Keywords: AV1. Video codification. Neural Networks. Syntax Elements.



RESUMO

Este trabalho tem como objetivo demonstrar os ganhos e perdas de compressão que podem

ser obtidos usando uma Rede Neural para estimar a probabilidade de elementos residuais

de sintaxe para o padrão AV1. Desde o início do século XXI, o uso de plataformas que

realizam transmissões de vídeo e que se utilizam de recursos visuais tem aumentado. Com

a chegada do YouTube em 2005 foi possível notar uma crescente utilização de vídeos em

âmbitos mais mundanos, como por exemplo entretenimento. Avançando alguns anos,

com o aumento de aplicações relacionadas a redes sociais, o tráfego de vídeo compõe

uma grande parcela do tráfego global de dados. Com este cenário em mente, se vê

a necessidade de codecs que atinjam um alto grau de compactação de vídeo, codecs

são ferramentais que possibilitam a codificação de vídeo, reduzindo consideravelmente

o tamanho de uma sequência de vídeo qualquer. Ainda que já existam codecs que atinjam

um alto grau de compactação de vídeo, eles são normalmente protegidos por patentes.

Em 2018, pelo consórcio Alliance for Open Media (AOM), o codec AOMEDIA Video

1 (AV1) foi lançado, tendo por objetivo fornecer um codec que atingisse um alto grau

de compactação de vídeo que fosse livre de royalties e open source. Com isto, devido

a recência deste codec, formas que amplifiquem o grau de compactação são desejadas.

No escopo do AV1, os elementos sintáticos residuais compõem a maioria dos elementos

sintáticos que são codificados durante a entropia, sendo a codificação de entropia o último

estágio no fluxo do codec. Portanto, uma estimativa adequada das probabilidades dos

elementos sintáticos residuais é vital para obter um fluxo de bits o mais compactado

possível, visto que a codificação de entropia depende das probabilidades estarem o mais

precisas possíveis para que possa gerar o menor bitstream possível. Para atingir este

requisito, um total de 26 modelos de redes neurais artificiais foram avaliadas, resultando

em um modelo final que foi capaz de estimar o CDF do elemento sintático DC_sign, com

uma margem de erro de 0.11%, quando comparado ao valor original do CDF.

Palavras-chave: AV1, Codificação de vídeo, Redes Neurais, Elementos sintáticos.
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1 INTRODUCTION

Since the beginning of the XXI century, the amount of streaming applications have

been increasing. If we took YouTube for example, the streaming provider was launched

in 2005, and after six years it had 0.8 billion active users (STATISTA, 2022). Eleven years

later, YouTube is the most popular streaming platform in the world, averaging over 2.8

billion daily active users (STATISTA, 2022). If we considered only the most viewed video

on YouTube (i.e., Baby Shark Dance), which has an average of 200,000 views per hour

and a duration of 2:18 minutes, we would have a raw video file of 11,7Gb at a FHD

resolution (1920×1080), and, therefore, would require a bandwidth of approximately

160,04 Mbits/s per user (according to table 2 proportion), which is an absurd amount

for a single 2-minute video.

Further on, if we consider that YouTube has an average duration of 11:40 per video

and approximately 5 billion daily views (STATISTA, 2018), it becomes possible to notice

the huge amount of bandwidth that would be needed to transmit these videos. Fortunately,

we have the so-called video codecs (short for COder DECoder) or standards that are the

set of required tool to compress, for instance, that 11,7Gb file to something much smaller

and feasible for our current network.

Although codecs that can achieve a high compression rate already exist, for

example HEVC (ITU-T, 2013) and VVC (BROSS et al., 2020), the biggest issue that they

present is that most of them have limited usage due to their expensive and burdensome

royalties. If we took the royalties of HEVC as an example, it could get pretty expensive,

as we can see on Table 1. Besides that, if we would consider streaming platforms that

profit with monthly subscriptions, the price of the subscription would be directly affected

by the price of the royalties payment, making it less appealing to the consumer.

Taking the royalties into account, plus the need of a video coding standard/format

that could achieve a high compression rate, resulted in the foundation of the Alliance

for Open Media (AOM) group in 2015, a consortium composed of multiple technology

organizations, among these: Google, Amazon, Net f lix, and Microso f t. One of the

main objectives of the AOM was to develop a codec that would be open-source, free

of royalties, and capable of achieving a high compression rate. Three years after its

foundation, in 2018, the AOMedia Video 1 (AV1) came to life, being able to achieve

up to 30% higher compression rate than HEVC and VP9, while maintaining the same

quality, at the cost of having a decoding time 17% slower (LIU, 2021). To illustrate AV1s
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efficiency and usage, since 2021 Netflix’s have been using AV1 on some Smart TV’s, it

is said that in some Smart TV’s drops in video quality were reduced by as much as 38%

(OZER, 2021).

Table 1 – Royalty prices

Source: Rutz (2016).

Considering that AOM is a group of multiple big tech companies that reunited a

lot of professionals of the area to work together, AV1 development and implementation

considered three base codecs, being then: Mozilla’s Daala, Cisco’s Thor, And Google’s

VP10. AV1 had its bitstream specification released in 2018, as already mentioned, along

with a reference implementation written in C language. Because of its open source nature,

since its launch, a lot of third-party versions of AV1 have come to life. For example,

SVT-AV11and rav1e2. Although these versions may not change the workflow of AV1,

they are made to fulfill a more specific niche. One may take SVT-AV1 as an example,

which initially was developed by Intel in partnership with Netflix, where this variation of

AV1 meant to aid Intel’s CPU’s and, in 2020, was adopted by the AOM as one of their

current projects.

Considering AV1s kinship earlier mentioned, its workflow had to be similar to its

relatives (e.g., Daala, VP9 and Thor), having its heritage from codecs that followed the

so-called hybrid process (e.g., HEVC). Regarding the hybrid process, it is a workflow that

is followed by most of the current codecs, and evolves around four steps, being:

1. The Prediction process, which looks to remove redundancies on similar pixels. This

step is achievable by looking at a specific frame, then looking for similarities at

multiple pixels block. After that, a residual block is generated by subtracting the

1https://github.com/AOMediaCodec/SVT-AV1
2https://github.com/xiph/rav1e
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current frame with the next one.

2. The Transform phase that aims to reduce the correlation from the residual block by

reorganizing it in another fashion.

3. The Quantization step, which aims to reduce and decrease the residual coefficients

values generated by the Transform step. Quantization can be a lossy process,

depending on the selected quantization level.

4. The Entropy Coding step, whose objective is to compress the tranformed

coefficients using their occurrence probability for that purpose.

Although most recent codecs follow this pattern, they usually differ from one

another by making some big tweaks in these stages. If we took HEVC as an example, he

uses the Context-Adaptive Binary Arithmetic Coding (CABAC) (MARPE; SCHWARZ;

WIEGAND, 2003) as their entropy coding algorithm, whereas AV1 uses a Multi-Symbols

Alphabet (M-ary) arithmetic encoding, being the main difference between that CABAC,

as the name indicate, work only with binary symbols, whereas M-ary works with a

Multi-symbol approach, as stated by Han et al. (2021).

Moreover, with the rising of Artificial Intelligence (AI) related works (BARROS,

2021), along with the necessity for efficient codecs, made room for academic works that

would make use of both of these topics. The use of Machine Learning (ML) techniques

alongside video codecs is something that is getting more attention recently, one of the

reasons being because, as stated by (RAMACHANDRAN, 2018) the encoding problem

is an optimization problem, and ML tools can be deployed for most of the optimization

problems.

Another important factor for the use of machine learning tools, finds itself in the

fact that video coding tends to work with losses, what this means is that usually the

decoded video will not be an exact copy of the original, but it will pass through multiple

filters to be as close as possible to the original. This characteristic often motivates the use

of ML in video coding, since most of the imprecision given by an ML model would be

dealt by the decoder, as long as the model maintain a certain level of precision.

Finally, one may note that one of the most important steps of multiple codecs is the

probability distribution of its Syntax Elements (SE) (i.e., the data generated throughout

the encoding process prior to the entropy encoding) (RAMOS, 2019). To shed some

light in this process, it is a step where the syntax elements are organized according

to their probability and then used for context modeling at the entropy stage, where the

final bitstream is generated. Because of that, this is a step where an accurate probability
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calculation may directly impact the final bitstream, since the final length of the bitstream

will be related to how accurate the probabilities were estimated.

1.1 Motivation

An approach that utilizes neural networks in video encoding has the potential to

achieve higher compression gains when compared to the native solution, as demonstrated

in the work of (MA et al., 2019). However, further investigation is needed as the

application of neural networks in the context of the AV1 format is relatively new and

there are few works that have established a correlation between the two while also

demonstrating the benefits and drawbacks of using an ML approach.

Another relevant factor for this monograph is that, as reported by (OZER, 2021),

even though AV1 is able to achieve a compression degree that is greater or equivalent to

the VVC and HEVC families, its major disadvantage lies in having a high encoding time.

However, at each new version of the codec, this time is expected to be reduced.

Hence, this monograph will apply a ML approach to more accurately calculate the

probability occurrence of the AV1’s residual SEs. The main reason to consider specifically

the residual SEs is because, as stated by (RAMOS et al., 2020) for HEVC, they are usually

the majority of the SEs processed.

1.2 Objectives

The main objective of this work was to implement a neural network to estimate

the probability of residual SEs (RSEs) of the AV1 format.

1.2.1 Specific objectives

1. Study and understand the AV1 video coding process.

2. Study on how the generation of probabilities of residuals SEs occurs in the AV1

codec.

3. Develop the dataset that will be used to train the neural network from video

sequences encoded with AV1 software of reference.
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4. Select the most appropriate method to train the neural network

5. Analyze the precision obtained by the model, as well as the architecture of the

model.

1.3 Outline

The text is organized as follows: Chapter 2 presents the main concepts related

to video coding and neural networks.Chapter 3 covers the employed methodology for

this manuscript. Chapter 4 brings a more detailed discussion on video coding syntax

elements, arithmetic coding as well as some correlated works at the end of it. Chapter 5

shows the development process as well as the final results at the end of the chapter. Finally,

Chapter 6 addresses the final considerations of this work along with some possible future

works at the end of it.
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2 THEORETICAL BACKGROUND

The beginning of this chapter aims to explain basic video concepts, such as frames,

pixels, color spacing and sub-sampling. Next, an introductory section to the workflow of

the most popular codecs, and later on, a section specifically made to talk about the AV1

format and its particularities. Furthermore, the end of this chapter will briefly talk about

Neural Networks.

2.1 Basic video concepts

2.1.1 Frames

A video is a sequence of static images displayed in a quick succession after one

another, where these images, in a video, are called frames. The sensation of movement

given by a video is achieved by a rapid succession of frames. Due to the high speed that

each image is shown, the human eye is unable to notice that there is a time between each

image, giving the sensation of movement that we see in a video (RAMACHANDRAN,

2018).

Since a video cannot let the viewer notice that there is time between each frame, to

be able to perceive something as a video, we need to establish the minimum time required

between each frame, the metric responsible for this is called FPS (i.e., short for Frames

Per Second). The minimum amount of FPS needed to achieve this sensation of movement

is usually 24 FPS.

The frequency on which a video is changing frames gets the name of temporal

resolution, and it is measured in FPS. Figure 1 shows the difference between two different

temporal resolutions, in one second of a video, measured in FPS. To summarize, the

general rule of thumb is, the smoother the video needs to get, the higher fps it will need.

(RICHARDSON, 2010).
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Figure 1 – Temporal Resolution

Source: Animotica (2020).

2.1.2 Pixels

Since a video is said as a sequence of frames, then, what is a frame? A frame is a

matrix of pixels that determine the Spatial Resolution of a video. The spatial resolution

could be seemed as what we usually call resolution for any given video. For example, if

we have a resolution of 1920×1080, then it means that the matrix has 2,073,600 pixels,

with 1920 columns and 1080 rows. Each pixel is described by color and light components

that constitute a Color Space, thus we could see each pixel as a minuscule part of a frame,

and when we put each pixel at his designate place, thus generating a frame. Figure 2

illustrates this concept for multiple resolutions.

Figure 2 – Multiple Resolutions

Source: Emporio (2020).
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2.1.3 Color spacing

According to Ramachandran (2018) a color space maps real-world colors to

discrete values, and it is a specific implementation of a color model. In other words,

is a way to “color” a pixel in a meaningful way for the frame. Essentially, each color

component of the pixel will have an assigned value to it, which will later on be processed

and represented on the frame as a color. The most common color space in video coding is

the YCbCr (Luminance, Chrominance blue, and Chrominance red), where Y refers to the

light intensity of the pixel (or Luma for short), while Cb and Cr are both color components

also referred as Chroma. Figure 3 illustrates the separation of a frame on each one of its

color components.

Figure 3 – Color Components

Source: Adapted from Hisour (2021).

The YCbCr is the most common Color Spacing because of some of its

characteristics that can help to reduce the amount of bits required to represent a pixel.

One of these characteristics is in the fact that the Luma and Chroma components are

completely independent of each other. To show why this is a characteristic that can

achieve compression gains, we first need to refer to the physiognomy of the human eye,

which, as stated by (RICHARDSON, 2010), is more sensitive towards Luma components

than it is to Chroma. Simply put, we are more sensitive to variation in light than we are for
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variations in the color itself. This latter characteristic allows something called “Chroma

Sub-sampling” which is, basically, a process to remove some of the chroma components

without having subjective losses on the frame itself, at the same time being able to obtain

compression gains.

2.1.4 Bit-Depth and Subsampling

Since pixels contain color components that are described as numbers in the

discrete world, we have to consider something called Bit-depht. One may consider a pixel

that is described in terms of YCbCr components, and that each one of these components

has a Bit-depht of 8-bits wide. Hence, we would notice that the amount of colors that

this pixel could represent is 28x28x28 or 16 million colors. Bit-depht is what dictates how

many colors a given pixel can express, whereas the higher he is, the closer the pixel’s

color will be to reality.

Although it may seem desirable to always be as close as possible to reality,

sometimes, this is not necessary, and, in these cases, the process of Chroma Sub-sampling,

for instance, is applied. There are basically three Chroma Sub-sampling methods that are

commonly used, being then:

• 4:4:4: For each four Luma (Y) samples, also four Chroma blue samples (Cb) and

four chroma red (Cr) samples. This is also known as a “No sub-sampling” format.

It is applied when the objective for the pixel is to be as close as possible to what

was captured, because of this characteristic it is not possible to obtain compression

gains, since the color scheme is meant to be as close as possible to what was

captured in the frame.

• 4:2:2: For each four horizontal Luma (Y) samples, also two Chroma blue (Cb)

samples and two Chroma red (Cr) samples. This sub-sampling method promotes

33.3% of data reduction.

• 4:2:0: For each four Luma (Y) samples, only one chroma blue (Cb) sample and

one Chroma red (Cr) sample are processed. this method promotes 50% of data

reduction. This approach is mostly used when a high compression rate needs to

be achieved, at some loss of subjective quality not perceived by human sight, e.g.,

video coding in general.

Figure 4 depicts examples of 4:4:4, 4:2:2 and 4:2:0 sub-sampling processes.
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Figure 4 – Chroma subsampling

Source: HAIVISION (2020).

2.2 Video coding basics

Video coding, or video compression, is the process on which a video sequence is

compressed into a bitstream that describes it. Video compression tends to be extremely

important for any video-related application. The reason for it being that video files in

their raw format are absurdly expensive in terms of bandwidth and storage space. Table 2

shows different sizes of a raw video file of ten minutes length and the bandwidth required

for each resolution, while considering 12-bits for each color component.

Table 2 – Raw videos size and required bandwidth

Resolution Size (GBytes) Bandwidth (Mbytes/s)
834x480 10 17.13

1920x1080 52 88.98
2560x1600 103 175.78
3480x2160 189 322.58

Source: Monteiro (2017)

The compression and decompression is usually done by a codec, where the

encoder receives a raw video file, apply a set of tools intended for coding purposes, and

then generates a bitstream for that video sequence. This encoded bitstream can be decoded

back to the original video with the help of a decoder. The reason why we call both of them
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alongside as codecs is that one does not work without the other. In other words, we cannot

compress a video using the AV1 encoder and, later on, try to decode it with the HEVC

decoder, since this scenario would not work. The reason for this incompatibility among

formats/standards being that each of them will have his own bitstream specification.

If we took a closer look at the workflow of the most common standards/formats

(HEVC, AV1, VVC, etc.), we would notice that they all follow the so called

hybrid-process. The hybrid-process is mainly composed of a sequence of predictions,

transforms and additional steps, as depicted by Figure 5.

Figure 5 – Basic workflow

Source: Adapted from VCODEX (2022).

Another important characteristic to mention is that a compression can be lossy or

lossless, what it means is that lossy is a type of compression that is going to have definitive

changes in the pixels values of the decoded video (i.e., on the quality), at the exchange of

compression gains, whereas lossless, as the name indicates, is a compression that decoded

video will be exactly the same as the original one.

As mentioned earlier, codecs look for redundancies in a video file to obtain

compression gains, these redundancies can be divided into 3 types, being then:

• Spatial Redundancy: Spatial redundancy intends to find compression gains by

analyzing the similarities between pixel blocks of the same frame This type of

redundancy is also known as intra-frame redundancy and is used, for instance, in

the first frame of the video, since there is no other frame to use as reference. Figure

6 shows an example of similar pixels able to be classified as Spatial redundancy.
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Figure 6 – Spatial Redundancy

Source: Adapted from Jaewhon (2015).

• Temporal Redundancy: Temporal redundancy is the one that exists between

different frames. For instance, if there is a group of pixel that is an exact copy of its

predecessor frame, or just shifted a bit, or even only with slightly changed values,

then it will be considered as Temporal Redundancy. This type of redundancy is

also known as Inter-frame redundancy, and according to (ZATT, 2012) is the main

source of compression gain for video coding. Nevertheless, it tends to be the main

bottleneck of the execution time to encode a video. In Figure 7 we can see that a lot

of pixel blocks do not change between frames, indicating the presence of Temporal

Redundancy.

Figure 7 – Temporal Redundancy

Source: Adapted from ISCA (2018).

• Entropic Redundancy: This type of redundancy comes from the concept of

information theory presented by (SHANNON, 1948). The basic idea is that as the

likelihood of a given event increases, the less information it carries and vice-versa.

What this concept implies is that the information that is more likely to occur can be

represented with fewer bits. Figure 8 represents this idea by using a Huffman tree, it
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Figure 8 – Huffman Tree

Source: Adapted from Princeton (2004).

is possible to notice that ’a’ is the most common char, while ’!’ is the least common

one (although a Huffman tree is not applied in video coding, it demonstrates a

similar concept).

2.2.1 Predictions

During the encoding process of a video, the default procedure is to process pixels

as a group, instead of going them one by one. Usually, they are organized as squares or

rectangles to make more efficient use of the coding techniques. These pixels organization

receives the name of blocks. If we took HEVC as an example, the respective size of each

of these blocks can go to as big as 64×64 pixels or as small as 16×16 pixels (RAMOS,

2019). To summarize it, blocks are a fashion to process pixel groups of multiple sizes

in the most efficient way, where the size of the block usually varies from one codec to

another.

The way that codecs usually explore the previously mentioned redundancies is by

making predictions. Predictions are made, as one may notice, by using pixel blocks, and

essentially, what a prediction is doing, is to use a given pixel block and tries to recreate

it using as few bits as possible. Intra-frame predictions try to recreate the pixel block

by using spatial redundancy, whereas Inter-frame predictions try to recreate the frame

by temporal redundancy. As previously mentioned, Inter-frame prediction is the process

responsible for most of the compression gains.
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After building a prediction block, a subtraction is made with the original block,

resulting in the difference between each block, where these differences are the residues,

and are used to generate a residual block. The residual block is used on the next coding

stages, generating an even greater data reduction. Finally, the bitstream is generated,

where it will be a binary file that obeys a structure described by the codec. This behavior

means that the bitstream will be the final piece of the codification process, and to be later

on decoded, it needs to follow a specific pattern. This pattern is described by a document

called bitstream description, a document responsible to describe how the bitstream is

organized. By standard, when a codec is developed, two artifacts are expected to be

produced, the first one being the bitstream description and the other one being the software

of reference, both of them are necessary to use and understand the produced codec.

As briefly mentioned earlier, most of the codecs follow the Hybrid-process, a

process composed of four steps, being then: predictions, transforms, quantization, and

entropy coding. This process appears in Figure 9, exemplifying this process from the

Figure 9 – Hybrid Workflow

Source: Ramachandran (2018).

original input video to the bitstream output. If we took a closer look at the aforementioned

Figure 9, we would notice the existence of Inverse Quantization, Inverse transform, and

the application of filters. The reason for that is that since the quantization step insert

losses in the coding process, all of these steps are necessary for the decoder to rebuild the

frame as close as possible to what was originally hold.
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2.2.2 Intra-prediction & Inter-prediction

The intra-frame prediction uses a group of pixels to obtain gains with spatial

redundancy. These predictions can be directional, where pixels from neighboring

blocks are used to create a trajectory. On the other hand, the predictions can also be

non-directional, where the neighboring pixels are combined in various ways (BORGES,

2019). Usually, intra-prediction uses pixels from already-encoded adjacent blocks and

derives the predicted pixels by filling entire blocks with pixels extrapolated from the above

row and from the column to the left of the ongoing block (RAMACHANDRAN, 2018).

Summarizing it, by utilizing each pixel group of a given frame, a predicted frame will be

created, and after its creation, it will be subtracted with the original frame, thus creating

a Residual Frame. This residual frame is what will be sent for the next coding stages.

Figure 10 shows an intra-prediction being made.

Figure 10 – Intra-prediction

Source: Adapted From Ramachandran (2018).

Intra-prediction frames tend to be very precise with areas without many details,

but it suffers a lot when it has to predict places with a higher detail level, where these

losses will be encoded as residual values on the bitstream. Another important factor

about intra-frame predictions is that they are mostly used when there is no other frame of

reference (i.e., when it is the first frame of a video).
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Changing the subject to inter-predictions, they are the type of predictions that

are mostly use throughout the coding process, they make use of temporal redundancy

to obtain expressive gains in compression. The way how these predictions works is by

selecting zones from previously encoded reference frames to find a candidate block that

fits better the original block.

This search for the frames containing the best-predicted block is going to be called

Motion Estimation (ME). Essentially, this process is looking to discover how much

each pixel block is moving and selecting ones with the least amount of movement to

be used as reference (RAMOS, 2019). Later on, the movement between the predicted

block and the one used as reference will be called as Motion Vector (MV), expressed

as an 2D array of pixel coordinates. The process that will employ the aforementioned

MVs to create the predicted block is named Motion Compensation (MC), and, as stated

by (RAMACHANDRAN, 2018) this stage, in terms of computational resources, is one of

the most expensive stages in video coding.

At Figure 11 we are able to see an example of motion compensation. Something

Figure 11 – Motion Compensation

Source: Adapted From Ramachandran (2018).

important to note is the algorithm responsible for the ME, it is extremely important for

how much loss will be passed to the next stages. The reason being that, if ME finds a bad

fit, it will need more bits to represent this residual error, leading to loss in compression.

Since inter-predictions make use of previously predicted blocks in given reference

frames that may contain losses, the consecutive codification of multiples frames using

this type of prediction will result in the propagation of residual errors and, consequently,

reducing the compressed video quality. To solve the mentioned problem, an intra-frame

prediction occurs at regulars intervals, allowing the visual quality of the video sequence to
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be maintained. Figure 12 represents the general flow of execution to encode and decode

a given frame using an inter-prediction.

Figure 12 – Inter-frame workflow

Source: Adapted from Isikdogan (2018).

Another point worth mentioning is that each time there is a drastic change in the

next frame, an intra-frame prediction will be used. This can be seen in 13, where the

first frame is encoded using intra-frame prediction. After that, since there are no major

changes between frames, inter-prediction is used from frame 2 to 4. Finally, at frame 5

we can see another use of intra-prediction due to the significant change between frames.

Figure 13 – Sequence of frames

Source: Adapted from Isikdogan (2018).

To summarize, Figure 13 also presents the general concepts that both predictions

are following. As one may observe, in the intra-frame prediction, the frame is encoded

without the use of its neighbors, whereas the inter-frame prediction considers only the

movement between each encoded frame.
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2.2.3 Transform & Quantization

The transform stage begins after the aforementioned prediction stage, and its

main focus is to rearrange our residual frame in a way that only some few coefficients

remain significant (RAMOS, 2019). This process occur with the use of Transform Units

(TUs), where TUs are responsible for partitioning a residual frame into multiple pixel

blocks that will be internally rehanged using a given transform type, e.g., the Discrete

Cosine Transform (DCT). Figure 14 shows an example of a 4×4 pixel block after the

transform step, where we can visualize the effects of the transform by comparing the block

before the transform and after the transform. After the process, the block is rearranged

in a fashion that the smaller values, i.e., near zero, (seemed as black blocks) always

get at the bottom-right of the block. The quantization step begins after the transform

Figure 14 – Transform Stage

Source: Ramos (2019).

step and is responsible for the losses in this compression stage. The quantization will

perform the equivalent of an integer division on the coefficient block that was created

after the transform step. As previously mentioned, this stage will generate losses on the

quality of the image. The argument responsible for the amount of loss is usually called

Quantization Level, where the higher it is, higher the losses, since the coefficients will

be more likely to become zero. On the other hand, as we lose in quality, we gain in

compression, since zeros are easier to compress.
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Figure 15 shows the general idea of the quantization step.

Figure 15 – Quantization Effect

Source: Ramos (2019).

As for both stages, they need to have an inverse process that enables the

reconstruction of the block. In the case of transform stage, it is called inverse-transform,

and it will reconstruct the coefficient values back to the residues. For the quantization, it

gets the name of inverse-quantization and, due to the nature of an integer division, it will

be impossible to reconstruct some pieces of information (i.e., the zeros generated by the

quantization), therefore inserting losses in the image.

It is important to note that, after the quantization, the generated residual block will

be the responsible to generate the main topic of this work, the so-called Residual SEs, and

due to its importance, it will be discussed at his own chapter. Nevertheless, as a preview,

they are generated between the quantization and entropy stages, and compose most of the

SEs. As a final point, one may see the Transform and Quantization step as a preparatory

stage for the Entropy stage, where this re-arrange will be put to use.

2.2.4 Entropy Coding

The entropy stage is the last stage of the Hybrid-workflow, where this is the stage

responsible for generating the compressed bitstream. Anyways, the entropy stage will

get as input what is formerly known as Syntax Elements (SEs) and make use of their

occurrence probabilities throughout the coding steps to increase the compression gains.

The Entropy coding step is based on what we know from information theory, and

as described by (RAMACHANDRAN, 2018), it is a way to measure the randomness
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associated with a specific content. For a more visual example, we could think of the

morse alphabet, shown in Figure 16,

Figure 16 – Morse Alphabet

Source: Langmead (2020).

and what we have to take from this image is that the morse alphabet was built

in a way that the most common letters are represented in less bits than the less used

ones. If one takes the letter “E” as an example, we would notice that it is represented

with a single dot. On the other hand, one of the least used letters of the alphabet “Z” is

represented with two bars and two dots. The general idea is that the most used symbols

of any given alphabet will be represented with fewer bits (or points/bars in the case of

the Morse alphabet), where this idea translates adequately to video coding, since the final

objective is to obtain a bitstream compressed as possible. All things considered, using SE

and their specific probabilities, the entropy coding will generally make use of arithmetic

encoding to encode each SE with a bit length respective to its frequency of use.

2.2.5 Filters

Since quantization insert losses in the coding step, it is normal to imagine

that the reconstructed images sometimes will be different from what was originally

compressed. To reduce these losses, we make use of filters. Filtering techniques are

used during the reconstruction of the reference frames, which improves the visual quality
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and performance of inter-prediction. These operations get the name of in-loop filtering,

because they occur during the encoding flux and can be return to be used as a reference

for prediction. One filter that is commonly used is a Deblocking Filter, where this filter

intends to smooth the edge zones of a given frame. Figure 17 shows an example of a

deblocking filter being applied

Figure 17 – Deblocking Filter

Source: Adapted from Ramachandran (2018).

2.3 AV1 Format Concepts

As earlier described, AV1 aimed to bring flexibility for commercial use of codecs,

while also maintaining on par with current codecs. As stated by (CHEN et al., 2018)

the main focus of the AV1 standard was to reach a consistent delivery of high-quality

real-time video, scalability for multiple bandwidths and hardware optimizations. AV1

allows higher bit rates, a wide range of color sub-sampling methods, while also providing

higher bitrates.

AV1 follows the standard flow of execution of hybrid codecs described in previous

sections. Because of that, the format operates with pixel blocks, that are further on

processed in a prediction-transform scheme. The prediction comes from intra-frame

reference pixels, inter-frame compensation and sometimes as a combination of both. After

that, the residuals of the aforementioned stages serve as input for the transform stage, that

will reduce the spatial correlation by reorganizing the block and changing the domain of

the block to the frequency domain.

After that, the remaining coefficients are quantized to further increase the

compression gains. Both of the SEs generated from prediction and quantization step
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are entropy-coded using an arithmetic coding algorithm. In parallel, there are three stages

of post-processing in-loop filters, which aim to improve the quality of the reconstructed

frame for it to be further utilized as a reference frame for subsequent frames. Another

important point, is that the codec accept input signals in the formats 4:0:0 (monochrome),

4:2:0 as well as 4:4:4. Also function with bit depths of 8-,10- or 12-bits (HAN et al.,

2021).

2.3.1 Frame Partitions in AV1

Each frame within a video sequence can be classified differently during the

coding process, the chosen prediction type depends on this classification. In intra-frames

prediction, the utilized frame will get the name of KeyFrame, and a video must have at

least one frame of this kind (i.e., a frame that does not make use of temporal redundancy).

The KeyFrame is also used to define subdivisions of the video into frame groups.

For the inter-frames prediction, the equivalent of the KeyFrame will be the

S-frame, a frame that will make use of only future references to compose predictions.

There is also the Golden Frame, where this is as a special type of frame that stores

temporally redundant information across a subgroup of frames to which it belongs.

Furthermore, for this type of prediction, each frame in AV1 can use up to eight references:

One KeyFrame, one S-Frame and one GoldenFrame, up to three past frames and three

future frames.

Since the AV1 follows the Hybrid-flow, a common technique applied by these

formats is called frame partitioning, basically, dividing a frame into smaller parts to make

the predictions more efficient and Accurate. The primary division unity of a frame of

the AV1 format is known as SuperBlock (SB). The SB withstands two sizes, being them

128×128 or 64×64 pixels. The selected size is represented through a flag in the bitstream.

An SB can be partitioned into smaller blocks, which promotes a better yield of the applied

prediction and aids in the parallelism of the coding process (BORGES, 2019).

As stated by (HAN et al., 2021) The partitioning of an SB happens in a

recursively quadratic and decreasing manner until some specific patterns get chosen. The

subdivisions of an SB can assume three distinct formats: quadratic (1:1 (32×32 Pixels));

one-half rectangular (1:2, 8×16 Pixels); and, finally, one-quarter (1:4, 8×32 Pixels).

Starting from a quadratic SB, it can divide itself to as low as 4×4 pixels, following a

10-path partition tree. Figure 18 shows the recursive structure for the partitioning block
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of the av1, as well as different block sizes.

Figure 18 – AV1’s recursive partition tree

Source: Han et al. (2021).

AV1 also make use of tiles, which are rectangular vectors of SB’s. Because

of the spatial reference for them is limited to the tile borders, the tiles inside a frame

can be independently encoded. This method facilitates the use of multi-threading in

implementations of the AV1 standard.
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2.3.2 AV1 Coding Tools

AV1 come along 56 intra directional modes, from angles between 36 and 212

degrees, enabling AV1 to target various types of spatial redundancies. AV1 also come

with a variety of non-directional predictors that consider gradients, spatial correlation of

samples and the coherence of the luma and chroma samples.

About inter-frame predictions, AV1 has an immense amount of tools to make

use of the temporal correlation in video signals. Among these, are the adaptive filtering

in translational motional compensation, affine motion compensation and highly flexible

composite prediction modes. It is also important to note that the codec has two auxiliary

motion vectors that inform the displacement of the current frame when comparing to the

previous frame, along with the zoom effect.

The transform stage end-up requiring the block partitioning of a frame, but these

can differ in shape or size when compared to the partitioning for predictions. The available

partitioning for Transform blocks are: Squared, 2:1/1:2, and 4:1/1:4 in sizes ranging

from 4×4 to 64×64 pixels. AV1 make use of four transform algorithms and combine

them to be applied vertically and horizontally to the residual data, totalizing 16 possible

transform combinations, the transform algorithms are: the DCT, ADST, flipADST and

IDTX (CHEN et al., 2018).

After the transform stage, the quantization is applied in a way to reduce the

coefficients, as well to remove coefficients that are not so important for the image. The

quantization level is defined in the coding step by a paramater called Constant Quality

(CQ) that vary from 0 to 63, i.e., 0 being lossless, while 63 being the maximum quality

loss.

About the entropy stage, AV1 uses a multi-symbol arithmetic encoder adaptive

to each one of the 16 encoded symbols. The SEs can be in an alphabet with up to N

elements, and the context modeling consist of a set composed of N probabilities, where

N is an integer varying from 2 to 16. The probabilities are also stored as cumulative

distribution functions (also called CDF’s), with a 15-bit precision.

The last stage worth mentioning is the filtering stage. Up to this stage, losses have

been inserted because of the quantization, color sub-sampling, etc. To soften these errors,

multiple filtering techniques are applied. Some filters of the AV1 are inherited from VP9.

Essentially, the AV1 permits three optional stages for in-loop filtering stage: deblocking

filter, Constrained Directional Enhancement Filter (CDEF), and finally, a loop-restoration
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filter. After the filtering process, the output frame is then utilized as a reference for the

encoding of future frames.

2.4 Neural Networks

2.4.1 Basic Structure of Neural Networks

To be able to understand a Neural Network, we first need to question, what even

is a Neural Network? Neural networks, as said by (BRASPENNING F. THUIJSMAN,

1995) are computational models with particular properties, and they can have the ability to

adapt, to learn, to generalize, or to cluster and organize data. The first wave of interest in

Neural networks comes in 1943, after the introduction of simplified neurons by the work

of (MCCULLOCH; PITTS, 1943). These neurons were presented as models of biological

neurons and as conceptual components for circuits that could perform computational tasks

(BRASPENNING F. THUIJSMAN, 1995). Get these neurons, link them, valuate each

one of its inter-connections, and you will get an Artificial Neural Network (ANN),

also known as Feed-Forward Neural Network (FFNN) (GOODFELLOW; BENGIO;

COURVILLE, 2016). Figure 19 present a fully connected FFNN.

Figure 19 – Fully connected feed-forward neural network

Source: Mehlig (2021).

The dots on the image represent neurons, each layer is composed of four neurons,

each arrow will have a specific weight (i.e., a digit of the set of the Real numbers) attached

to it and each neuron will have an activation function. The layers between the input and

output are called hidden layers. The input is what the network will receive to be able
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to achieve its proposed functionality. To be functional, the model in the image will be

trained through a predefined dataset along with backpropagation techniques.

Besides that, the amount of layers that a network has, the amount of neurons that

each layer has, the function that each layer is applying, the dataset, all the aforementioned

characteristics, will be extremely important to achieve a high precision rate. Generated

Models are usually evaluated with the use of a cost function responsible to determinate

how far the output neurons were to the correct answer. Figure 20 illustrate this workflow.

Figure 20 – FFNN general workflow

Source: Adapted from Dan (2019).

The FFNN architecture was something like a predecessor for the Convolutional

Neural Network (CNN) and Recurrent Neural Network (RNN) architectures.

Speaking of those, they follow a similar workflow, but with some tweaks between the

execution or training stage. CNNs are frequently used in image processing, while RNNs

are mostly used for temporal series (i.e., tasks with multiple steps that are extremely

correlated to one another).

Essentially, a network is a tool that is broadly used to detect trends that are usually

difficult to discern. The idea here is to use a known architecture to create a model that

with proper training will be able to say if something is X or Y with a certain level of

precision. The inputs will be respective of the task, as well as the activation function used



44

in the output layer. The next section will cover most of the components mentioned earlier

(i.e., neurons, layers, weights, etc.)

2.4.2 Neurons, Weights & Biases

Neurons are the most fundamental component of a Neural Network and the one

that originated all of that. Firstly known as a perceptron from (ROSENBLATT, 1958)

work, the neuron (and the whole network architecture) were inspired by our own neurons

- Figure 21 shows a direct comparison between them - where X1 to Xn are the inputs of

the neuron, Z is the output and b is the bias. Each input will have its respective weight

attached to it, then each one of the inputs will multiply its respective weights and after

that, the results of each product will be summed, along with the bias. Finally, after this

last sum, the result will go through an activation function and then will pass its results to

the next neurons where it will be used as input, repeating this cycle until it goes to the

output layer.

Figure 21 – Neuron comparison

Source: Kinsley (2020).
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One may see how this artificial neuron will function through an example. Let

A be an artificial neuron, X the set of inputs = {1.0,2.0,3.0}, W the set of weights =

{0.2,0.8,−0.5} and p the bias = 2.0. The output of this neuron would be 2.3, as depicted

in Figure 21. One may notice the existence of a ReLU (Rectified Linear Unit) function

at the output of the neuron, where ReLU is an activation function (activation functions

will be briefly covered on the following section). A ReLU function is one of the simplest

activation functions, if the output is negative, then it gets passed as 0, otherwise, the

output just passes through unchanged, to become an input for the next layer. In the case

of the example, the final output of A will be 2.3. Summarizing, this whole process can be

Figure 22 – Neuron Example

Source: Author (2022).

described by equation 1:

ȳ = ReLU(
d

∑
j=1

w jx j +b) (1)

y is the output of the neuron, while d is the number of neurons that were present in the

previous layer.

If we took this process that occurs for a single neuron, and increase its scale, we

would end-up in a FFNN architecture that was earlier described. What we really have to

grasp from this section is that this process of a single neuron is replicated to every single

neuron of an entire neural network. The biggest difference that we will have between

each neuron is the activation function, that can vary between each layer. Neurons of the

same layer will have the same number of inputs and the same activation function.

2.4.3 Activation Functions

Activation functions are what will usually regulate the “objective” of the Neural

Network model, for example, an FFNN can be a regression or a classification model,
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depending on the activation function used in the output layer (BURKOV, 2019). Since

the neuron was based on an artificial neuron, the activation function was not different,

it was initially built to emulate a neuron firing or not, where this function got the name

of Step Activation Function (KINSLEY, 2020). Figure 23 shows this function x is the

output without the use of an activation function.

Figure 23 – Step Activation function

Source: Kinsley (2020).

Since the utilization of activation functions is contingent on the objective of the

Neural Network, a wide range of activation functions exist to suit specific contexts. For

the purpose of illustration, we will examine three of them as follows:

• Linear Activation Function: as stated by (KINSLEY, 2020) This activation

function is usually applied to the last layer’s output in the case of a regression task.

Figure 24 depicts the output of a linear function

Figure 24 – Linear activation function

Source: Kinsley (2020).

• Rectified Linear Activation Function (ReLU): The ReLU is essentially a linear

function, but without negative values, it is often used in hidden layers, because
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of her simplicity and speed, and as stated by (MEHLIG, 2021) the network of

active neurons (non-zero output) is sparsely connected. Sparse representations of a

classification problem tend to be easier to learn because they are more likely to be

linearly separable. Figure 25 shows the output of a ReLU function

Figure 25 – ReLU activation function

Source: Kinsley (2020).

• Sigmoid Activation Function: this is an activation function that is often used for

classification. This function returns a value in the range of 0 for negative infinity,

through 0.5 for the input of 0, and to 1 for positive infinity. Figure 26 shows the

behavior of a sigmoid function

Figure 26 – Sigmoid activation function

Source: Kinsley (2020).

• Softmax Activation Function: Last, but not least, the Softmax activation function

is used in classification tasks, at the output layer, its main strength is to be able to

represent the output in terms of its probabilities (MEHLIG, 2021). It is easier to

represent its purpose with a short example. Imagine that you have built a model

to identify whether an image is a cat or a dog, this model will have two output
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neurons, one for each possibility. The value of both neurons will be a probability,

for example, if you had the image of a dog as an input and the model was not so

sure about it, neuron A would be represented as 0.6% and neuron B would be 0.4%.

Softmax functions are extremely useful for multiclass classification, where each

one of the neurons at the output layer represents the probability of a given class.

The following equation describes this process

σ(zi) =
ezi

∑
n
j=1 ez j

Where:

• z is a vector of arbitrary real values

• n is the number of elements in the vector

• σ(zi) is the softmax activation for each element zi

To conclude, activation functions are extremely important for the training process of an

NN model, as well as its objectives. Usually, the activation function used at the output

layer dictates the objective of the whole model. Besides the activation function, the

number of neurons at the output layer is also important for the purpose of the network,

for instance, in a neural network that was built for a classification task, each neuron at

the output layer will be the equivalent for one class, on the other hand, for a regression

model, it is mandatory that the output layer is composed of a single neuron.

2.4.4 Loss functions

Loss functions are used to measure the performance of a Neural Network when

predicting a set of inputs during its training process (GOODFELLOW; BENGIO;

COURVILLE, 2016). These functions are chosen based on the task that the Neural

Network is attempting to perform. For example, the cross-entropy loss function is

often used for classification tasks, as it measures the difference between the predicted

probability distribution and the true probability distribution. This function is frequently

used with the softmax activation function, which converts the outputs of the model into

a probability distribution across the classes. There are many different loss functions

available, and their usage depends on the specific task that the Neural Network is trying

to complete. Some commonly used loss functions will be listed below.
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• Mean Squared Error (MSE): The MSE is mostly used on regression tasks, The

MSE loss function measures the average squared difference between the predicted

and true values, its biggest strength is found in its ability to penalize large errors

more heavily than small errors. (GOODFELLOW; BENGIO; COURVILLE, 2016)

• Mean Absolute Error (MAE): Is a loss function commonly used in regression

tasks. As its name suggests, it calculates the mean absolute error between the

predicted value and the true value. The smaller the MAE, the more precise the

model is at predicting an exact value. It is similar to the MSE loss function, but it

does not penalize large errors as heavily and is more robust to outliers in the data.

The MAE loss function is generally easier to interpret than the MSE loss function

because it is expressed in the same units as the data being used (GOODFELLOW;

BENGIO; COURVILLE, 2016).

• Mean Absolute Percentage Error (MAPE): The MAPE loss function measures

the average absolute percentage difference between the predicted and true values.

It is often used when it is important to accurately predict the relative size of the

error, rather than the absolute size. The output of this function is usually expressed

in terms of percentages, which eases the process of evaluating the model in some

scenarios (MEADE; ISLAM, 2005).

• Mean Squared Logarithmic Error (MSLE): The MSLE loss function measures

the average squared difference between the logarithms of the predicted and true

values. It is often used when the errors are multiplicative rather than additive, and

it is particularly useful for tasks where the target values are positive and skewed

(GOODFELLOW; BENGIO; COURVILLE, 2016).

• Huber: The Huber loss function is a combination of the (MSE) loss function and

the (MAE) loss function. It has the properties of both of these loss functions, with

the MSE loss for small errors and the MAE loss for large errors. The Huber loss

function is less sensitive to outliers in the data than the MSE loss function, but it still

penalizes large errors more heavily than the MAE loss function (GOODFELLOW;

BENGIO; COURVILLE, 2016).

• Log-cosH: The log-cosh loss function is a smooth approximation of the mean

absolute error (MAE) loss function. It is defined as the logarithm of the hyperbolic

cosine function of the difference between the predicted and true values.This loss

function is a smooth approximation of the MAE loss function, and it returns

nearly identical results as the MAE loss function for small values, but it is defined
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for all values. Besides that, the log-cosh loss function can also be useful in

cases where the absolute error is not good enough, and the data could have some

outliers, this smooth approximation can help improve the performance of the model

(GOODFELLOW; BENGIO; COURVILLE, 2016).

2.4.5 Optimizers

in machine learning, an optimizer is an algorithm used to adjust the parameters

of a Neural Network model in order to minimize a given loss function. The optimization

process typically involves iteratively adjusting the model’s parameters in order to reduce

the value of the loss function. However, this process can change depending on the

optimizer itself, for example, some optimizers may use gradient descent, while others

may use a different method such as conjugate gradient or Newton’s method. Essentially,

optimizers usually make use of a technique called Backpropagation, with this technique

the optimizer calculate the gradient of the loss function of the neural network and then

utilizes this information to adjust the parameters of the model to reduce the loss function

output. Along with backpropagation, the optimizer also comes with a hyperparameter

called Learning Rate that is also responsible for adjusting the hyperparameters of the

model (i.e. how much the weight+biases should change).

There are a lot of optimizers and their usage may vary on the task that the model

is trying to perform, some of the optimizers are:

• Stochastic Gradient Descent (SGD): is an iterative method that updates model

parameters in the direction of the negative gradient of the loss function with respect

to the parameters. At each iteration, the algorithm takes a small step (or "update")

in the direction of the negative gradient, which is computed using a small random

subset of the data called a "batch" or "minibatch". In other words, instead of

using the entire dataset to compute the gradients, it uses only a small subset of

it. (GOODFELLOW; BENGIO; COURVILLE, 2016)

• Adagrad: AdaGrad is an optimization algorithm that adapts the learning rates of

all model parameters individually by scaling them inversely proportional to the

square root of the sum of all historical squared gradients. The parameters with

large partial derivatives of the loss will experience a rapid decrease in their learning

rate, while parameters with small partial derivatives will have a relatively small
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decrease. This results in greater progress in the directions of parameter space with

a gentler slope. In the context of convex optimization, AdaGrad possesses some

desirable theoretical properties. However, when training deep neural networks,

the accumulation of squared gradients from the beginning of training can lead to

an early and excessive decrease in the effective learning rate. (GOODFELLOW;

BENGIO; COURVILLE, 2016)

• Adadelta: The key idea behind Adadelta is to use the running average of the

past gradients, rather than the current gradient, to adjust the learning rate for each

parameter. Adadelta makes use of two parameters, an accumulating factor and a

decay factor, which are used to control the decay of the running average. One

of the main advantages of Adadelta is that it is less sensitive to the choice of the

initial learning rate, and it makes fewer assumptions about the data. Adadelta

does not need to calculate the gradient of the loss function, this makes it more

computationally efficient and reduces the chance of running out of memory.

Adadelta is also robust to the problem of the vanishing or exploding gradient, which

is when the gradients become too small or too big. (ZEILER, 2012)

• Root Mean Squared Propagation (RMSprop) : This approach was based on the

Adagrad algorithm, but it uses a moving average of the squared gradient to scale

the learning rate of each parameter. The idea behind RMSprop is to use the second

moment of the gradients, that is the average of the squared gradients, to scale the

learning rate of each parameter. This allows the optimizer to adapt the learning

rate of each parameter individually, rather than using a fixed learning rate for all

parameters. RMSprop, as SDG, is not largely used anymore, since the Adamax

optimizer acts like a direct upgrade of it. The RMSprop could find its use in some

scenarios, usually where the magnitude of the gradient is an important factor to

the optimization task, but generally speaking, Adamax will end up achieving better

results to most of the problems. (GOODFELLOW; BENGIO; COURVILLE, 2016)

• Adaptive Moment Estimation (ADAM): It is a variant of the stochastic gradient

descent (SGD) algorithm that uses a combination of gradient information from the

current and previous iterations to adaptively update the model parameters.The key

idea behind Adam is to maintain an exponentially decaying average of the past

gradient information, as well as an exponentially decaying average of the past

squared gradient information, Adam is one of the best optimizers known to date

due to the wide range of applications that he can be used while obtaining good
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results, most of the recent optimizers are usually variations of this one. (KINGMA;

BA, 2014)

• Adamax: This one is a variation of the Adam algorithm that was introduced along

with Adam, this one uses something called the infinity-norm to scale the learning

rates of different parameters. The infinity-norm is a measure of the size of a vector

that is used to scale the learning rates of different parameters. This allows the

algorithm to assign larger learning rates to parameters that have larger gradients,

and smaller learning rates to parameters that have smaller gradients. This helps to

prevent the optimizer from getting stuck in flat regions of the loss function. This

optimizer is mostly used in problems where the dataset that is being used is too

much noisy (i.e. the data appears to be random). (KINGMA; BA, 2014)

• Nesterov-accelerated Adaptive Moment Estimation (Nadam) : As Adamax,

Nadam is an optimization algorithm that uses characteristics of the Adam algorithm

coupled with the Nesterov Momentum Method, this momentum method helps to

anticipate the direction of the minimum and this can make the optimization process

more robust and faster. Like the Adam optimizer, Nadam uses the concept of

adaptive learning rates, which means that the algorithm can adapt the learning rate

of each parameter individually. Nadam is often used in problems with Long narrow

valleys or saddle points (i.e. regions of the loss function that can slow down the

optimization process). (DOZAT, 2016)

• Follow The Regularized Leader (FTRL): It is a variation of the aforementioned

(SGD) algorithm that aims to improve the computational efficiency and scalability

of the optimization process. in large-scale problems, the size of the dataset and

the number of parameters can be very large, making it computationally expensive

to update the parameters for each example. FTRL addresses this issue by using

a different approach for updating the parameters. Instead of computing the

gradient for each example, FTRL uses an approximation of the gradient based

on a combination of the current and past gradients. The learning rate adapts to

the curvature of the loss function, becoming smaller as the optimization process

progresses, a regularization term is used to prevent overfitting. Essentially, this

was an optimization algorithm that was developed by Google in 2013 to solve

large-scale online learning problem with a high number of features and parameters.

(MCMAHAN et al., 2013)
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3 METHODOLOGY

This chapter aims to showcase the methodology that was used to execute this

work, the methodology will be divided into technical methods and the criteria for the

selection of correlated works.

3.1 Technical Methods

The methodology chapter of the monograph outlined the process that was followed

to conduct the research. The first step was to conduct a bibliographic research on existing

video compression formats, such as H265 and VP9. This research was carried out to gain

an understanding of the execution flow of these formats.

Subsequently, the focus of the research shifted to the AV1 format, as this was

the format that would be used for the work. Through this step, the aim was to gain a

comprehensive understanding of codecs, with a particular emphasis on the specificities of

the AV1 codec.

Next, an exploratory research was conducted using the AV1 reference software.

The objective of this step was to correlate the information discovered in the previous

step with the information found in the reference software, thereby enabling a deeper

understanding of the codec’s execution flow.

Afterwards, an experimental research was carried out where the reference software

was modified to include execution logs. The goal of this step was to identify elements in

the reference software that had been identified in the previous steps. With the modification

in place, the software was run to perform the encoding of several recommended video

sequences. The primary objective of this step was to identify the variables that would be

necessary for training a Neural Network, thus enabling the creation of a relevant dataset

for training.

With a thorough understanding of the AV1 operation and its reference software, a

dataset was prepared for training the Neural Network. For this step, the aim was to obtain

a large number of recommended video sequence samples to generate a sufficiently diverse

dataset.

A study on the functioning of Neural Network architectures was conducted so that

the Neural Network could be properly trained and modeled. At this point, the aim was

to achieve a satisfactory level of proficiency with Artificial Neural Networks so that they
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could be used.

After the study, a total of 26 Artificial Neural Network models were created,

trained, and executed in order to find the most appropriate model. Each one of the Neural

Network models were tested on a large number of samples, after this, they were compared

to each other to determine the final, optimal model for tackling the proposed task.

3.2 Correlated works criteria

For the selection of works to serve as a basis for the objective of this manuscript,

a bibliographical research was carried out in the IEEE Xplore database. The first

works that that coupled AV1 with ML were searched through the following search

strings: ("All Metadata":AV1) AND ("All Metadata":Machine Learning) OR ("All

Metadata":AV1) AND ("All Metadata":Neural Network) OR ("All Metadata":AV1) AND

("All Metadata":Deep Learning) The selected keyword was AV1 and a period limit of

2015 to 2022 was select.

The search returned a total of 15 results, including the works of Chen et al. (2020),

Su et al. (2019) and Kim et al. (2019) that were described at the previous section. After

that, due to the low portion of related works, a new search was done, but this time, HEVC

would be searched instead of AV1. the keyword was HEVC, the time period was from

2015 to 2022 and the produced search string was: ("All Metadata":HEVC) AND ("All

Metadata":Machine Learning) OR ("All Metadata":HEVC) AND ("All Metadata":Neural

Networks) OR ("All Metadata":HEVC) AND ("All Metadata":Convolutional Neural

Networks) The string resulted on 454 works, on which 2 of those were selected, the work

of Song et al. (2017) and Ma et al. (2019)

A total of 5 works were selected, the work of Chen et al. (2020), Su et al. (2019),

Kim et al. (2019), Song et al. (2017) and Ma et al. (2019)
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4 VIDEO CODING SYNTAX ELEMENTS & ARITHMETIC CODING

This chapter intends to give a broader view of what syntax elements are and how

they are generated, focusing especially on the Residual SEs.

4.1 Video Coding Syntax Elements

One could define a Syntax Element (SE) as segments of information that were

gathered in the stages prior to the entropy stage e.g., Motion Vector, Quantization

parameters. (RAMOS et al., 2020). For instance, let us take a look at one of the HEVC

SEs, called “Skip Mode”, it is an SE responsible to inform if there was motion in a given

frame without any significant change in illumination (RAMACHANDRAN, 2018). Thus,

this information will be saved in the bitstream as a flag, so that when the decoder sees that

flag (i.e., an element that will encapsulate this information) he will be able to gather this

information and make the appropriate decision.

Essentially, SEs are a way to describe characteristics or chunks of information in

a summarized way, as they also serve as the input for the entropy stage. Exemplifying this

concept, why should one describes an 8×8 block of pixels by each one of them when all

of its values have the same green color? Instead, one could create an SE that will simply

say whether this block is entirely green or not. Therefore, it is far easier and compact to

try to describe the block in this fashion.

Figure 27 – Syntax elements of HEVC

Source: Adapted from Ramos et al. (2020).
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We will go through a more “practical” example by utilizing Figure 27 as reference.

By looking at the figure we can notice that the block to be “interpreted” is an HEVC

residual one that came after the quantization step. Below it, we see the SEs that will be

generated from this residual block, and below the SEs we see the final bitstream. Now let

us cover step by step of this process.

Being a residual block of transformed coefficients, it is already organized in a way

that the highest valued coefficients are always in the upper-left corner while the lower

or non-significant (i.e., zeroed) coefficients always stay at the bottom-right of the block.

Something important to notice is that, in HEVC we read the information of a transform

block in a zigzag fashion, starting from the bottom-right zero until the top-left seven.

Since SEs work as flags or elements capable of describing certain characteristics

of a block, we should investigate the meaning of each one of those SEs that are generated

within the block at Figure 28.

• last_sig_coeff_x and last_sig_coeff_y (LAST): Represents the position for the axis

x and y of the last significant coefficient in a given group of residues (-1 for our

example) (RAMOS et al., 2020).

• sig_coeff_flag (SIG): Determines whether a coefficient is significant or not (i.e., if

it is different from 0). If the coefficient is represented as 1, then its absolute value is

different from 0; if it is represented as 1* it is considered an inferred coefficient, and

therefore excluded from the bitstream. Otherwise it is considered a non-significant

coefficient and marked as 0. (RAMOS et al., 2020). It is important to note that this

SE only consider coefficients that begin at the zone marked by LAST.

• coeff_abs_level_greater1_flag (COEFF1): checks if the significant coefficients’

absolute values are greater than one, if it is, coeff1 marks it as 1, otherwise 0.

• coeff_abs_level_greater2_flag (COEFF2): for a single coefficient before the

LAST, whether it has an absolute value greater than two or not. (RAMOS et al.,

2020)

• coeff_abs_level_remaining (REM): all significant values undergo a decrement by

a base value, depending on whether or not the COEFF1 and the COEFF2 exist for

that same transformed residue. Therefore, the difference is, the REM (RAMOS

et al., 2020). For our particular case, if COEFF1 is marked as 1, then the value

is decremented by 2, and if COEFF2 is also marked as 1, then the value is again

decremented, but this time by 1.
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• coeff_sign_flag (SIGN): the signal (i.e., positive or negative) for each significant

coefficient before the LAST, 1 for negative and 0 to positive.

Finally, after the evaluation of all the coefficients, they are all organized in the

sequence as presented in the figure, and later on they will be sent to the entropy encoding

stage.

4.2 AV1 Residual Syntax Elements

Having in mind what SEs are, Residual Syntax Elements (RSE) are the ones

generated after the quantization step, within the residual block, as depicted in Figure

28 for the HEVC standard. According to (RAMOS et al., 2020), RSE can compose up

to 94% of total bins generations in HEVC, which is a substantial amount. Based on this

data, one can also estimate that RSE are potentially one of the major contributors for the

AV1 entropy encoding stage, which make them an essential subject of further study.

With that in mind, we should take a look at the RSEs of the AV1 standard. A lot

of what we have seem from previous sections will hold true for AV1, i.e., RSEs still come

after the quantization step, and still are the one of the major contributors to the input data

of the entropy stage (HAN et al., 2021). The AV1, differently from HEVC, starts the

codification process by transforming the 2D residual block into a 1D residual array and

decomposes the array into six main elements, then being:

• eob: This element marks the index of the last non-zero coefficient plus one in the

array (RIVAZ; HAUGHTON, 2018)

• dc_sign: it marks the signal (i.e., positive or negative) of the leftmost element in

the array of coefficients. If the coefficient is negative, dc_sign will be flagged as 1,

otherwise 0 (RIVAZ; HAUGHTON, 2018).

• sign_bit: This flag will come along each one of the significant transform

coefficients (i.e., not zeroed ones) and it is responsible for carrying the signal of

the coefficients, following the same pattern as dc_sign. It will be flagged as 1 if

the coefficient is negative, and 0 otherwise. sign_bit will not flag the signal of the

leftmost coefficient, since dc_sign would have already done that (HAN et al., 2021).

• base_range (BR): The symbol contains four possible outcomes {0,1,2,> 2},

which are the absolute values of the quantized transform coefficient, if the value

of the coefficient is greater than two, it will also need a low_range flag to save its
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value (HAN et al., 2021).

• low_range (LR): as we have seen in base_range, low_range will also contain four

possible outcomes {0,1,2,> 2} that correspond to the residual value over the

previous element upper limit. Furthermore, each time the element goes to > 2,

it will be decremented by three and will generate another low_range flag, repeating

this process up to four times, effectively covering a range of 3,14. If the coefficient

is bigger than 14, it will need a high_range element to save its total value Han et al.

(2021).

• high_range (HR): high_range is a symbol that appears if and only if the quantized

coefficient is in the range of [15, 215). it also corresponds to the residual value over

the previous element upper limit (HAN et al., 2021).

To develop a better understanding on the subject, we are going to walk through an

example, suchlike we did on the previous section for the HEVC residual block, the same

is going to be done here, but this time, for the AV1 residual block. First, let us consider

the 4×4 residual block depicted in Figure 28.

Figure 28 – Residual Block & Zigzag scan

Source: Adapted from Han et al. (2021).

The first step that we have to take is to transform this whole residual block into an

1D Array. The way that we are going to do it may vary depending on which transform

kernel was selected by AV1. For simplicity’s sake, let us consider that the kernel was a

DCT, because of that, a zigzag scan will be performed on the residual block, as showed

in Figure 28, the numbers on each one of the blocks are representatives of the sequence

that the block is being read scanned.

After the scan, a 1D array will be generated, where the generated array is displayed

at Figure 29. One may notice that the last non zero coefficient will be the number five,

at index 8, as we can see on Figure 29. Besides that, the coefficients will be processed

in a right-left fashion, starting from the last non-zero coefficient until the DC_Coefficient
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(i.e., 22) at index 0.

Figure 29 – Residual Matrix & Residual Array

Source: Author (2022).

After obtaining the 1D array, the next step is to properly encode each-one of the

elements into the bitstream that will be fed in to the entropy coding step. Figure 30

displays all the RSEs, along with the compressed bitstream at the end.

Figure 30 – RSEs & Compressed bitstream

Source: Author (2022).

Some worth noting points about Figure 30 will be brought to light:

1. eob is 9 because the index of the last non-zero coefficient is 8, add 1 to it, and you

will get the displayed result.
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2. base_range, low_range(1-4) and high_range consider only the absolute value of

the coefficient, leaving for the sign_bit or dc_sign to dictate its signal.

3. Only dc_sign, base_range and low_range(1-4) are context modeled. In

consequence, only those 3 are going to be suitable for an ML Approach to estimate

their probabilities.

4. sign_bit does not flag anything if the analyzed coefficient is 0.

4.3 Arithmetic coding

Arithmetic coding is a method for lossless data compression that represents

a string of symbols as a single fractional value within a given range. Unlike other

compression methods such as the previously discussed Huffman coding, which rely on

fixed-length codes for each symbol, arithmetic coding assigns a unique fractional value to

each symbol based on its probability of occurrence within the source data (SALOMON,

2004)

To properly define how it is possible to define a range for a symbol according to its

probabilities using arithmetic coding, we must understand the method’s characteristics.

Arithmetic coding starts by defining an initial interval of [0, 1], and as symbols are

encoded, the interval is gradually refined and subdivided based on the probabilities of

each symbol. Each symbol is encoded as a fraction of the current interval, and the range of

the interval represents the probability of the symbol. When encoding symbols, arithmetic

coding uses a cumulative probability distribution function to determine the subinterval

associated with each symbol. Specifically, the interval is split at the point corresponding

to the cumulative probability of the symbol, and the subinterval representing the symbol

is the one that contains the current interval. The main objective of this whole process is to

get an interval between two fractional numbers that could be expressed with fewer bits as

possible. The more that we subdivide each interval, more bits that are going to be required

to express a value between this fractional interval. This final value is what is going to be

effectively sent to the bitstream. (RAMACHANDRAN, 2018)

To properly define this process, we need to consider two equations:

Range j = Range j−1 ∗ p(s j) (2)

Where:
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• Range j is the range of the interval for the current symbol j

• Range j−1 is the range of the interval for the previous symbol j-1

• p(s j) is the probability of the current symbol j

Low j = Lower_bound +(Range j ∗CDF) (3)

Where:

• Low_j is the lower bound of the interval for the current symbol j

• Lower_bound is the lower bound of the interval for the current symbol

• Range_j is the range of the interval for the current symbol j

• CDF: is the cumulative frequency of all the symbols that came before the current

symbol

It is important to note that the range of the interval for a symbol is dependent on

the probability of the current symbol, as well as the range of the interval of the previous

symbol. As the probability of the current symbol is more probable, for instance, the range

of the interval is updated impacting in less fractional values, and fewer bits are required to

encode the decimal places into the final bitstream. However, it should be noted that there

is a minimum size required to encode a sequence without losing its information. The

goal of proper estimation of probabilities in arithmetic coding is to approach as closely as

possible the ideal entropy proposed by Shannon (1948).

In the context of video coding, it is not feasible to have the probability of each

symbol prior to the encoding of the whole sequence. To overcome this limitation,

context modeling is employed, which involves considering previously encoded symbols

and dynamically updating the probabilities. The initial probabilities are usually obtained

from a static table of probabilistic models chosen prior to the encoding of any symbol.

To conclude this section, Figure 31 will demonstrate an example of arithmetic

encoding with static probabilities. Consider that the following sequence will be encoded:

[0,1,0,0,0,0,1] and the probabilities of occurrence are 0.7 to the symbol ’0’, and 0.3 to

the symbol ’1’. The first step that we need to do is set an interval of [0,1]. After that,

we can start the process of encoding the sequence. The first symbol to be encoded is

a 0, with a probability of occurrence of 0.7, which means that we have to adjust our

upper to 0.7 and our new interval is [0,0.7]. The next symbol is a 1, this time the lower

boundary has to be adjusted, so the new value interval is set to [0.49,0.7]. After this,

the next one is a 0, which incurs in the upper boundary being changed again, and our
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new interval becomes [0.49,0.637]. The fourth symbol is also a 0, meaning that our

upper boundary will be updated again, after doing the calculations, our new interval is

[0.49,0.56203]. As the previous symbol, the sixth symbol is also a 0, and our new interval

becomes [0.49,0.54021]. Finally, the last encoded symbol is a 1, and we have to change

our lower boundary, then generating our final interval [0.5252947,054021]. To deviate the

Figure 31 – Arithmetic Coding - Example

Source: Ramachandran (2018).

fraction of this interval that is going to be sent to the bitstream we just need to pick any

number between the final interval, consider that the selected value was 0.54, converting it

to binary would result in 0.10001, we then send the value "10001" to the bitstream. With

this process we just managed to encode seven bits, by using five.

4.4 Related Works

This section will describe five recent works that tackle the video encoding

processing by using a Neural Network approach. The work of Ma et al. (2019) and

Song et al. (2017) make use of CNNs to estimate the probability of Syntax Elements

at respectively inter and intra-prediction modes for the HEVC standard. The work of Kim

et al. (2019) is related to the AV1 codec, and proposes a decision tree to decide whether

or not advanced interprediction modes should be tested. The work of Su et al. (2019)

develops a neural network to accelerate the transform size and kernel search stage for

AV1. Finally, the last work will be from Chen et al. (2020) and it covers an Artificial

Neural Network model used to replace the lookup table scheme that AV1 uses to estimate

the probability of SEs.
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4.4.1 Work of Ma et al

The work of Ma et al. (2019) covers a Convolutional Neural Network (CNN) to

help in the entropy stage of inter-prediction SEs for the HEVC standard. It is stated that

the manually designed binarization and context models are not flexible to estimate the

probability of the syntax elements. A CNN is used to estimate the probability of the SE,

and then the estimated probabilities of them are fed into the arithmetic coding step to

fulfill the entropy coding stage. The syntax elements covered in this work were: merge

flag, merge index, reference index, motion vector difference and motion vector prediction

index. The analysis was made under low-delay P (LDP) setting and tested for 16 different

video sequences that were classified in five different Quantization Parameter (QP) groups.

On average, this approach managed to obtain a 0.3% reduction in BD-rate for each color

channel.

4.4.2 Work of Song et al

The work (SONG et al., 2017) presents a CNN coupled with a multi-level

arithmetic codec to replace the CABAC from HEVC. The CNN replaces the handcrafted

context models to perform the probability estimation of intra-prediciton modes that serve

as input for the multi-level arithmetic codec. Figure 32 shows the aforementioned flow

of execution, where intra-prediction Most Probable Modes (MPMs) along with Recs

(reconstructed blocks made by prediction) are used as input for the CNN, then the SEs

along with the probability distribution are used as input for the developed codec. This

work find its importance in the manuscript by the fact that an ML approach was used in

the intra-prediction modes to properly estimate the probability of Syntax Elements for the

HEVC standard This approach managed to obtain gains to up to 9.9% bit rate savings

when comparing to the default arithmetic encoder of HEVC (i.e., CABAC).

4.4.3 Work of Kim et al

The work of (KIM et al., 2019) proposes a method based on decision trees

to selectively decide whether to test all advanced inter prediction modes (CRFPM) or

not. This approach came from the claim that advanced inter prediction modes can be
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Figure 32 – Scheme of the CNN-based arithmetic coding

Source: Song et al. (2017).

beneficial, but they are very costly in terms of computational resources, which end up

limiting the range of software applications that could make use of it. This approach

was tested on eight video sequences, where two of those were high resolution sequences

(1920×1080) and the other six were low resolution (640×360). The experimental results

of this work show that the encoding time can be reduced on average by 43.4%, with

negligible impact on coding efficiency. This huge gain is achieved because not all

sequences benefit from all CRFPM modes, and the decision that the tree performs is

whether to skip these modes or not.

4.4.4 Work of Su et al

The work of (SU et al., 2019) propose a ML-based approach to accelerate the

transform size and kernel search stage for the AV1 standard. The ML models use

input features extracted from the prediction residue block such as standard deviation,

correlation, and energy distribution. The output of the model indicates the estimated

likelihood of which transform size and kernel would be selected as the optimal choice.

Based on the ML models, the encoder can prune out the transform size and kernel

candidates that are unlikely to be selected and save unnecessary computation to process

their rate-distortion cost. the approach was tested on 110 video sequences, of which 40 of

those were low resolution CIF (288p), 30 corresponded to a medium resolution (480p) and

finally, the remaining 40 sequences are high resolution, ranging from (720p) to (1080p).

The experimental results of this paper show that the encoding time was reduced by up to

38.2% at low resolution sequences, with a negligible loss in quality (0.13%).
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4.4.5 Work of Chen et al

This paper proposes an ML based scheme that will perform a more accurate

symbol probability prediction than the context modeling stage in the AV1 standard. This

approach is implemented in the entropy coding stage for intra prediction modes only. The

proposed ML model was a FFNN with a single hidden layer with sixteen neurons, and

a ReLU function, whereas the output layer is composed of one neuron with a softmax

activation function. The inputs of this neural network are context features, from the

context modeling stage.

The choice of using an FFNN architecture instead of a CNN is justified by the

fact that FFNN are much simpler than CNN’s, and since the developed model will be

competing with a simple lookup table, it is vital that the developed model is as quick as

possible in its tasks. One may notice that the lookup table on AV1 is adaptive and updated

based on the coded symbol value in each coding/decoding operation. Hence, to maintain

this constant update on the developed model, after each symbol, the weights of the model

are updated by the following formula 4:

W =W −µ∆W Lce(G(x;W ),y) (4)

where W are the weights of the developed model, G is the model itself, µ is the update rate

on which the weights are updated, x are the input entropy context features, y is the coded

symbol, and finally, Lce denotes the cross-entropy function, which is a function used to

calculate the losses (i.e., how far the model was from the correct answer). Essentially, this

formula is mimicking the updates on the lookup table of AV1 by enabling the model to

update its weights after each symbol processing. Figure 33 depicts the proposed workflow.

Figure 33 – Proposed coding pipeline

Source: Chen et al. (2020)
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The proposed model was tested on three different resolution groups, a low

resolution group, composed of 40 video sequences with a 352×288 (288P) resolution,

a medium resolution group, covering about 30 video sequences with a resolution of

852×480 (480P) and finally, a high resolution group, composed of about 40 sequences

with resolutions ranging from 1280×720 (720P) to 1920×1080 (1080P). Since this work

focused on intra prediction modes, all the video sequences were encoded with the option

of “intra-only” that the software of reference disposes.

Table 3 – PSNR BD-rate gains compared to the AV1 baseline

Source: Chen et al. (2020)

The results were compared with the base solution and were gathered on two

different conditions, the first one is a case where the weights of the model are static,

and the other case, a scenario in which the weights are updated after each encoded

symbol. The aforementioned comparison was made at two different color samplings

(4:0:0(luma-only) and 4:2:2). Table 3 display the results obtained for this approach It

is important to note that these results are obtained over the whole coding process, and not

just the entropy stage. If we made a comparison with only the entropy stage, one would

get around 7% gains over the standard lookup table approach. This work act as a solid

foundation for this manuscript, since the proposed approach will be quite similar to the

one that this paper proposes.

Table 4 – Summary of Correlated Works

Work Architecture based Focus Codec Year Gain
Ma et al CNN Inter-SE HEVC 2019 Compression

Song et al CNN Intra-SE HEVC 2017 Compression
Kim et al Decision Tree Prediction AV1 2019 Time
Su et al FFNN Transform AV1 2019 Time

Chen et al FFNN Intra-SE AV1 2020 Compression

Source: Author (2022).
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5 DEVELOPMENT OF THE ANN MODEL

This chapter aims to provide an overview of the stages of development of

the proposed ANN model that was developed to estimate the probability of the AV1

Residual Syntax elements. Specifically, will be discussed the development of the dataset,

the selection of the optimizer, the choice of the loss function, the determination of

an appropriate size for the neural network, and an evaluation of the final model’s

performance.

5.1 Initial Concepts

Before delving into the development of the dataset, it is important to consider

what specific information of the AV1 codec is going to be examined. As the objective

of this manuscript is to create a Neural Network to estimate the probabilities of an RSE

in the AV1 codec, it is crucial to first understand certain properties of these probabilities.

For instance, for an RSE to be properly estimated it has to be context modeled, a context

modeled RSE is an element in which the probabilities of its neighbors directly affect

their own probabilities, and their own probabilities are dynamically altered throughout

the encoding process, to illustrate this concept Figure 34 presents the idea. In the

Figure 34 – Context modeling

Source: Adapted from (RAMACHANDRAN, 2018).

Figure, the red block that is going to be encoded will be context modeled by both of its

neighbors (block 1 and 2). It is important to note that the entropy coding can only use the

probabilities of blocks that were already encoded, and since the encoding of each block

always happens in a left-right top-down fashion, the only blocks that could be considered
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as “valid” were 1 and 2 (RAMACHANDRAN, 2018).

Another important aspect to consider is the manner in which the probabilities of

each element are stored and interpreted. In the case of the AV1 codec, the probabilities are

stored as CDFs, which are integers that can range from [0 to 215]. To further illustrate this

concept, consider the following scenario: a DC_Sign element is being encoded. Due to

the nature of this RSE it can only assume a symbol of 1 or 0. If the CDF of this element is,

for example, 20157, the chance of it being a 1 is calculated as 32768 minus 20157, which

is 12611. This can be interpreted as a 38% chance of the element being a 1. Because

of this, we can assume that the chance of the element being a 0 is 62%. The idea of the

probability being stored in a CDF is that multiple probabilities can be stored in a single

integer, rather than assigning the probability of each symbol to a different variable.

Before proceeding with the development of the dataset, it is important to

understand one final property of the CDFs in the software of reference. The CDFs

in the AV1 codec have static probabilities that are chosen prior to the encoding of the

first block of every frame. The AV1 codec has a Look-up table where it selects a set

of pre-determined probabilities that are used during the encoding process, where these

probabilities were chosen based on the analysis of the video sequence and the spatial and

temporal correlation of the pixels, while encoding each block, these static CDFs are then

dynamically altered as the blocks are encoded. This look-up table is a [2][3][3] matrix in

which the X axis represents the type of plane being encoded (i.e., Luma or Chroma) and

the Y axis represents each CDF according to its context prior to the encoding of the actual

block, last but not least, the Z Axis stores the actual CDF along with some informations

that are not relevant for this work. Figure 35 shows an example of this table.

Figure 35 – DC_Sign Probabilities - Look-up table

Source: Author (2023).

After considering all of the aforementioned topics, it was necessary to select an

appropriate RSE to build a Neural Network to estimate its probability. For this work, the
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selected RSE was the DC_Sign. The reason for choosing it over the others is mainly due

to its simplicity and the fact that it was the RSE that was constantly being researched

during the development of this manuscript. The DC_Sign element saves the signal of

the DC_Coefficient (typically the highest coefficient that is located at the top-left of the

transform table). It is modeled by context because the probabilities of previously encoded

DC_Signs directly affect the current on (i.e., choosing which one of the lines of the Figure

35 should be selected).

5.2 Dataset development

After selecting an RSE, the next step was to construct the dataset. To do this, it was

necessary to determine which type of information would be useful to include as features

in the dataset. With this in mind, seven variables were chosen to be used as features. The

seven variables will be briefly described below.

• plane_type: Plane type indicates if the block that is being encoded is from a Luma

or Chroma plane, 0 if it is Chroma and 1 for luma

• dc_sign_ctx: This variable is responsible for telling the context of the dc_sign

element (i.e., choosing which one of the three lines it should choose based on the

information of its neighbors)

• initial_cdf: As the name indicates, initial_cdf is the CDF that is conceived in the

look-up table prior to the probability estimation that is done by AV1

• symbol: Symbol of the DC_sign that is being encoded, could be 0 or 1. 0 if the

signal that he’s encoding is positive, and 1 for negative

• nsymbols: Number of symbols that the DC_Sign element can have.

• rate: represents the rate at which the CDF of the symbol is updated.

• new_cdf: represents the updated probability of the DC_Sign Syntax element after

the adjustment made by AV1.

New_cdf is what is going to be used as a target for the training of the Neural

Network Model, since this is actually the probability that the model is trying to estimate.

All of these features were gathered in the encodetxb.c and bitwriter.h files that are within

the source code of the AV1.

Considering these informations, the next step was to choose the video sequences
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that would be used to build the dataset, the selected video sequences were taken from the

work of Daede, Norkin e Brailovskiy (2019) 1, a collection of videos that are commonly

used in video-related researches. The video sequences are shown in Table 5, All of the

video sequences were encoded using the AV1 software of reference Libaom 2.

Table 5 – Video sequences

Name Resolution FPS Number of acquired samples
Netflix_FoodMarket 1920x1080 60 9262

Netflix_Boat_ 1920x1080 60 20933
DOTA2_ 1290x1080 60 23679

MINECRAFT_ 1290x1080 60 7206
Netflix_DrivingPOV 1280x720 120 20420
boat_hdr_amazon 1280x720 120 5171

Source: Author (2023).

All of the video sequences were encoded with a CQ level of 55, all of them had 8

bit-depth and a sub-sampling of 4:2:0. After merging all the sequences in one dataset, a

dataset composed of 86671 entries was created, Figure 36 shows 10 entries of the dataset,

aswell as its actual size at the end of the figure.

Figure 36 – Initial dataset

Source: Author (2023).

With the dataset at hand, the next step was to divide it into a training set and a

testing set. The dataset was divided in a proportion of 80/20, resulting in a training set

1https://datatracker.ietf.org/doc/html/draft-ietf-netvc-testing-07autoid-22
2https://aomedia.googlesource.com/aom/
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of 69336 samples and a testing set of 17335 samples. Figure 37 illustrates both of the

datasets.

Figure 37 – Training & Testing dataset

Source: Author (2023).

The division of the dataset into a training and testing set is crucial for the model’s

performance. The training set is used to specifically train the model, while the testing set

is used to validate the model’s accuracy. If the model were tested with the same dataset

that was used to train it, it wouldn’t be able to properly evaluate it. This is because the

model would already know the answers, and it would not be able to perform well on new

data that it had never seen before. This division is a crucial step in the model development

process as it helps to ensure that the model has good generalization capabilities and is not

overfitting the training data. With this in mind, the division of the dataset was performed

according to Figure 38.

Figure 38 – Split into train/test set

Source: Author (2023).

This action ensures that, even though the same video sequences are used, different

parts of them are used to evaluate the model. Additionally, for the training phase, the

dataset is organized in a way that parts of video 1 are "mixed" with parts of video 2. This

mix in the order also helps with the model’s generalization and evaluation.
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5.3 Metrics

To effectively evaluate the generated models, it is necessary to establish three

different metrics for measuring their performance when compared to one another. Since

the objective is to predict an integer value (i.e., CDF), it is necessary to establish metrics

that could evaluate a linear regression model. The first established metric was called

“Precision”. The main objective of this metric is to determinate models that may not be

exceptionally good at predicting the precise values, but instead are more precise to outlier

values. This characteristic is achieved by considering the prediction to be correct if it falls

within a 100-unit range of the actual value, for example, if the predicted value was 17394

and the actual value was 17494 it would count as a hit, it would also count as a hit if the

predicted value was 17594. Equation 5 describes this process.

Precision(%) =
∑

n
i=1[|pi −ai| ≤ 100]

n
(5)

Where:

• pi is the prediction for the ith instance.

• ai is the actual value for the ith instance.

• n is the total number of instances.

• [· · ·] represents an indicator function that returns 1 if the condition inside the

brackets is true and 0 otherwise.

The chosen value of 100 was deemed acceptable as a margin of error due to the

fact that a difference of 100 only results in a deviation of 0.3% in the actual probability,

which is considered a neglible difference in terms of losses.

The next metric that will be used is the previously mentioned Mean Absolute

Error (MAE). This metric is useful in determining the accuracy of the model. It works

by calculating the average absolute difference between the predicted values and the actual

values. This provides a measure of how close the predictions are to the true values. The

lower this metric is, the more precise the model is at predicting the exact value that was

supposed to be predicted. Equation 6 highlight the aforementioned process.

LMAE =
1
n

n

∑
i=1

|yi − ŷi| (6)

Where:
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• LMAE is the MAE loss

• n is the number of samples

• yi is the true value for sample i

• ŷi is the predicted value for sample i

Finally, the last metric that needs to be introduced is called "Computational Cost."

Since the models have a "static" architecture, it is possible to estimate how costly (in terms

of computational resources) each model is by assigning a weight to the multiplications

and sums utilized by the model. For example, we could assign a cost of 3 to each

multiplication that needs to be performed by the model for a prediction, while sums or

subtractions could be assigned a cost of 1. With this in mind, we can consider the final

architecture of the model and have a rough estimate of its computational resources usage.

The formula for this metric is listed below in equation 7

CC = (WM ∗ NM)+(WS ∗ NSS) (7)

Where WM stands for the weight that is going to be given to multiplications and

WS stands for the weight to sums and subtractions, NM and NSS are the number of

multiplications, sums and subtractions that happen in the model for a single prediction,

and CC is the Computational cost. The number of multiplications is obtained by

equation 8

NM =
nl−1

∑
i=0

(NNLi ∗ NNLi+1) (8)

Where NM stands for the Number of Multiplications, NNL stands for Number

of Neurons at Layer and nl stands for the number of layers that the model has. Finally,

if we assume that each layer has a ReLU activation function, and the final layer is a

single neuron with a linear activation function, we could obtain the number of sums and

subtractions, by following equation 9

NSS =
nl−1

∑
i=1

((NNLi ∗2) + ((NNLi−1 −1)∗NNLi))+(NNnl−1) (9)

Where NNL, stands for Number of Neurons at layer, nl corresponds to the total number of

layers that the model has. To further explain the equation, to calculate the total number of

sums in a general model, we begin by considering all of the layers, with the exception of

the last layer. The last layer is not included in the calculation because it is an output layer
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without a ReLU activation function and is typically composed of a single neuron. We

start the equation by counting the number of neurons in the current layer, and multiplying

it by 2 (NNLi x 2), as each layer, with the exception of the input and output layers, have

a ReLU activation function. After that, we need to calculate the number of sums that

each neuron in the current layer has to perform to compute the weights attached to it.

This is expressed by the term ((NNLi − 1) ∗NNLi) of the equation part of the equation.

This idea is illustrated in Figure 21, essentially, we are extending the number of sums

shown in Figure 21 to all of the neurons in the current layer. Finally, the term (NNnl−1) is

responsible for adding-up the number of sums that the output layer must perform, which

is the number of neurons in its preceding layer.

All the assumptions that were done to establish the formulas happened because

the general architecture of the proposed models will follow these patterns (i.e., will have

the same activation functions and will always have a single neuron as an output layer).

It is also important to note that equation 7 does not provide a precise estimation

of the model cost, to properly estimate its computational cost we would need to consider

several factors such as the hardware on which it is being executed (e.g., CPU, GPU,

FPGA or ASIC), the input that is going to be used, and each assigned weight to all of

the connections of the model and biases. Rather than that, this formula gives a rough

estimation based only on the model architecture (i.e., number of neurons, number of layers

and the activation function of each layer)

It will be important to have the computational cost metric to be able to visualize the

tradeoffs between the usage of computational resources and the efficiency of the model,

with this information it will be possible to choose a model that is both efficient in terms

of computational resources and performs on an acceptable level.

With the MAE and "Precision" metrics in mind and after running several tests, it

will be possible to deviate a model that will achieve a better result according to the MAE

metric and another model that will perform better according to the "precision" metric, so

later in this chapter it will be possible to compare both of them and talk about which one

of them would be more appropriate to be used as a possible substitute for the previously

described look-up table that the AV1 uses.

As a final note from this section, it is important to consider that these metrics

are not used as loss functions or as factors that impact the training of the model (the

loss functions that were used to train each model will be discussed at their own section).

Instead, these metrics are used to properly visualize the performance and efficiency of the
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developed models.

5.4 Libraries, choosen language and IDE

This section will briefly cover the language choice, along with the used libraries,

as well as the IDE that was used to build the Artificial Neural Network models.

The programming language used to develop the models was Python. Python is

commonly chosen for machine learning-related projects, and this work was no exception.

The preference for Python over other languages was due to its libraries that make many

tasks required in a machine learning project, such as organizing a dataset, training a

model, evaluating a model and many other tasks, much easier.

About the libraries, pandas, numpy, matplotlib, seaborn, sklearn, and Tensorflow

were used for the development of this work. All of them will be briefly covered below:

• Pandas: Pandas is a library that is used for data manipulation and some tasks

related to the "well-being" of the dataset, such as checking if there’s any Null value,

reorganizing the dataset according to a filter and so on.

• Matplotlib: is a plotting library for Python. It provides an object-oriented API

for embedding plots into applications using general-purpose GUI toolkits like

Tkinter, wxPython, Qt, or GTK. Since Seaborn is built upon matplotlib, sometimes

matplotlib is necessary for some adjustments, like for example the size of the graph.

• Seaborn: Essentially, is a plotting library for Python. This library was used to plot

most of the graphs that will be seen in the following sections

• Sklearn & TensorFlow: Sklearn (with the Keras API), along with TensorFlow, were

the libraries that provided all the tools that were necessary to develop the models,

such as functions to evaluate the model, train the model, divide the dataset into

training and testing and so on.

The IDE used for the development of the Neural Network models was Google

Colab basic, a cloud-based notebook environment that provides a web-based interface

for creating and running code. it is commonly used for ML tasks due to its ease of use,

since it technically can be used at any place, as long as you have an equipment capable of

navigating through the Internet.

The IDE that was used for gathering the data to build the dataset was CLion, an

IDE for C, that was used to debug the Libaom software and build logs throughout its
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execution.

5.5 Choosing a proper optimizer

One way to select an appropriate optimizer for a neural network model is to

evaluate different optimizers on models with similar architectures, such as the same

number of layers, neurons, activation functions, batch size, and number of training

epochs. By comparing the efficiency of each optimizer under similar conditions, it is

possible to determine which one is most suitable for the specific task and the model

architecture. This approach can help to improve the generalization efficiency of the

model, as an appropriate optimizer can help to minimize overfitting and improve the

model’s ability to generalize to new data

All of the optimizers provided by the Keras API were evaluated under the same

model architecture and conditions to determine which performed the best. Each optimizer

was trained for a total of 100 epochs, using a batch size of 32. Which is a commonly used

batch size in deep learning, as it helps to control the memory usage during training. The

100 epochs were chosen as a default value, as it provides a sufficient number of iterations

for the model to learn and generalize well, while also avoiding overfitting, another reason

for choosing 100 epochs lies itself in the training time of each models.

Figure 39 – Model Architecture

Source: Author (2023).

The model architecture, shown in Figure 39, consisted of the first three layers

(128-64-32) utilizing a ReLU activation function, while the last layer employed a linear

activation function, resulting in the output being the raw value (i.e., the CDF itself). The

loss function that was used to train the model was the Mean-Squared Error (MSE).

After training the models and properly evaluating each one, we were able to

produce the barplot shown in Figure 40.

As depicted in the image, the optimizers Adadelta, Adagrad, FTRL, and RMSprop
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Figure 40 – Optimizers - Precision

Source: Author (2023).

were not suitable for this task, as their precision remained close to 0. On the other hand,

Adam, Nadam, and Adamax proved to be excellent optimizers for our task, as most of

them achieved a precision above 95%. This outcome was expected, as Adadelta, Adagrad,

FTRL, and RMSprop are older optimizers in comparison to Adam, Nadam, and Adamax.

Additionally, Adam, Nadam, and Adamax have built upon these older optimizers and

have added new features while correcting their failures.

Figure 41 shows a barplot that compares the MAE of each model. With this graph,

we can infer that the mean absolute error (MAE) of the FTRL, RMSprop, Adagrad and

Adadelta algorithms were exceptionally high, which justifies the poor efficiency seen in

Figure 40. Additionally, it is also apparent that Nadam and Adamax were more accurate

Figure 41 – Optimizers - MAE

Source: Author (2023).
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than Adam by a significant margin. Furthermore, this suggests that the Nadam and

Adamax optimization algorithms may be more suitable for the objective of this work

(i.e., estimating the CDF).

Figure 42 illustrates the duration required to train each model. As the architecture

was consistent across all models, it was anticipated that the time to train each model

would not vary significantly. However, the results indicate that there were variations in the

training time, with some models taking longer than others. Additionally, it is noteworthy

Figure 42 – Optimizers - Training times

Source: Author (2023).

that although the Adagrad optimizer did not perform well in terms of accuracy, it was the

fastest to train. This characteristic could be beneficial in situations where time is a crucial

factor, such as real-time applications or large-scale datasets, where the ability to train the

model quickly may outweigh the need for a high efficiency. Furthermore, this information

could also be utilized to evaluate other optimization techniques and compare their time

and efficiency tradeoffs

At last, Table 6 shows the values for each of the previously presented graphs in a

summarized way. The first column are the optimizers that were being tested, the precision

is the metric that was discussed in the metrics sections, the Test MAE is the MAE that

was obtained by evaluating the model with the model.evaluate() function from the Keras

API, and finally, the Time column refers to the amount of time that was necessary to

train the model. By examining the precision column, we can see that the difference in

precision between each model is substantial, with the closest values being seen in the

Nadam, Adamax and Adam models. Similarly, when looking at the MAE metric, we can

observe the significant difference between each optimizer. One noteworthy observation
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Table 6 – Optimizers - Summary

Model_ID Optimizer Precision(%) Test MAE Time(s)
1 Adam 95.90% 84 502.7 (8m22s)
2 Adadelta 1.10% 259 520.1 (8m40s)
3 Adagrad 0.69% 267 404.4 (6m44s)
4 Nadam 95.62% 33.2 563.3 (9m23s)
5 Adamax 95.45% 40.6 442.7 (7m22s)
6 FTRL 0.65% 266 505.1 (8m25s)
7 RMSprop 0.84% 340 432.6 (7m12s)

Source: Author (2023).

from Table 6 is that the optimizers with the highest precision values, Adam, Nadam,

and Adamax, also have the lowest MAE values. This suggests that these optimizers not

only provide accurate predictions, but also have a lower error margin. Additionally, it is

interesting to note that the optimizers with the lowest precision values, Adadelta, Adagrad,

FTRL, and RMSprop, also have the highest MAE values, which make sense since the

prediction metric is also affected by the MAE and not only the outlier values.

The computational cost (CC) metric was not considered in this section because it

only evaluates the computational cost that is tied to the final model (i.e., the model that is

acquired after the training stage), and since the model architecture was the same for each

one of the optimizers (i.e, the hidden layers were the same, the number of neurons were

the same and only the optimizers were changing), the CC would end up being a constant.

5.6 Choosing a proper Loss function

As was done in the previous section, it is crucial to determine the most appropriate

Loss Function by testing a variety of regression losses while maintaining the same

architecture, batch size, number of epochs, and optimizer. Choosing the right loss

function can greatly impact the performance and efficiency of the model, as it determines

the way in which the model is trained and how it will generalize to new data. The loss

function is used to measure the difference between the predicted values and the actual

values, and by selecting a loss function that is well-suited to the task at hand, the model

can be trained more efficiently and effectively. Essentially, we could see the Loss function

as a way to measure how wrong the model when compared to the correct answer. The

loss functions were provided by the Keras API, All of the loss functions will be executed
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for 100 epochs using the ADAM optimizer. The general architecture will consist of

128-64-32-1 layers, with the first three layers using a ReLU activation function and the

last layer utilizing a linear activation function, resulting in the output being the raw value

(i.e., the CDF itself), the reasoning behind the number of epochs and batch_size were the

same as they were in the previous seciton. Figure 39 depicts this architecture.

After training the models, we were able to gather data and generate several graphs

to further analyze the results. Figure 43 illustrates the efficiency of each model in terms

of the Precision metric. Unlike some of the optimizers discussed in the previous section,

Figure 43 – Loss Functions - Precision

Source: Author (2023).

most of the loss functions performed quite well. The worst performing loss function was

the Huber Loss Function, which could be attributed to its lack of sensitivity to outliers as

well as its lack of robustness when compared to other loss functions.

Additionally, as seem at the theoretical reference chapter, the Huber loss function

can also be less sensitive to small errors, meaning that it would not be properly helping

the training step. However, most of the loss functions achieved an average of 94%, which

still an excellent result.

The next graph, shown in Figure 44, illustrates the performance of various loss

functions when compared to the Mean Absolute Error (MAE) metric. The results indicate

that the Huber loss function and the LogCosh function performed poorly in comparison

to the other options. It is worth noting that, although the LogCosh function had a poor

performance, it still performed well in terms of the precision metric, this is because its

MAE was below 100, and since the margin of acceptable error of the precision metric is

100, this resulted in the LogCosh performing pretty well at the precision metric, despite

its high MAE when compared to the other loss functions. Unsurprisingly, the MAE loss

function was the best-performing option for optimizing the MAE metric, however, it was
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Figure 44 – Loss Functions - MAE

Source: Author (2023).

not significantly ahead of the other metrics.

The last relevant graph to demonstrate was the time required to train each of the

models, as shown in Figure 45. As noted with the optimizers, the loss functions did not

Figure 45 – Loss Functions - Training times

Source: Author (2023).

have a significant impact on the training time of the models, which is expected, as the loss

functions only iterate on the output of the model. Although the MAE loss function had

the best performance in terms of the MAE metric, it also had the greatest impact on the

training time of its respective model. However, as previously mentioned, the effect was

not substantial enough to justify not choosing it over other metrics.

Finally, Table 7 summarizes the information from the graphs in a more condensed

manner. The first column lists the Loss Functions used, the second column (Precision)

is the metric discussed in the Metrics section, the Test MAE column shows the MAE

obtained after evaluating the model using the Keras API’s model.evaluate() function, and

the Time column indicates the amount of time required to train the model. By comparing

this table to the previous one, it can be observed that most of the values are less volatile,

indicating that most of the Loss Functions are suitable for our task, with the exception of
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the Huber Loss Function. When examining the Precision metric, most of them average

at 95%, which is an excellent result. Additionally, analyzing the Test MAE column, it

can be noted that most of the results are similar, with the exception of the LogCosH loss

function and Huber. The best performing Loss Functions are MAE and MSE, which is a

plausible result, as they are designed to approximate the output values of linear models to

the closest possible to the expected values.

Table 7 – Loss Functions - Summary

Model_ID Loss Function Precision(%) Test MAE Time(s)
8 MAE 95.67% 32.6 682.9 (11m22s)
9 MSE 95.90% 41.0 623 (10m23s)

10 MAPE 94.48% 51.9 546.7 (9m06s)
11 MSLE 95.62% 48.4 508.8 (8m28s)
12 Huber 78.80% 105 562.9 (9m22s)
13 LogCosH 95.37% 81.3 573.4 (9m23s)

Source: Author (2023).

In summary, the MAE Loss Function performed best when considering the MAE

metric, and the MSE Loss Function performed best when considering the Precision

metric. In terms of training time, all models averaged at 550 seconds, with LogCosH

being the fastest and MAE the slowest, with a difference of only 180 seconds (3 minutes)

between the two

As in the last section, the Computational Cost (CC) metric was not included

because the architectures of the models had to stay the same so that we could properly

evaluate the impact of each loss function.

5.7 Choosing a proper architecture for the Neural Network Model

Finally, when building a model, it is essential to test different architectures to

find the most efficient one in terms of Precision, MAE, and computational cost. Finding

an appropriate architecture is crucial to achieve a model that is as small and efficient

as possible. With the results of this section, we will be able to assess the impact of

the model’s architecture on its performance, and devise an architecture that would be

considered optimal for our task. As in the previous section, all models were trained for

100 epochs using the ADAM optimizer and the MSE Loss Function, with all hidden layers

using ReLU activation and the output layer using a linear activation to provide the raw
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value of the model. the reasoning behind the number of epochs and batch_size were the

same as they were in the previous sections. Ten additional architectures were tested under

these configurations, as follows:

• Model_ID 14 (16-1): 16 neurons in the first layer, 1 at the output layer

• Model_ID 15 (8-8-1): 8 neurons in the first layer, 8 in the second layer, 1 at the

output layer

• Model_ID 16 (16-8-1): 16 neurons at the first layer, 8 in the second layer, 1 at the

output layer

• Model_ID 17 (32-16-1): 32 neurons at the first layer, 16 in the second layer, 1 at

the output layer

• Model_ID 18 (64-32-16-1): 64 neurons at the first layer, 32 at the second layer, 16

at the third layer, 1 at the output layer

• Model_ID 19 (128-64-32-16-1): 128 neurons at the first layer, 64 at the second

layer, 32 at the third layer, 16 at the fourth layer, 1 at the output layer

• Model_ID 20 (256-128-64-32-16-1): 256 neurons at the first layer, 128 at the

second layer, 64 at the third layer, 32 at the fourth layer, 16 at the fifth layer, 1

at the output layer

• Model_ID 21 (512-256-128-64-32-16-1): 512 neurons at the first layer, 256 at the

second layer, 128 at the third layer, 64 at the fourth layer, 32 at the fifth layer, 16 at

the sixth layer, 1 at the output layer

• Model_ID 22 (1024-512-256-128-64-32-16-1): 1024 neurons at the first layer, 512

at the second layer, 256 at the third layer, 128 at the fourth layer, 64 at the fifth

layer, 32 at the sixth layer, 16 at the seventh layer, 1 at the output layer

• Model_ID 23 (512-1024-1024-1024-512-256-128-64-1): 512 neurons at the first

layer, 1024 at the second layer, 1024 at the third layer, 1024 at the fourth layer, 512

at the fifth layer, 256 at the sixth layer, 128 at the seventh layer, 64 at the eighth

layer, 1 at the output layer

Each one of the models will be called by its number, for example, model (16-1) will just

be referred to as “Model 14” for the sake of simplicity. Since these models have a diverse

range of sizes, it will be possible to evaluate how this characteristic impact on each one of

the metrics, it is important to have a wide-range of architectures to properly select a good

architecture. While these models can’t represent every possible architecture within their

range, they give a good estimate to a wide variety of models.
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As did on previous sections, the first graph that will be analyzed is the precision

for each one of the architectures, this graph can be seemed at Figure 46, from this

figure it is possible to see that most of the models averaged a good precision, with the

exception of Model 16 and 22, that ended up below the average, possibly caused by a bad

generalization on the training step, which is unusual but can happen sometimes.

Figure 46 – Architectures - Precision

Source: Author (2023).

The next metric that is going to be analyzed is the MAE metric, the generated

graph for this task can be seemed at Figure 47, by looking at the graph it is noticeable that

most of the models averaged on a good metric, with the exception of 16 and 22, possibly

because of the same previously mentioned reason.

Figure 47 – Architectures - MAE

Source: Author (2023).

The next graph that is going to be discussed is seemed at Figure 48, this graph

shows the different time to train each one of the models. Differently from previous

sections, the training time of each architecture changed a lot, this behavior was expected

since the size of each architecture was increasing for each model, increasing the model we

have more weights, more biases, more activation functions, and it usually takes a longer

time to compute even after trained

The final metric that needs to be considered in this section is the computational

cost. To properly calculate the computational cost of each model, we first needed
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Figure 48 – Architectures - Training times

Source: Author (2023).

to define the weight (or time required) for sums and multiplications. For this work,

the computational cost of each model was calculated assuming a weight of three for

multiplications and a weight of one for sums/subtractions. This can be thought of as

each multiplication taking an average of three nanoseconds to complete, while a sum or

subtraction would take one nanosecond. The number of multiplications and sums for each

one of the models are displayed in Table 8.

Table 8 – Architectures - Multiplications & Sums

Model_ID Number of multiplications Number of sums+subtractions Number of Neurons
14 128 144 17
15 128 144 17
16 248 272 25
17 752 832 49
18 3024 3136 113
19 11664 11904 241
20 45328 45824 497
21 178192 179200 1009
22 706064 708096 2033
23 3321408 2977792 4545

Source: Author (2023).

With the number of multiplications and sums for each model at hand, the next

step is to multiply each one of them by their respective weights. With the results, it

is possible to construct a graph to demonstrate the computational cost of each model

and evaluate how much cost each architecture incurs. After performing each one of the

multiplications, we obtain the graph in Figure 49. By examining the scale of the graph on

the Y-axis (107), it is possible to see the magnitude of the difference between one model

and another in terms of computational cost.

By looking at Table 8 again and comparing Model 19 to Model 18, which have a

difference of 128 neurons each, it is striking the difference we will be able to see in the
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Figure 49 – Architectures - Computational cost

Source: Author (2023).

number of sums and multiplications. We could do the same exercise for Models 20 and

19, with a difference of 256 neurons, but with the amount of sums and subtractions being

almost three times that of its predecessor. This shows that the computational cost tends to

get worse as more neurons are added to the architecture.

To properly see all of the characteristics of the graph at Figure 49 it was necessary

to divide him in 4 quantiles, that are shown in Figure 50.

Figure 50 – Architectures - Computational Cost - Quantiles

Source: Author (2023).

By looking at the first quantile we can see that the difference between the initial

models are actually quite small, which makes sense if we considered that the early models

have small differences in the number of neurons, but as the number of neurons increase

we start to see the curve assume a more vertical shape, possibly because of the increase of

the number of neurons between each model. By looking at the second quantile we see the

same result of the previous one but for the Models 18,19,20 and 21, at the third quantile we
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only see Models 21 and 22, and finally at the fourth quantile we are finally able to see the

Model 23. Although not proved, it is possible that the number of neurons have some kind

of relation with the number of multiplications and sums, Table 9, shows the proportion

between the number of multiplications and sums of each models, as well as the difference

in the number of neurons from one model to another. By analyzing the proportion of

multiplications and sums it is possible to notice, that the proportion is maintained as long

as the difference between each model are constantly doubled. However, we still have to

consider that the architecture of the models may be the cause of this constant proportion.

Table 9 – Architectures - Proportions

Model_ID Proportion of multiplications Proportion of sums Difference
14 - - -
15 1 1 0
16 1.93 1.88 8
17 3.03 3.05 24
18 4.02 3.76 64
19 3.85 3.88 128
20 3.88 3.84 256
21 3.93 3.91 512
22 3.96 3.95 1024
23 4.70 4.20 2512

Source: Author (2023).

Finally, Figure 51 presents a summary of all of the data that was used to develop

the previously shown graphs.

Figure 51 – Architectures - Summary

Source: Author (2023).

The first column describes the Model_ID, which, as the name indicates, is the ID



88

of the model, basically a name that is given to him to differentiate him over the others. The

Architecture column, describes the architecture of each one of the models, by separating

each layer with a semi-column. The precision column describes the precision that was

achieved by each one of the trained models. The "Test MAE" column shows the results

that were obtained after using the model.evaluate() function from the Keras API. The

"time to train" column, as suggested by the name, is the required time to train each one of

the models and finally the "Computational Cost" column is the CC obtained to each one

of the models by using the previously defined equations at the metrics section.

Upon examination of Table 8, it is clear that there is a significant difference in

the number of sums and multiplications between Model 19 and Model 18, which differ

by 128 neurons. Similarly, when comparing Model 20 and Model 19, which differ by

256 neurons, it is evident that the number of sums and multiplications increases nearly

threefold. This demonstrates that the computational cost escalates as the number of

neurons in the architecture increases.

By analyzing the results at Figure 51 it is possible to notice that the best

architecture in terms of Precision and MAE was the Model 18, with 64 neurons at the

first layer, 32 at the second, 16 at the third and one neuron at the output layer.

5.8 Final Results

To conclude the development of this work, considering the previous sections’

results, a total of 23 models were trained until now. By reutilizing the results of these 23

models we have built three new models that have the potential to perform better in their

respective metric. These models will be compared in order to evaluate their tradeoffs. It

is important to note that while we are selecting the best architecture, optimizer, and loss

function for a specific metric, it does not guarantee that this model will be the best possible

model for this metric. It only assures that we are choosing metrics and optimizers that are

more suited to our target metric than when comparing to standard choices. To build these

models, we will first need to revisit the results from previous sections.

Table 10 presents the best-performing architecture, optimizer, and loss function

for the precision metric that were obtained throughout this chapter. The model 64-32-16-1

was the best architecture, Adam was the best optimizer and the MSE loss function was

the most efficient in terms of precision. Further on, Table 10 also demonstrates the

best performing metrics in terms of the MAE metric. As it was for precision, the best
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Table 10 – Optimal Choices - Precision & MAE

Model_ID Characteristic Best choice Precision(%) MAE Optimized for
18 Architecture 64-32-16-1 95.97 - Precision
1 Optimizer Adam 95.90 - Precision
1 Loss Function MSE 95.90 - Precision

18 Architecture 64-32-16-1 - 39.2 MAE
4 Optimizer Nadam - 33.2 MAE
8 Loss Function MAE - 32.6 MAE

Source: Author (2023).

architecture was 64-32-16-1, the best optimizer was Nadam and unsurprisingly the best

performing loss function was the MAE. Considering the informations that were presented

at the Table 10, it will be possible to deviate three models that will be optimized for each

one of the Metrics, all of the models can be seemed at Table 11.

Table 11 – Final models

Model_ID Architecture Optimizer Loss Function CC Optimized for
24 64-32-16-1 Adam MSE 12208ns Precision
25 64-32-16-1 Nadam MAE 12208ns MAE
26 16-1 Nadam MAE 528ns CC

Source: Author (2023).

All of these models were trained for 250 epochs, with a batch size of 16. After

training each one of the models, the next step to take was to evaluate the generated models

in terms of precision, MAE and CC. As did in the previous sections, The first graph that

will be presented is a bar plot. Figure 52 shows the precision of each one of the models.

Figure 52 – Final models - Precision

Source: Author (2023).

From the graph, it is possible to notice that the models, overall, had a good
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performance, with most of them averaging at 95% of precision. It is also noticeable that

the Model 24 is slightly better at this metric, which makes sense, since he was designed

to outperform in this metric. Further on, the next graph that needs to be considered will

be the graph at Figure 53. As for the previous graph, most of the models had good results,

Figure 53 – Final models - MAE

Source: Author (2023).

but this time we can see a larger gap between Model 25 and the others, this result was

not a surprise either, since Model 25 was built to perform on this metric. Finally, the

last relevant metric to consider is the Computational Cost of each one of the models, this

graph will be shown at Figure 54

Figure 54 – Final models - Computational Cost

Source: Author (2023).

Differently from what we have seen so far, the models at Figure 54 presented a

huge gap of CC when comparing to Model 26. This result also makes sense when the

architecture of each one of the models are considered, along with the correlation that the

CC metric has to its architectures. To continue with the analysis, all of the results will be

summarized at Table 12

The first column, "model_id," serves as the designated name for the model. The

"Precision" column represents the metric defined during the metrics section. The "Test
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Table 12 – Summary - Final models

Model_ID Precision(%) Test MAE Training time (s) CC(ns)
1 95.88% 48.1 2604.3 (43m24s) 12208
2 95.62% 24.1 2424.27 (40m24s) 12208
3 95.66% 37.9 2066.4 (34m26s) 528

Source: Author (2023).

MAE" column refers to the Mean Absolute Error (MAE) obtained while utilizing the

"model.evaluate()" function from the Keras API. The "Training Time" column displays

the duration it took to train each model. Lastly, the "CC" column represents the

computational cost metric, also discussed during the metrics section.

In order to deviate a final model from this table, it is necessary to examine the

metrics in more depth. Taking into account that the dataset used to validate the model

consists of 17,335 entries, a precision of, for example, 95.88% would indicate that only

714 values out of the 17,335 were out of the proposed scale. For the MAE metric, a

MAE of 24.1 would imply that the average error indicates a variation of 0.06% on the

probability of each symbol. In regard to the CC metric, it must be remembered that it

represents the time spent on a single entry in the Neural Network. To compare the CC

metric, the CC of Model 24 and 25 can be divided by the CC of Model 26 to determine

how much slower they are in comparison. With these considerations in mind, a table

can be developed that includes all of these details, allowing for the deviation of the best

model. This table is presented in Table 13.

Table 13 – Final Models - Tradeoffs

Model_ID Number of missed values Change in probability (%) Performance ratio
24 714 0.15 -
25 763 0.06 -
26 760 0.11 23

Source: Author (2023).

As illustrated in Table 13, it is evident that Model 26 is the superior option. The

use of a model that is 23 times slower than another one, solely due to a difference of 46

missed values, cannot be justified. The MAE metric also supports this claim, as it shows

that Model 26, while also being 23 times faster, achieves a difference of only 0.05% in

efficiency when comparing to Model 25. Furthermore, in the context of this model being
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applied in a video encoder, it is crucial for the model to perform as efficiently as possible,

both in terms of CC and precision, as video encoders are used in many industries such

as entertainment, security, and telecommunication, the efficiency of the model will affect

the overall performance of the system.

To conclude, all of the models1 and graphs 2 presented in this chapter can be found

in the footnote of the page

1https://colab.research.google.com/drive/1Wg8Dw7mGnV5-zqj4iZxedu8K3gsQQJRE?usp=sharing
2https://colab.research.google.com/drive/1p5mgDIC- jUtvhnA4w−H PKaRkV 01FSz?usp = sharing
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6 FINAL CONSIDERATIONS

This chapter is going to cover the final considerations of this work, along with

some future works.

6.1 Conclusion

Video coding is an area that is constantly in need of new tools to further optimize

its results. The increasing demands of the 21st century, particularly the growing use of

visual resources, have made this optimization increasingly necessary. New technologies,

such as AI, have the potential to provide these new tools and therefore have become an

important area of research in video coding.

The recent growth in AI has led to new alternatives in various fields, including

video coding. However, the application of AI in video coding is still a relatively new area

and requires further investigation. This research focused on one aspect of video coding,

the AV1 codec, which is the most recent codec that has been growing in popularity. due to

this growth in popularity and how new The AV1 codec is, it was selected to be the codec

to be the object of study in this work.

The AV1 codec, as with every other codec that follows the Hybrid-workflow, has

an entropy stage, which is the final stage in generating the final bitstream of the video

sequence being encoded. At this stage, the probability of all the Syntax Elements (SEs) is

considered. Properly estimating the probability of each SE is essential to achieve a high

compression rate. Among the SEs, there is a subtype called RSEs, which only appear

after the quantization step and, as stated by Ramos (2019), are responsible for most of the

syntax elements in a video sequence.

To address this problem, this monograph proposed an ANN model to estimate the

probability of residual Syntax Elements of the AV1 codec, specifically the DC_sign RSE.

A total of 26 models were evaluated and trained using a dataset of 86,671 entries. The

software libaom was used to gather the probabilities of the DC_sign RSE, and six video

sequences were encoded to gather the probabilities. These models were trained to choose

the best configurations for each task that was expected in a model that would replace the

probability estimation of the DC_sign element for the AV1.

The final model obtained a precision of 95.66%, to estimate the values of each

CDF, with an estimated runtime of 528ns per entry. This model has the potential to
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improve the AV1 codec’s coding efficiency by more accurately estimating the probability

of the DC_sign RSE. This serves as a demonstration of the feasibility of utilizing AI in

video coding, particularly for determining the probabilities of SE.

In conclusion, this research has developed a neural network model that can

estimate the probability of one of the RSEs of the AV1 codec. The model’s performance

was evaluated, and it was determined that the final model is the most appropriate choice

for this work. This research also highlights the potential of AI in video coding, and the

need for further investigation in this area. However, the proposed model is only applied

to the estimation of one RSE, so it is necessary to further research to estimate the other

RSEs and to test the model with the AV1 codec to validate its performance in a real-world

scenario.

6.2 Future works

In this section, we will discuss several potential avenues for future research that

build on the work presented in this monograph.

• The first suggestion is to test the final model in a practical scenario by coupling it

with AV1 and comparing the results with the baseline version of AV1. This would

be the most appropriate next step, as it would validate the proposed solution in

a realistic scenario. The results of this work would be crucial in determining the

effectiveness of the model.

• Another possible line of research would be to develop a Neural Network Model

that considers all of the context-modeled RSEs, rather than just the DC_Sign RSE.

This suggestion would also be a logical follow-up from the results of this work

and is expected to bring more compression gains. However, it would require

collecting relevant information for all the context-modeled RSEs, which can be

a time-consuming task.

• Another interesting avenue of research would be to develop a Neural Network

Model that substitutes the static look-up table of AV1 with a dynamic one. This

would be highly beneficial to the AV1 codec, as it would adjust the coding

parameters according to the specific characteristics of the video sequence. However,

this suggestion would be one of the most challenging to implement, as it would

require changes in many stages of the encoder.



95

• Another potential direction for future research is to develop a model that can

estimate the probability of all SEs in the AV1 codec, not just the RSEs. This would

be a time-consuming task, as all SEs would need to be considered, but it could

potentially provide additional compression gains.

• Another approach that could be taken is to explore other machine learning

techniques, such as decision trees or gradient boosting, to see if they can provide

better results than the ANN-based model proposed in this work

• Another area of research that could be of interest is to explore hardware

architectures that can optimize the execution of the ANN-based model, by reducing

the number of multiplications and sums required. This could be particularly

beneficial for real-time video coding applications

• Finally, another important avenue for future research is to investigate methods

for "properly" estimating the probability of each RSE, instead of using the

probabilities obtained from the reference software. This could involve re-encoding

video sequences with different settings or using other techniques to estimate the

probabilities. However, it is important to note that more research would be

needed to determine if this is a viable approach and if it would provide additional

compression gains.

Overall, there are many potential directions for future research that build on this work and

could be beneficial to AV1s research.
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