UNIVERSIDADE FEDERAL DO PAMPA

LEANDRO FERREIRA FRIEDRICH

MODELAGEM COMPUTACIONAL DO AUMENTO DA TENACIDADE DO CONCRETO REFORÇADO POR FIBRAS UTILIZANDO O ANSYS

Alegrete 2016

LEANDRO FERREIRA FRIEDRICH

MODELAGEM COMPUTACIONAL DO AUMENTO DA TENACIDADE DO CONCRETO REFORÇADO POR FIBRAS UTILIZANDO O ANSYS

Dissertação apresentada ao programa de Pósgraduação Stricto sensu em Engenharia da Universidade Federal do Pampa, como requisito parcial para obtenção do Título de Mestre em Mestre em Engenharia.

Orientador: Prof. Dr. Wang Chong

Alegrete 2016

Friedrich F., Leandro

Modelagem computacional do aumento da tenacidade do concreto reforçado por fibras utilizando o ANSYS /Leandro Ferreira Friedrich. 09/05/2016.

165 f.:; 30 cm

Dissertação (mestrado) Universidade Federal do Pampa, 09/05/2016. Orientação: Prof. Dr. Wang Chong

- 1. Modelagem computacional. 2. Aumento de tenacidade.
- 3. Materiais compósitos. 4. ANSYS

LEANDRO FERREIRA FRIEDRICH

MODELAGEM COMPUTACIONAL DO AUMENTO DA TENACIDADE DO CONCRETO REFORÇADO POR FIBRAS UTILIZANDO O ANSYS

Dissertação apresentada ao programa de Pósgraduação Stricto sensu em Engenharia da Universidade Federal do Pampa, como requisito parcial para obtenção do Título de Mestre em Tecnologia de Materiais.

Área de concentração: Tecnologia de Materiais

Dissertação defendida e aprovada em: 09, maio de 2016.
Banca examinadora:
AM
Prof. Dr. Wang Chong
Orientador
UNIPAMPA
Mulan
Prof. Dr. Edgar Nobuo Mamiya
UnB
Vicente Bergamini Puglia
UNIFAMFA

Dedico este trabalho aos meus pais e meu irmão pelo incondicional apoio.

AGRADECIMENTO

À Deus em primeiro lugar, a minha mãe Roselaine e meu pai Waldermar que sempre me apoiaram durante este percurso e ao meu irmão Luciano pelo apoio em todos os momentos. Ao Prof. Dr. Wang Chong pela paciência, dedicação e orientação prestada, cujo conhecimento

comigo dividiu, conduzindo-me com êxito no desenvolvimento deste trabalho.

A minha namorada Angélica pela amizade e apoio em todos os momentos.

A todos os colegas e professores do curso do PPEng, dos quais levarei a amizade e o carinho.

E por fim, aos professores da banca, pela disponibilidade e interesse.

O maior bem do homem é uma mente inquieta. Isaac Asimov

RESUMO

Neste trabalho, apresenta-se um modelo computacional abrangente para análise do compósito cimentíceo reforçado por fibras, utilizando o software ANSYS que tem como base o método de elementos finitos. As simulações têm como foco, simular uma única fibra inserida na matriz de concreto, analisando a contribuição individual de cada fibra para a resistência final do compósito. Através de um procedimento computacional unido ANSYS e MATLAB é possível unir o modelo em elementos finitos e a modelagem matemática. Utilizando o modelo de zonas coesivas (CZM) e a relação $\tau(s)$, o atrito da interface é simulado e as propriedades interfaciais analisadas. Os resultados da força de ponte versus abertura da trinca são comparados com ensaios experimentais obtidos na literatura para diferentes tipos de fibras enterradas em matriz cimentícea com diferentes ângulos de inclinação em relação à superfície fraturada. Utilizando a superfície de falha para o concreto de William-Warnke, o *spalling* na matriz é quantificado. Para entender como o *spalling* se forma e se propaga a influência ainda pouco estudada da distribuição de pressão na interface é analisada. Os resultados mostram que existem parâmetros ótimos que aumentam significativamente a tenacidade. Tanto o spalling como a distribuição de pressão na interface comprovam o porquê das características mecânicas de fibra, matriz e interface e claro da geometria da fibra, favorecem ou não a melhora na resistência mecânica do compósito.

Palavras-Chave: Modelagem computacional, aumento de tenacidade, materiais compósitos, tensão de ponte, *spalling*, ANSYS.

ABSTRACT

This work presents a computational model for analysis of fiber reinforced cementitious composite using ANSYS which is based on the finite element method. The modeling is focus on simulating a single fiber *pullout* inserted into the concrete matrix and analyzing the individual contribution of each fiber to the ultimate strength and toughening of the composite. Through a computational procedure united ANSYS and MATLAB it is possible to connect the finite element model to mathematical model. By use of the cohesive zone model (CZM) and $\tau(s)$ relationship, the friction on the interface is simulated and the interfacial performance as well as the pressure distribution at the interface are analyzed. The results of bridging force versus crack opening are compared with experimental tests obtained in the literature for different types of fibers embedded into cement matrix with different angles of inclination relative to the fractured surface. Using the William-Warnke failure surface for the concrete, the *spalling* in the matrix is quantified. To understand how the spalling is formed and propagated the pressure distribution on the interface that still little studied is analyzed. The results show that there are optimum parameters combinations that could significantly improve the strength and toughness of composites. Both spalling and the pressure distribution on the interface show why the mechanical properties of fiber, matrix and interface and geometry of the fiber, favor or not the improvement in mechanical strength and toughness of the composite.

Keywords: Computational modeling, Toughening, composite materials, bridging stress, spalling, ANSYS.

LISTA DE FIGURAS

Figura 1- Ensaio de <i>pullout</i>	23
Figura 2- Placa de dimensões infinitas, com trinca passante utilizada por Griffith	26
Figura 3- Modos de fratura	28
Figura 4- Distribuição de tensões na ponta da trinca em coordenadas retangulares	29
Figura 5-a) Fibras distribuída aleatoriamente na matriz. b) Tipos de fibras	30
Figura 6- Mecanismo de transferência de tensões entre fibra e matriz	31
Figura 7- Influência da fração volumétrica de fibras em um ensaio a 4 pontos, analisando	a
relação carga-deflexão	32
Figura 8- Comportamento do dano na matriz (a) sem reforço; (b) com reforço de fibras	32
Figura 9-Aplicações do concreto reforçado com fibras de aço	33
Figura 10-Distribuição do mercado brasileiro de fibras de aço por tipo de aplicação de 200)9 a
2010	34
Figura 11- Ensaio de <i>pullout</i> em andamento	35
Figura 12- Três típicos comportamentos da curva pra uma única fibra em pullout	36
Figura 13- Fibra inclinada com nova orientação causada pelo spalling na matriz	37
Figura 14- Exemplo de distribuição de pressão na interface	38
Figura 15- Fibra em <i>pullout</i> para comprimento enterrado <i>l</i> e orientação arbitrária	41
Figura 16- Considerações e resultados para o modelo analítico de Yang et al. (2008)	43
Figura 17- Modelo em elementos finitos de uma única fibra enterrada em matriz de concre	eto.
	44
Figura 18- Conceitos do modelo de zonas coesivas	46
Figura 19- Configuração inicial do modelo antes da abertura da trinca	48
Figura 20- Probabilidade do ângulo de inclinação usando uma superfície esférica	50
Figura 21- Modelo em elementos finitos e deslocamentos aplicados	52
Figura 22- Modelo de zonas coesivas bilinear	54
Figura 23- Elemento Solid65	56
Figura 24- Definição das superfícies de contato	57
Figura 25-Projeção no plano da superfície de falha para o concreto	58
Figura 26- Distribuição de pressão na interface	61
Figura 27 – Procedimento computacional - Tenacidade	62
Figura 28- Procedimento computacional - Quantificação do spalling	64

Figura 29- Procedimento computacional - Distribuição de pressão na interface65
Figura 30- Ensaio de <i>pullout</i> de Leung e Shapiro (1999): a) Propriedades geométricas das
amostras; b) Curva Força de pullout N vs. deslocamento w medida experimentalmente 67
Figura 31- Curva tensão-deformação para o concreto em compressão
Figura 32- a) Relação $\tau(s)$; b) parâmetros ótimos para diferentes tipos de fibras69
Figura 33- Comparação entre o resultado do modelo em elementos finitos e os ensaios
experimentais; a) $\theta = 0^{\circ}$; b) $\theta = 30^{\circ}$; c) $\theta = 60^{\circ}$
Figura 34- Pedaços da matriz ligada a parte final da fibra inclinada74
Figura 35- Comparação entre os resultados do modelo proposto e os ensaios experimentais de
Leung e Shapiro (1999)74
Figura 36- Comparação do trabalho de pullout vs. ângulo de inclinação para o modelo
proposto e os ensaios experimentais de Leung e Shapiro (1999)75
Figura 37- Influência do diâmetro da fibra em relação a tensão de ponte77
Figura 38- Força de ponte para diferentes ângulos de inclinação e comprimentos enterrados de
fibras de 0,25 mm e 0,75 mm
Figura 39- Influência do módulo de elasticidade da fibra na tensão de ponte
Figura 40- Aumento da tenacidade – Influência do diâmetro da fibra
Figura 41- Influência do módulo de elasticidade no aumento da tenacidade82
Figura 42- Influência do ângulo de inclinação na evolução do <i>spalling</i>
Figura 43- Elementos danificados na matriz sob $\tau_{max} = 3$ MPa : a) $\theta = 15^{\circ}$ e w=0,018 mm; b)
$\theta = 60^{\circ} \text{ e } w = 0,016 \text{ mm} \dots 84$
Figura 44- Evolução do <i>spalling</i> e distribuição de pressão na interface- influência de θ 85
Figura 45- Distribuição de pressão resultante na interface – influência de τ_{max}
Figura 46- Distribuição de pressão circunferencial em <i>x</i> =0 mm87
Figura 47- Tensão da fibra para diferentes ângulos de inclinação
Figura 48- Spalling observado experimentalmente
Figura 49- Dano gerado na matriz para $\theta = 30^{\circ}$
Figura 50-Influência do comprimento enterrado da fibra em relação ao dano gerado na matriz.
A curta extensão de é devido a dificuldade de convergência90
Figura 51- Distribuição de pressão resultante na interface – influência L_e
Figura 52- Tensões na fibra para diferentes comprimentos enterrados
Figura 53- Dano na matriz para L_e =3 mm e $\tau_{max} = 0,5MPa$
Figura 54- Influência do diâmetro de fibras de aço em relação ao <i>spalling</i> na matriz92

Figura 55- Influência do diâmetro da fibra e ângulo de inclinação93
Figura 56- Distribuição de pressão resultante na interface sobre a influência de diferentes
diâmetros da fibra94
Figura 57- Influência do módulo de elasticidade da fibra na evolução do dano na matriz95
Figura 58- Distribuição de pressão resultante na interface para diferentes tipos de fibras96
Figura 59- Influência de τ_{max} na tensão na fibra quando $\theta = 60^{\circ}$
Figura 60- Influência do módulo de elasticidade da matriz na quantificação do dano98
Figura 61- Distribuição de pressão resultante na interface para diferentes módulos de
elasticidade da matriz $\theta = 30^{\circ}$
Figura 62- Força de ponte do compósito para diferentes matrizes quando $\theta = 30^{\circ}$
Figura 63- Distribuição de pressão circunferencial da região de saída da matriz 100
Figura 64- Comparação da distribuição de pressão circunferencial obtida pelo modelo em
MEF e analítico proposto por Piaceski (2010)101
Figura 65- Análise da resistência à tração do concreto em relação ao spalling 102
Figura 66- Distribuição de pressão resultante na interface sob a influência da tensão de tração
Figura 67- Força de ponte – influência da tensão de tração da matriz
Figura 68- Influência resistência à compressão do concreto na evolução do spalling104
Figura 69- Distribuição de pressão resultante para diferentes resistências à compressão da
matriz
Figura 70- Força de ponte do compósito sobre a influência da resistência a compressão 105

LISTA DE QUADROS

Quadro	- Status de elementos	do concreto	59
--------	-----------------------	-------------	----

LISTA DE TABELAS

Tabela 1-Propriedades geométricas e mecânicas da amostra do tipo B	.68
Tabela 2-FK para diferentes ângulos de inclinação e processos	.70
Tabela 3- Análise de convergência da malha – início do <i>spalling</i>	.71
Tabela 4- Parâmetros utilizados na modelagem	.76

LISTA DE ABREVIATURAS E SIGLAS

- APDL ANSYS Parametric Design Language
- CRF Concreto reforçado por fibras
- CRFA Concreto reforçado com fibras de aço
- CZM Cohesive zone model
- EPT Estado plano de tensões
- EPD Estado plano de deformações
- MEF Método dos Elementos Finitos
- PVA Polyvinyl alcohol

LISTA DE SÍMBOLOS

W	Abertura da trinca; [mm]
<i>W</i> _d	Abertura máxima para descolagem; [mm]
*₩	Abertura onde as tensões são nulas; [mm]
α	Ângulo de inclinação da fibra antes do spalling
α '	Ângulo de inclinação da fibra após o spalling
θ	Ângulo de orientação da fibra; [graus]
A_{f}	Área da seção transversal da fibra; [mm²]
А	Área de superfície da trinca
A_{c}	Área do plano de fratura da matriz; [mm ²]
\mathbf{G}_{c}	Aumento da tenacidade a fratura do compósito; [Nmm]
V	Coeficiente de Poisson
p_{iy}	Componente Y da pressão no nó <i>i</i> ; [Pa]
L_{f}	Comprimento da fibra; [mm]
l_0	Comprimento descolado inicialmente; [mm]
L_{e}	Comprimento enterrado; [mm]
Γ_{f}	Contorno onde atuam as trações
Γ_c	Descontinuidade do material
S	Deslocamento da fibra
<i>S</i> ₁	Deslocamento para descolagem; [mm]
$d_{_f}$	Diâmetro da fibra; [mm]
Z.	Distância do centro da fibra até a superfície fraturada; [mm]
<i>u</i> _n	Distância normal de separação entre as superfícies descoladas; [mm]
u_t	Distância tangencial de separação entre as superfícies descoladas; [mm]
$\overline{u_n}$	Distâncias de separação entre as superfícies descoladas na máxima tensão
	normal; [mm]
$\overline{u_t}$	Distâncias de separação entre as superfícies descoladas na máxima tensão
	tangencial; [mm]

u_n^c	Distâncias de separação normal entre as superfícies descoladas para a
	completa descolagem; [mm]
u_t^c	Distâncias de separação tangencial entre as superfícies descoladas para a
	completa descolagem; [mm]
$\sigma_{_{ij}}$	Tensões na ponta da trinca
Ω	Domínio contendo a possível trinca
Ω_1, Ω_2	Domínios resultantes após a propagação da trinca
U	Energia de deformação interna
${\gamma}_p$	Energia de deformação plástica
G_{c}	Energia de fratura coesiva da interface fibra/matriz
G_{cn}	Energia de fratura crítica normal da interface fibra/matriz
G_{ct}	Energia de fratura crítica tangencial da interface fibra/matriz
G_{n}	Energia de fratura normal da interface fibra/matriz
G_{t}	Energia de fratura tangencial da interface fibra/matriz
γ	Energia de superfície do material da interface fibra/matriz
W	Energia potencial das forças externas aplicadas sobre o corpo
K _I	Fator de intensidade de tensões
FKN	Fator de rigidez normal
FKT	Fator de rigidez tangencial
FK	Fator de rigidez FKN=FKT
$N(w, \theta, z)$	Força de ponte da fibra em função de <i>w</i> ; orientada a θ e a <i>z</i> da superfície
	fraturada;
F	Força resultante de todas as fibras agindo como ponte transferência; [N]
V_{f}	Fração volumétrica de fibras
$p(\theta)$	Função densidade de probabilidade para ângulo de inclinação
p(z)	Função densidade de probabilidade para comprimento enterrado
Δw	Incremento de abertura; [mm]
а	Meia abertura da trinca
E	Módulo de elasticidade; [GPa]
Γ_c^-, Γ_c^+	Novas superfícies de trinca livres por tração

dN	Número de fibras na superfície fraturada
N_t	Número total de fibras na matriz
d_{m}	Parâmetro de descolagem no modo misto
arphi	Parâmetro geométrico do material
p_r	Pressão resultante no segmento ao longo do comprimento enterrado; [Pa]
r_{f}	Raio da fibra; [mm]
f_c	Resistência de compressão do concreto; [MPa]
f_t	Resistência a tração do concreto; [MPa]
K_n	Rigidez de contato normal; [N/mm]
K_t	Rigidez de contato tangencial; [N/mm]
G _c	Taxa de liberação de energia de deformação crítica
$\sigma_{_f}$	Tensão aplicada que provoca a ruptura do material
$\sigma_{\scriptscriptstyle cr}$	Tensão crítica do material
$ au_{ m max}$	Tensão de cisalhamento máxima; [MPa]
${ au}_{{\it fin}}$	Tensão de cisalhamento mínima; [MPa]
τ	Tensão de cisalhamento na interface
$\tau(s)$	Tensão de cisalhamento na interface em função do deslocamento s; [MPa]
$\sigma_{_c}$	Tensão de ponte; [MPa]
f_y	Tensão de ruptura da fibra; [MPa]
$\sigma_{\scriptscriptstyle m max}$	Tensão normal máxima na interface; [MPa]
$\sigma_{_{xp}}$	Tensão principal em X
$\sigma_{_{yp}}$	Tensão principal em Y
$\sigma_{_{zp}}$	Tensão principal em Z
Т	Trações agindo na interface
f_i	Trações prescritas
Δz	Variação da distância até a superfície fraturada; [mm]
$\Delta heta$	Variação do ângulo de orientação da fibra; [graus]

SUMÁRIO

1	INTRODUÇÃO	22
1.1	Objetivos	23
1.2	Organização do trabalho	24
2	REVISÃO BIBLIOGRÁFICA	25
2.1	Fundamentos da mecânica da fratura	25
2.1.1	Balanço energético de Griffith	25
2.1.2	Taxa de liberação de energia G	27
2.1.3	Fator de intensidade de Tensões	28
2.2	Concreto reforçado com fibras	30
2.3	Aplicações do CRF	33
2.4	Interação fibra-matriz	34
2.5	Mecanismos influentes na força de ponte e tenacidade	36
2.5.1	Efeito spalling	36
2.5.2	Distribuição de pressão na interface	37
2.5.3	Efeito snubbing	38
2.5.4	Descolagem	39
2.6	Modelos empíricos	39
2.7	Modelos analíticos	40
2.8	Modelos em elementos finitos	43
2.8.1	Modelo de zonas coesivas	45
3	METODOLOGIA	47
3.1	Relação tensão de ponte - abertura de trinca $\sigma_c - w$	47
3.1.1	Aumento da energia de fratura G _c	51
3.2	Modelo em elementos finitos	51
3.2.1	Interface fibra/matriz	53
3.2.2	Elementos utilizados	56
3.2.3	Critério de falha para o concreto e quantificação do spalling na matriz	57
3.2.4	Distribuição de pressão na interface	60
3.3	Procedimento computacional	61

4	RESULTADOS E DISCUSSÕES		
4.1	Validação do modelo proposto - Concreto reforçado com fibras de aço (CRFA)67		
4.1.1	Ensaio experimental		
4.1.2	Modelo $\tau(s)$ para fibras de aço		
4.1.3	Convergência da malha70		
4.1.4	Resposta Força de ponte vs. Abertura da trinca N-w		
4.2	Tensão de ponte – abertura de trinca $\sigma_c - w$		
4.2.1	Parâmetros e simulações		
4.2.2	Influência do diâmetro da fibra - d_f		
4.2.3	Influência do módulo de elasticidade da fibra - <i>E_f</i>		
4.3	Aumento da tenacidade - <i>G</i> _c 80		
4.3.1	Influência do diâmetro da fibra - d _f 80		
4.3.2	Influência do módulo de elasticidade da fibra - E_f		
4.4	Efeito <i>spallling</i> e distribuição de pressão na interface		
4.4.1	Influência do ângulo de inclinação da fibra - θ		
4.4.2	Influência do comprimento enterrado da fibra - L_e		
4.4.3	Influência do diâmetro da fibra - d_f		
4.4.4	Influência do módulo de elasticidade da fibra - E_f		
4.4.5	Influência do módulo de elasticidade da matriz - E_m		
4.4.6	Influência da resistência à tração da matriz - f_t		
4.4.7	Influência da resistência a compressão da matriz $-f_c$ 104		
5	CONCLUSÕES 106		
6	SUGESTÕES PARA TRABALHOS FUTUROS109		
REFERÊNCIAS110			
APÊNDICE A- Procedimento computacional para a tenacidade116			
APÊNDICE B- Procedimento computacional para a <i>spalling</i> 119			
APÊNDICE C- Procedimento computacional para a distribuição de pressão124			
APÊ	APÊNDICE D- Modelo em elementos finitos – <i>script</i> APDL129		

APÊNDICE E- Sub-rotina Tenacificação.m	
ANEXO A- Critério de falha de William e Warneck (1975)	

1 INTRODUÇÃO

O concreto é um material amplamente utilizado na construção civil por suas propriedades mecânicas, químicas e sua disponibilidade econômica. No entanto, quando este material é submetido a cargas de tração há o surgimento e propagação de trincas comprometendo a estrutura que vem a falhar fragilmente. Com a adição adequada de fibras na matriz cimentícea é possível aumentar significativamente a tenacidade, resistência à tração e resistência ao impacto e inibir ou retardar a propagação de trincas.

Uma das principais características do concreto reforçado por fibras (CRF) é a sua capacidade de adquirir um comportamento pseudo-dúctil (Leung 1996) após o pico de tensão máxima. As fibras atuam como pontes de transferência de tensões ligando as superfícies fraturadas, minimizando a concentração de tensões nas extremidades das fissuras. Assim, quanto maior o número de fibras atuando como pontes de transferência de tensão maior será a capacidade de resistência do concreto pós-fissuração (Shannag *et al.* 1997).

O comportamento da tensão de ponte, ou seja, a ação de todas as fibras atuando na área de seção fraturada é usualmente estudada através de ensaios da retirada de uma única fibra da matriz frágil, conhecido como ensaio de *pullout* (ver Figura 1). No teste, a relação entre força de ponte e deslocamento de *pullout* é medida quando a fibra é puxada para fora da matriz. Esse fato faz com que a máxima força de ponte (ou força de *pullout*) e a área sob a curva força de ponte *versus* deslocamento sejam parâmetros importantes que auxiliem na comparação da resposta do compósito a diversos tipos de fibras. Através de resultados experimentais foram descobertos diversos mecanismos que regem o comportamento da força de ponte, incluindo o processo de descolagem (Li *et al.* 1991a), efeito *snubbing* (Li *et al.* 1990), efeito *spalling* (Kanda e Li, 1998), propriedades mecânicas de fibra, matriz e interface além da geometria da fibra.

Devido ao grande número de parâmetros envolvidos, os ensaios sobre o comportamento do concreto reforçado exige mão de obra qualificada, tempo e grande aparato laboratorial, tornando estes economicamente caros. Dessa forma, os modelos teóricos e computacionais baseados na reprodução de uma única fibra em *pullout* tornam-se uma boa opção para a determinação do comportamento mecânico do compósito. Através desses modelos, é possível determinar propriedades como a tenacidade e a resistência mecânica, sendo assim o uso dos modelos em projetos de compósitos torna-se mais econômico e confiável. Entre os métodos computacionais mais aptos para simular a fibra em *pullout* está o

método dos elementos finitos (MEF), mundialmente difundido na resolução de problemas científicos, especialmente da mecânica do continuo.

A reprodução de ensaios experimentais através de modelos em elemento finitos tem gerado bons resultados em relação a fatores como o processo de descolagem (Li e Mobasher 1998) e a inclinação da fibra (Krasnikovs *et al.* 2012). No entanto, questões como a tenacidade do compósito gerado pela contribuição individual de cada fibra são determinadas numericamente, sendo assim, um modelo computacional unindo modelagem matemática e simulação torna-se uma boa opção para a resolução de problemas que envolvem o aumento da tenacidade.

Figura 1- Ensaio de *pullout*

Fonte: Adaptado de Kanda e Li, 1998.

1.1 Objetivos

O objetivo principal deste trabalho é calcular o aumento da tenacidade do concreto reforçado com fibras através da modelagem e simulação utilizando o *software* comercial ANSYS que tem por base o método dos elementos finitos (MEF).

Como objetivos específicos podem-se citar:

- a) Simular o processo de *pullout* de uma fibra inclinada e enterrada em matriz de concreto;
- b) Investigar a influência dos parâmetros interfaciais;

- c) Analisar a influência das propriedades mecânicas e geométricas da fibra na tensão de ponte e no aumento da tenacidade;
- d) Analisar o efeito *spalling* em um estágio inicial de abertura da trinca, buscando quantificar o dano na matriz e sua evolução avaliando propriedades mecânicas e geométricas da fibra, matriz e interface;
- e) Investigar o comportamento da distribuição de pressão na interface ao longo do comprimento enterrado e circunferencialmente analisando parâmetros geométricos e mecânicos de fibra, matriz e interface;
- f) Determinar os parâmetros ótimos para o aumento da tenacidade;
- g) Correlacionar tenacidade, *spalling* e distribuição de pressão na interface.

1.2 Organização do trabalho

Este trabalho é composto de seis capítulos, complementados no final pelas referências bibliográficas, os apêndices e por fim pelos anexos. Após esta introdução, é realizada uma revisão sobre o comportamento e aplicações do concreto reforçado por fibras, além de uma breve referência à literatura sobre modelos empíricos, analíticos e computacionais utilizados para resolver o problema da fibra em *pullout* bem como o aumento da tenacidade. O capítulo três mostra os detalhes da dedução do modelo matemático proposto para o cálculo da tenacidade e todas as etapas para a criação do modelo em elementos finitos através do ANSYS. O capítulo quatro fará a apresentação dos resultados e discussões. No quinto capítulo são apresentadas as conclusões do trabalho e por fim as sugestões para trabalhos futuros no capítulo 6.

2 REVISÃO BIBLIOGRÁFICA

O objetivo deste capítulo é apresentar alguns conceitos básicos da mecânica da fratura e um breve contexto histórico sobre a evolução e as aplicações do concreto reforçado por fibras. Também serão apresentados os mecanismos envolvidos na interação fibra/matriz e uma descrição geral das abordagens já utilizadas nas modelagens deste compósito.

2.1 Fundamentos da mecânica da fratura

A mecânica da fratura surgiu em função das limitações nas aplicações dos conceitos tradicionais para prever falhas dos materiais quanto à presença de descontinuidades internas e superficiais. Falhas ocorrem por muitas razões, incluindo incertezas no ambiente, carga ou defeitos nos materiais, inadequações no projeto, e deficiências na construção ou manutenção. Os projetos contra a fratura tem uma tecnologia própria e é uma área de pesquisa muito ativa atualmente.

A presença de trincas resulta em altas tensões ao redor da ponta da trinca. Quando a trinca atinge um determinado comprimento crítico, pode propagar catastroficamente através da estrutura, mesmo que a tensão solicitada seja muito menor do que normalmente suportada pelo material. O termo "mecânica da fratura" refere-se a uma especialização vital dentro da mecânica dos sólidos, em que se assume a presença de uma trinca, e procura-se determinar as relações quantitativas entre a configuração de carregamento, a geometria da trinca, resistência inerente ao material de sustentar a propagação da trinca, e a condição crítica na qual a trinca se propaga em alta velocidade para causar defeitos estruturais.

2.1.1 Balanço energético de Griffith

Quando Griffith (1893-1963) começou seus estudos pioneiros de fratura em vidro nos anos imediatamente anteriores a 1920, estava ciente do trabalho de Inglis (1913) no cálculo de concentrações de tensões em torno de orifícios elípticos em uma placa quadrada. No entanto, a solução de Inglis apresentava uma dificuldade matemática: na região em torno da ponta da trinca as tensões se aproximam do infinito. Portanto, independente do tamanho da trinca, sua orientação ou carga externa, as tensões atingiriam valores infinitamente altos. Tal afirmação põe em cheque todos os conceitos da Resistência dos Materiais, pois se sabe que todos os corpos possuem algum tipo de defeito. Logo, todos os materiais entrariam em colapso sob qualquer solicitação, o que não faz sentido físico. Ao invés de focalizar nas tensões diretamente na ponta da trinca, Griffith empregou uma abordagem de balanço energético, que se tornou um dos desenvolvimentos mais famosos na ciência dos materiais.

A Eq. 1 representa o balanço de energia que estabelece a condição crítica para a propagação da trinca. Esta condição será satisfeita quando a variação de energia do sistema for igual a energia necessária para formar novas superfícies que é considerada uma propriedade do material dada em unidades de superfície.

$$\frac{dW}{dA} - \frac{dU}{dA} = \gamma \tag{1}$$

onde, *W* é a o trabalho feito pelas forças externas aplicadas sobre o corpo, U é a energia de deformação interna, A é a área de superfície da trinca formada e γ a energia de superfície do material.

Figura 2- Placa de dimensões infinitas, com trinca passante utilizada por Griffith

Fonte: Anderson, 1995.

Baseado no problema mostrado na Figura 2, para uma placa de espessura B e o comprimento da trinca de 2a sobre tração, tem-se para um material elástico,

$$\sigma_f = \sqrt{\frac{2E\gamma}{\pi a}} \tag{2}$$

onde σ_f é a tensão aplicada que provoca a ruptura do material, enquanto *E* é o módulo de elasticidade e *a* o meio comprimento da trinca.

O trabalho original de Griffith, no entanto, só tratou sobre materiais muito frágeis, mais especificamente, o vidro. Quando o material apresenta mais ductilidade, a apreciação da energia de superfície por si só não fornece um modelo exato para a fratura. Esta deficiência foi corrigida mais tarde, de forma independente por Irwin (1948) e Orowan (1949). Eles sugeriram que em um material dúctil a energia necessária para formar novas superfícies deve ser incluída não só a energia para a quebra das ligações entre as superfícies através da criação de novas superfícies, mas também a energia dissipada devido à deformação plástica do material perto da ponta da trinca. Assim a equação de Griffith (Eq. 2) pode ser reescrita da forma:

$$\sigma_f = \sqrt{\frac{2(\gamma + \gamma_p)E}{\pi a}} = \sqrt{\frac{G_c E}{\pi a}}$$
(3)

onde, γ_p é a energia de deformação plástica associada ao processo de fratura.

2.1.2 Taxa de liberação de energia G

O lado esquerdo da Eq. 1 se chama taxa de liberação de energia, anotada por,

$$G = \frac{dW}{dA} - \frac{dU}{dA} \tag{4}$$

Ela considera a força motriz que tende a promover a propagação da trinca; o lado direito da Eq. 1 é considera a resistência a propagação. A Eq. 1 mostra uma disputa entre a força motriz e a resistência a propagação da trinca. Se a força motriz vencer a resistência, a trinca se propaga caso contrário a trinca não propaga. O valor crítico da G é denominado Gc, e é considerado como uma característica do material que é determinado por ensaio do material segundo as normas internacionais como E- 399 da ASTM, por exemplo.

2.1.3 Fator de intensidade de Tensões

Enquanto a abordagem de balanço energético proporciona uma grande quantidade de discernimento para o processo de fratura, um método alternativo que examina o estado de tensão nas proximidades da ponta da trinca mostrou-se mais útil na prática da engenharia. Há três modos básicos de fratura, denominados I, II, e III, como ilustrado na Figura 3.

Figura 3- Modos de fratura

Fonte: Adaptado de Anderson, 1995.

Considerando um sistema de coordenadas retangulares com a origem na ponta da trinca (ver Figura 4), Westergaard (1939) mostra que a distribuição de tensões na ponta da trinca (σ_{ii}) para o modo I é dada pela Eq.5.

$$\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{cases} = \frac{K_{I}}{\sqrt{2\pi r}} \begin{cases} \cos\frac{\theta}{2} \left(1 - \sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right) + \dots \\ \cos\frac{\theta}{2} \left(1 + \sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right) + \dots \\ \sin\frac{\theta}{2}\cos\frac{\theta}{2}\cos\frac{3\theta}{2}\dots \end{cases}$$
(5)

Para distâncias próximas à ponta da trinca ($r \le 0,1a$), a partir do segundo termo e os subsequentes indicados pelos pontos da Eq. 5 podem ser desprezados. A grande distância da ponta da trinca, essa relação deixa de ser aplicável e a tensão começa a aproximar-se da tensão que esta sendo aplicada. O K_I na Eq. 5 é um parâmetro muito importante conhecido como o fator de intensidade de tensões, que caracteriza a singularidade de tensões na ponta da trinca onde r=0. O índice I é utilizado para designar o modo de abertura da trinca, mas as relações semelhantes aplicam-se aos modos II e III.

Figura 4- Distribuição de tensões na ponta da trinca em coordenadas retangulares

Fonte: Piaceski, 2009.

Esses fatores de intensidade de tensões são usados em projetos e análises, especificando que o material pode suportar até determinado valor crítico de intensidade de tensão, denominado K_Ic, antes da trinca se propagar. Este fator de intensidade de tensão crítico é então uma medida da tenacidade do material. Assim a tensão necessária para ocorrer à fratura no modo I do material é relacionada com o comprimento da trinca e a tenacidade à fratura por,

$$\sigma_f = \frac{K_{IC}}{\phi \sqrt{\pi a}} \tag{6}$$

onde, φ é um parâmetro geométrico da trinca. Por outro lado, o fator de intensidade de tensão e energia são inter-relacionados, como pode ser visto comparando as Eq. 3 e 6 (com $\phi = 1$):

$$\sigma_{f} = \sqrt{\frac{G_{c}E}{\pi a}} = \frac{K_{IC}}{\sqrt{\pi a}} \quad \begin{cases} K_{IC}^{2} = EG_{c} & (EPT) \\ K_{IC}^{2} = EG_{c}(1 - \nu^{2}) & (EPD) \end{cases}$$
(7)

Além das Eqs. 6 e 7, há outros critérios para a propagação de trincas, como por exemplo, a integral J e o *crack-tip-open displacemente* (CTOD).

2.2 Concreto reforçado com fibras

A intensão de criar um compósito reforçado com fibras é antiga, os egípcios foram os primeiros a notar a melhora na adição de palha na fabricação de tijolos ainda durante a época das Sagradas Escrituras. Porém, o desenvolvimento de caráter técnico e científico do concreto reforçado por fibras começou durante a década de 60, quando surgiram diversas aplicações e certa variedade de fibras no mercado. Desde então, a utilização do compósito vem aumento constantemente e as exigências em projetos aumentam com a intenção de assegurar o seu uso.

O concreto é um material amplamente utilizado no campo da construção civil por suas propriedades mecânicas, químicas e sua disponibilidade econômica. Como em todos os materiais, existem algumas vantagens e desvantagens. Duas das maiores desvantagens do concreto são o seu comportamento a tração e seu comportamento frágil. Para melhorar essas duas características e outras como a limitação a propagação de microfissuras, maior resistência ao impacto e diminuição da retração, é possível incorporar a matriz cimentícea, fibras aleatoriamente distribuídas (Figura 5a), produzidas de diversos tipos de materiais como aço, plástico ou vidro, como mostra a Figura 5b.

Figura 5-a) Fibras distribuída aleatoriamente na matriz. b) Tipos de fibras

Fonte: a) (http://macrofibradobrasil.com.br/-acessado em 26/03/2015). b) (http://cimentoitambe.com.br/-acessado em 26/03/2015).

Mehta e Monteiro (2008) atribuem a reduzida capacidade de resistência à tração do concreto como empecilho a interromper a propagação de fissuras, quando submetido a esse tipo de solicitação. No caso do concreto sem a adição de fibras, a fissura provoca uma concentração de tensões, representadas pelas linhas de tensões nas extremidades da fissura como mostra a Figura 6.

Figura 6- Mecanismo de transferência de tensões entre fibra e matriz

Se a tensão nesta extremidade superar a resistência da matriz, a ruptura do material irá ocorrer de forma abrupta, caracterizando um comportamento tipicamente frágil, no qual não se pode contar com nenhuma capacidade de resistência do concreto fissurado. No entanto, no concreto reforçado por fibras, seu comportamento muda de frágil para pseudo-dúctil através do trabalho das fibras que agem como ponte de transferência de tensões (Figura 6). Consequentemente há uma redução da velocidade ou até mesmo uma restrição a propagação das fissuras no material, apresentando um aumento da resistência após a fissuração.

O fato da fibra atuar como ponte de transferência de tensões quando há o surgimento da fissura, relaciona a capacidade de reforço que as fibras apresentam ao teor de fibras utilizado. Assim, quanto maior o número de fibras atuando como ponte de transferência maior será a capacidade do concreto pós-fissuração, Figura 7. Trabalhos de Shannag *et al.* (1997) e Song e Hwang (2004) confirmam não só o aumento da tensão máxima como também reforçam a ideia da atuação das fibras como ponte de tensão e a transição do comportamento frágil para pseudo-dúctil.

Fonte: Medeiros, 2012.

Figura 7- Influência da fração volumétrica de fibras em um ensaio a 4 pontos, analisando a relação carga-deflexão

Fonte: Rizzuti e Bencardino, 2014.

Outro ponto é a durabilidade das estruturas de concreto reforçado que vem aumentando nos últimos anos. Um dos aspectos mais importantes em relação à durabilidade é o surgimento e propagação de trincas, além de manter as características mecânicas originais do material a contenção das trincas também protege o reforço por barras de ataques químicos e intempéries.

Figura 8- Comportamento do dano na matriz (a) sem reforço; (b) com reforço de fibras

Fonte: Li, 2003.

A presença de fibras curtas e distribuídas aleatoriamente na matriz ajuda na conservação da estrutura, diminuindo o surgimento de trincas e limitando a sua propagação. A

Figura 8 mostra uma comparação entre colunas de concreto sem e com reforço de fibras. Observa-se que o alto esforço de fibras, não quebra a matriz. Em contraste a coluna de concreto sem fibra perde a resistência depois da propagação da trinca e a quebra ocorre.

2.3 Aplicações do CRF

Por ser o tipo mais comum de fibra encontrada no mercado, a fibra de aço tem um número maior de aplicações, como por exemplo: pavimentos rodoviários e industriais, tubos de concretos para esgotos e águas pluviais, revestimentos de túneis, reforços secundário para vigas de concreto armado flexionadas, entre outras, como mostra a Figura 9. Outros tipos, como as fibras de vidro são utilizadas principalmente (80% da produção) como painéis de revestimento, o GRFC (*glass fiber reinforced concrete*) como é conhecido este tipo de compósito, era pouco utilizado há algumas décadas devido a pouca durabilidade da fibra de vidro, que se torna mais quebradiça com o tempo, no entanto, pesquisas mais recentes solucionaram o problema que decorria da alta alcalinidade do concreto. Ainda existem as fibras poliméricas (polipropileno, poliéster, nylon entre outras) que podem substituir as fibras de aços onde o ambiente é propenso à corrosão, como a beira-mar, apresentando melhores resultados. Além disso, as fibras naturais são recentemente o objeto de estudo também como opção a substituição às fibras de aço.

Figura 9-Aplicações do concreto reforçado com fibras de aço

Fonte: Adaptado de Maccaferri, 2002.

No Brasil, o uso do compósito concentra-se nos pavimentos e no concreto projetado conforme os dados mais recentes encontrados mostrados na Figura 10. Nos pavimentos a diminuição do tempo de execução da obra e do número de operários por não necessitar da instalação da armadura contribui no emprego de fibras de aço neste segmento. Segundo Figueiredo (2011) a queda significativa na fração do mercado correspondente aos pré-fabricados quando se comparam os dados referentes a 2009 e ao primeiro semestre de 2010 se deve ao fato do encerramento da produção de segmentos para a obra da linha amarela do metrô de são Paulo, quantificando a usabilidade de fibras nesse tipo de aplicação.

Figura 10-Distribuição do mercado brasileiro de fibras de aço por tipo de aplicação de 2009 a 2010

Fonte: Figueiredo, 2011.

2.4 Interação fibra-matriz

Durante os últimos 20 anos o compósito reforçado por fibras é estudado a fim de encontrar um modelo que descreva o melhor possível o comportamento de algum componente estrutural feito deste material. O estudo foca os mínimos detalhes para utilizar o máximo de ambos os materiais (concreto e fibra). No entanto, um dos maiores interesse da investigação está no campo da interação fibra/matriz, onde os modelos criados trazem diversas hipóteses, considerando em muitos casos parâmetros como a retração, dilatação térmica, o efeito *Poisson*, efeito *snubbing* e outros.

Para tentar recriar a interação fibra-matriz, os modelos propostos na literatura são geralmente baseados em ensaios experimentais de arrancamento de fibras, chamados de

pullout, (Figura 11). O estudo é realizado em uma região reduzida da matriz, localizado em torno da fibra. O entendimento do mecanismo de transferência de tensão é tido por muitos pesquisadores como a peça chave para o aumento da tenacidade desse tipo de material. Ainda há outros processos e efeitos que também dependem desse mecanismo como a descolagem da interface fibra/matriz (*debonding*), a máxima tensão suportada pela fibra antes do rompimento (*apparent strength*) e o efeito *spalling*.

Fonte: Banthia e Trottier, 1994.

Com o desenvolvimento de novas tecnologias e avanços na área da computação, *softwares* matemáticos com maior capacidade de processamento, além da criação de programas mais potentes, permitiu a implementação de métodos como o dos elementos finitos, discretos, de contorno entre outros, logo, a pesquisa também avançou nesta direção. Foram criados modelos capazes de descrever a interface e recriar a distribuição aleatória de fibras na matriz utilizando uma análise mecânica e enérgica da fibra em *pullout*.

Uma das maiores dificuldades dos modelos (empíricos, analíticos e computacionais) está em descrever a relação entre a tensão de cisalhamento da interface (τ) e o deslocamento (*s*) para melhor aproximar ao real comportamento da interface. Basicamente os modelos podem descrever três tipos (Figura 12) de comportamento da interface: com cisalhamento constante, amolecimento (*slip-softening*) e endurecimento (*slip-hardnening*). O primeiro

considera a tensão de interface constante durante todo o processo de *pullout*, já o segundo mostra o comportamento típico de fibras de aço em *pullout* com a tensão cisalhante decaindo com o deslocamento, e por fim no terceiro a tensão de cisalhamento aumenta com o deslocamento e recria o comportamento causado principalmente por fibras sintéticas.

Figura 12- Três típicos comportamentos da curva pra uma única fibra em pullout

Fonte: Adaptado de kanda et al., 2000.

2.5 Mecanismos influentes na força de ponte e tenacidade

2.5.1 Efeito spalling

O efeito *spalling* é um dos vários mecanismos influentes no comportamento mecânico do compósito reforçado com fibras que ainda carece de atenção. Quando a força de ponte na saída da fibra está desalinhada em relação à parte enterrada, há uma concentração de tensões na matriz logo a baixo da região de saída da fibra, fazendo com que aconteça a falha da mesma. Segundo Yang *et al.* (2008) o tamanho do dano na matriz é determinado pela pressão no suporte da matriz, que é função da carga externa sobre a fibra, resistência da matriz, rigidez da matriz e o ângulo de inclinação da fibra. Quando analisa-se o compósito como um todo, a proximidade das fibras faz com que os campos de tensões de cada fibra interaja um com o outro, resultando em um dano severo a matriz, como foi indicado no
trabalho experimental de Naaman e Shah (1976) e no modelo analítico de Wang e Friedrich (2013).

Além de danificar a matriz, o *spalling* tem uma serie de fatores que contribuem para um aumento na resistência e tenacidade do compósito. A matriz danificada muda o ângulo de inclinação α para um menor α' , como mostra a Figura 13. Esse efeito retarda a quebra da fibra, aumentando o número de fibras efetivas na matriz, permitindo aumentar a abertura de trincas. Entretanto, se esse efeito não ocorre, o ângulo de inclinação da fibra aumenta significativamente as tensões na fibra que vem a falhar em um estágio inicial de abertura da trinca o que não irá contribuir para o aumento da tenacidade.

Poucos modelos numéricos e computacionais incluem o *spalling* em suas considerações sendo ainda mais é difícil encontrar uma quantificação desse dano. No entanto, como mostrou Wang e Friedrich (2013), o *spalling* influência significativamente no comportamento do compósito, justamente por aumentar o número de fibras efetivas.

Figura 13- Fibra inclinada com nova orientação causada pelo spalling na matriz

2.5.2 Distribuição de pressão na interface

A pressão imposta pela fibra na matriz é um fator que está diretamente ligado ao *spalling* sofrido pela matriz quando a fibra esta inclinada. Causada basicamente pelas forças internas da fibra (Figura 14) como a força normal N, a força de cisalhamento P e o momento

M, a distribuição de pressão (q) é ainda mais carente de estudos que o próprio *spalling*, mesmo sua atuação sendo inquestionável.

Figura 14- Exemplo de distribuição de pressão na interface

Fonte: Wang e Friedrich, 2013.

Na literatura existem poucos modelos que analisam o comportamento e a influência da distribuição de pressão. Como exemplo pode-se citar o comportamento sugerido por Wang e Friedrich (2013) mostrado na Figura 14. A distribuição q é sugerida como uma função quadrática, embora não seja restrito a esse tipo de função, o trabalho apontou uma relação direta entre distribuição de pressão e *spalling*, afirmando que fibras de menor rigidez produzem menor pressão na matriz e consequentemente menor quantidade de *spalling*.

2.5.3 Efeito snubbing

Segundo Morton e Groves (1976) e Wang *et al.* (1990) as fibras quando desalinhadas, ou seja, $\alpha \neq 0$ (ver Figura 13), estão sujeitas a uma força de atrito adicional causada pela interação com a matriz quando a fibra sai da mesma. Além disso, o efeito *snubbing* também aumenta o surgimento de deformações plásticas na fibra no ponto de saída da matriz.

De maneira empírica é possível determinar a força de ponte da fibra inclinada com base na força de ponte da fibra alinhada através da relação, $p(\phi) = p(0)e^{f\phi}$, onde f é o coeficiente de *snubbing*.

Os valores de *f* variam de 0 a 1 e mudam de acordo com o tipo de fibra e o ângulo de inclinação. Trabalhos como Katz e Li (1996) e Li e Maalej (1996) mostram valores determinados experimentalmente para compósitos reforçados com fibras de aço, f=0,8, para reforço com fibras de polipropileno f=0,7 e com fibras de nylon f=0,99.

2.5.4 Descolagem

O processo de descolagem tem grande importância na forma com que a fibra contribui para o aumento da tenacidade como comprovaram Evans e MCMeeking (1986) e Becher *et al.* (1988) em seus trabalhos experimentais e analíticos.

Sabe-se que a alta aderência entre fibra e matriz é maior em fibras sintéticas em comparação com fibras de aço, por exemplo. Quando fibras sintéticas deslizam sobre a matriz cimentícea, o atrito retira detritos da fibra que se acumulam e criam uma resistência natural ao movimento. Por outro lado, a alta rigidez de contato entre fibra e matriz durante o processo de descolagem, faz com que a fibra seja tensionada significativamente aumentando as tensões na região de saída da fibra até a ruptura. Este comportamento é prejudicial ao aumento da tensão de ponte e consequentemente da tenacidade já que a fibra perde sua funcionalidade deixando de atuar como ponte de transferência de tensões.

Independente do modelo utilizado para o estudo do CRF, analítico, empírico ou computacional, o processo de descolagem desempenha fundamental papel na resposta do modelo. Conforme mostra a Figura 12, o pico de carga de retirada da fibra, ou seja, a força de ponte máxima ocorre no final do processo de descolagem, por isso, a correta determinação dos parâmetros interfaciais interfere diretamente nos resultados do modelo.

2.6 Modelos empíricos

Na literatura existem muitos modelos empíricos que procuram descrever a fibra em *pullout*. Modelos empíricos são aqueles que utilizam uma ou mais equações para descrever o fenômeno de *pullout* através de ajustes de dados experimentais. Basicamente, este tipo de modelo passa por três fases (Parise, 2014): (1) escolha dos dados experimentais a serem utilizados; (2) definição de uma função base, normalmente esta função é exponencial e com poucas variáveis, por fim (3) o ajuste dos dados experimentais com a função base escolhida, nesta fase os parâmetros são alterados até alcançar um ajuste satisfatório.

Os modelos empíricos utilizados por Swamy e Barr (1989) e Alnaki *et al.* (2013) embora tenham bons resultados em relação aos ensaios experimentais não conseguem avaliar uma grande quantidade de variáveis, sendo exatamente este o problema deste tipo de modelo. Na verdade, modelos empíricos são mais utilizados para descrever o comportamento dos deslocamentos e inclinação de fibras, não fazendo sentido utilizá-lo para calcular, por exemplo, o aumento da tenacidade com a relação entre tensão de ponte e abertura da trinca, já que seria muito difícil correlacionar diversas propriedades mecânicas e fatores influentes em uma única equação. No entanto, no primeiro trabalho citado (Swamy e Barr, 1989) o modelo que descreve o arrancamento, utiliza somente quatro variáveis no modelo, duas delas propriedades características da tensão de cisalhamento e duas obtidas do ensaio experimental. Já o segundo, analisa a influência da fração volumétrica de fibras na adesão da interface através de uma função polinomial de terceira ordem, onde além da fração volumétrica de fibras também utiliza a razão de aspecto da fibra (comprimento da fibra/ diâmetro da fibra).

2.7 Modelos analíticos

Neste tipo de modelagem as relações matemáticas e mecânicas são utilizadas para descrever o modelo final. Aqui pressupostos também são feitos no início do modelo para excluir ou incluir efeitos, ou seja, também há uma escolha de parâmetros dos quais serão utilizados ou não, sendo essas escolhas significativas no resultado final. Os modelos analíticos estão focados principalmente no estudo de uma única fibra em *pullout (single fiber pullout)* e seu comportamento frente a diversas questões como a tensão de cisalhamento da interface, descolagem, relação entre tensão de ponte e abertura da trinca, na tenacificação do compósito, efeito *snubbing* e *spalling*, orientação e comprimento enterrado da fibra entre outros.

Um dos primeiros trabalhos foi de Morton e Groves (1974), realizando experimentos de descolagem e *pullout*, afirmando que a fibra inclinada pode ser dividida em duas partes iguais ao centro da trinca, ou seja, a simetria da trinca, na qual uma parte fica enterrada na matriz e outra livre, como uma "viga em balanço". Partindo desta ideia, utilizando a teoria da viga em balanço, estudaram os efeitos sobre fibras de cobre, níquel e aço, com orientação oblíqua a face da trinca em matriz de resina. Observando que uma grande força é adicionada a fibra quando esta está inclinada a aproximadamente 45° para aberturas de trinca menor que o diâmetro da fibra, contribuindo pra o aumento no trabalho de fratura calculado.

O aumento da utilização do concreto reforçado por fibras na década de 90 exigiram um avanço das pesquisas para entender melhor o comportamento do compósito e os fatores que o influenciam. Os trabalhos de Evans *et al.* (1989) e Charalambides e Evans (1989) analisaram um novo parâmetro que até o momento havia sido pouco estudado, a energia de fratura da interface. O parâmetro foi analisado em relação a sua influência no processo de descolagem e no comportamento de fibras inclinadas. O processo de descolagem é uma variável de extrema importância determinando o pico máximo da força de ponte, a sua ideal caracterização leva a uma precisão maior da contribuição na tenacidade do compósito.

Baseados na atuação da fibra como ponte de transferência de tensões, Li *et al.* (1991b) estudaram o processo de *pullout* (Figura 15) e propuseram um modelo capaz de determinar o comportamento da tensão de ponte *versus* abertura da trinca após a fissuração (*post-cracking*) em composto de base frágil com fibras aleatoriamente distribuídas. Foram usadas microfibras elásticas com trinca de propagação plana, não considerando efeitos como a deformação localizada na matriz no ponto em que a fibra deixa a matriz (*spalling*) e o efeito de *Poisson*, no entanto, considerou a variação do atrito fibra/matriz com a distância de escorregamento da fibra, obtendo bom resultado no comportamento em *pullout* de fibras de nylon e polipropileno, em que a tensão de cisalhamento aumenta com a distância de escorregamento. Ainda, obteve resultados satisfatórios do comportamento de fibras de aço para a qual a tensão de cisalhamento diminui com a distância de escorregamento. O trabalho trouxe ainda a base matemática para o cálculo do aumento de tenacidade do compósito reforçado por fibras com foco na força de ponte individual de cada fibra, utilizando funções de probabilidade para a distribuição aleatória de fibras e comprimento enterrado.

Figura 15- Fibra em *pullout* para comprimento enterrado *l* e orientação arbitrária

Fonte: Li et al., 1991b.

Para determinar o aumento da tenacidade do compósito pela contribuição individual de cada fibra, outros trabalhos procuraram comprovar a teoria baseados em ensaios experimentais. Lin e Li (1997) e Lin, Kanda e Li (1999) investigaram o comportamento de fibras sintéticas inseridas no concreto. O primeiro modelo usou o atrito da interface proposto por Bao e Song (1993) para um comportamento conhecido como endurecimento ou *slip-hardening*. O segundo considerou parâmetros como tenacidade a fratura interfacial, resistência à tensão de cisalhamento e coeficiente de pós-descolagem. Além dos parâmetros já citados também consideraram a ruptura da fibra e a redução da resistência devido à inclinação da fibra quando esta é puxada para fora da matriz, e concluíram que em casos de ruptura da fibra, a tenacidade à fratura da interface tende a aumentar à resistência a tração, mas diminui a energia de fratura do compósito, bem como a ductilidade.

Mais recentemente, os modelos analíticos tiveram ajuda de softwares matemáticos que propiciaram a inclusão de um número maior de variáveis. Os modelos de Yang et al. (2008) e Parise (2014) aliam a teoria e formulação do concreto reforçado por fibras ao potencial disposto pela evolução não só dos softwares matemáticos como dos computadores em geral. O trabalho de Yang et al. (2008) analisou uma única fibra inserida em matriz cimentícea, criando uma própria lei para o comportamento da tensão de ponte, considerando a distribuição aleatória das fibras, diferentes comprimentos enterrados, tensão de cisalhamento da interface constante, energia de fratura da interface e a fibra inserida por completo na matriz, ou seja, os dois lados da fibra enterrados (Figura 16a), algo proposto por Wang et al. (1988) e que mostra o real comportamento da fibra quando uma trinca surge na matriz. Por fim, o trabalho ainda considerou o micro-spalling na matriz, ou seja, a falha da matriz no ponto de saída da fibra, e o efeito Cook-gordon (Figura 16b), que descreve um descolamento precoce da interface fibra/matriz, que atua normal ao eixo da fibra causado por uma tensão de tração localizada a frente da propagação da trinca quando a fibra esta sob tração. A partir de todas as considerações analisaram a resposta do modelo sobre a influência de alguns fatores como mostra a Figura 16c. O trabalho de Parise (2014) utilizando o software Matcad aplicou a teoria da tensão de ponte, considerando o atrito da interface como *slip-hardening* e a teoria de pequenas deformações, obtendo bons resultados na comparação com o ensaio experimental de Li et al. (1995), estudando o comportamento de fibras sintéticas em pullout. O trabalho também analisou a resposta do concreto reforçado com fibras com extremidade em gancho, mais conhecidas como hooked end, no entanto a teoria prevista para fibras comuns não foi suficiente e a comprovação com ensaio experimental foi realizada através da análise em elementos finitos.

Figura 16- Considerações e resultados para o modelo analítico de Yang et al. (2008)

Fonte: Adaptado de Yang et al., 2008.

2.8 Modelos em elementos finitos

O método dos elementos finitos (MEF) é uma técnica poderosa para resolver problemas de ciência e engenharias, abrangendo diversas áreas entre elas a da análise de estruturas, transferência de calor, mecânica dos fluidos, vibrações e campo magnético, etc. O método consiste na divisão do domínio, em um número finito de pequenas regiões denominadas de elementos finitos, que são interligados através de seus nós. Esta discretização do domínio dá-se o nome de malha.

Os avanços dos *softwares* comerciais que tem por base o MEF como, por exemplo, o ABAQUS, ANSYS, NASTRAN, ADINA entre outros, proporcionaram uma modelagem mais correta em relação à interface fibra/matriz através da utilização de elementos de contato e de interface. A caracterização dos materiais de diversas formas como, linear elástico, multilinear elástico, plasticidade e os critérios de falhas tanto da matriz como da fibra também ajudaram a melhor representar o real comportamento do concreto reforçado com fibras a partir da correta determinação da força de ponte.

Basicamente os modelos em elementos finitos podem ser classificados pela maneira de representar a falha da interface, pois deve haver uma lei constitutiva que defina o deslocamento relativo entre fibra e matriz. Assim os modelos podem ser classificados em duas categorias (Naaman *et al.* 1991 e Kim e Mai 1998): (1) Abordagem baseada no critério

de resistência ao cisalhamento, onde o descolamento ocorre quando a tensão de cisalhamento na interface atinge a resistência ao cisalhamento da interface, como os modelos de Li e Mobasher (1998), Torres *et al.* (2007) e Krasnikovs *et al.* (2012) e (2) em relação ao critério de energia, para que a descolagem aconteça, a taxa de liberação de energia potencial da interface tem de chegar a um valor crítico, ou seja, a tenacidade à fratura da interface, como por exemplo, os trabalhos de Marotzke e Qiao (1996) e Pupurs e Varna (2012).

O MEF também proporciona uma melhor análise visual (Figura 17) sobre o problema em estudo, o que não acontece tão facilmente no modelo analítico. Além disso, através de linguagens de programação (Fortran, Matlab, APDL, Python) é possível otimizar o tempo de simulação avaliando diversos parâmetros influentes de forma organizada e sem a necessidade de contar com a presença do usuário o tempo todo.

Figura 17- Modelo em elementos finitos de uma única fibra enterrada em matriz de concreto.

Fonte: Krasnikovs et al., 2012.

O principal objetivo na utilização do MEF é representar mais corretamente o comportamento da interface. Nesse sentido, há basicamente duas formas de simular a interação fibra-matriz:

 a) Elementos de contato: representam a interface como uma fundação elástica onde pode ser necessário especificar alguns parâmetros como: rigidez de contato normal e tangencial, limite de penetração, algoritmo de contato, local de contato (centro do elemento ou no nó), entre outros. O uso dessa opção proporcionou bons resultados nos trabalhos de Pupurs e Varna (2012) utilizando um modelo 3D analisando o *pullout* de fibras de carbono da matriz de epóxi e no trabalho de Galushchack e Kononova (2013) comparando a retirada de fibras de aço da matriz de concreto sobre diversos ângulos de inclinação e comprimento enterrado com ensaios experimentais.

b) Elementos de interface: são formados pela duplicação dos nós, um da fibra outro da matriz, e realizam o deslocamento relativo entre as superfícies. Os elementos de interface na maior parte das vezes estão atrelados ao uso dos modelos de zonas coesivas (CZM), que consiste em uma relação constitutiva entre as trações T agindo na interface e as correspondentes distâncias de separação Δ (deslocamentos necessários para separar a interface).

Embora, dependa do *software* utilizado, os elementos de contato também podem utilizar a CZM. Na literatura são encontrados diversos trabalhos com a aplicação dos elementos de interface, como Li e Mobasher (1998), Lin *et al.* (2001), Pochiraju *et al.* (2001), Tsai *et al.* (2004), Alfano e Sacco (2006) e Bheemreddy *et al.* (2013).

Os modelos em elementos finitos reproduzem de maneira mais realística o comportamento da fibra em *pullout*, assim, para problemas complexos como o cálculo da tenacidade, deve haver uma divisão dos trabalhos, modelando matematicamente uma parte e extraindo o máximo da simulação criando a chamada modelagem computacional. Como pode-se perceber, alguns parâmetros sobre os mecanismos envolvidos no aumento da tenacidade ainda não tem a atenção merecida, como os casos do efeito *spalling* e principalmente da distribuição de pressão na interface. A utilização do MEF é uma boa opção na busca por respostas sobre a influência desses fatores.

2.8.1 Modelo de zonas coesivas

O modelo de zonas coesivas (Cohesive zone model - CZM) é uma técnica que segundo Kawashita e Hallet (2012) combina o conceito clássico da mecânica da fratura, do critério da taxa de alívio de energia de deformação crítica para a propagação da trinca com a mecânica do dano assumindo uma zona a frente da ponta da trinca, onde uma perda gradual e irreversível da rigidez do material é observada. Este conceito originalmente proposto por Dugdale (1960) e Barenblatt (1962) é usualmente utilizado para simular a fratura de compósitos sob cargas estáticas, dinâmicas e cíclicas. Entre os pioneiros da implementação da

técnica de zonas coesivas em elementos finitos para modelar a falha da interface em compósitos reforçados por fibras, estão: Alfano e Crisfield (2001), Camanho *et al.* (2003), Borg *et al.* (2004) e Jiang *et al.* (2007).

Para exemplificar o funcionamento da técnica, considere que o domínio Ω mostrado na Figura 18 é dividido em dois subdomínios, ou seja, Ω_1 e Ω_2 , por um contorno de descontinuidade do material Γ_c . Este contorno define a interface entre os domínios Ω_1 e Ω_2 e representa uma superfície interna ainda não separada. Na formulação mais simples e mais comum do modelo de zonas coesivas, quando trações prescritas, f_i , são aplicas no contorno Γ_f , todo o volume do corpo permanece elástico, enquanto a não linearidade é incorporada na lei coesa que dita às condições de contorno ao longo da linha de fissura, Γ_c (Figura 18). A tensão de pico na lei coesiva é a tensão de coesão, σ_{cr} , do material ao passo que a área sob a curva é a energia de fratura coesiva, G_c . Como consequência, o processo de fratura, pode ser resumido como mostrado na Figura 18b: (I) em primeiro lugar uma resposta do material elástico linear prevalece, (II) conforme a carga aumenta inicia-se a trinca ($T = \sigma_{cr}$), (III) em seguida, regida pela lei não linear coesa (curva de amolecimento - *softening curve*), que evolui do início até completar a falha (IV) com o aparecimento de novas superfícies de trincas livres de tração, Γ_c^- e Γ_c^+ .

Fonte: Adaptado de Alfano et al., 2009.

3 METODOLOGIA

Este capítulo apresenta a metodologia aplicada para calcular o aumento da tenacidade à fratura do compósito reforçado por fibras, bem como, os meios utilizados para quantificar o *spalling* e determinar a distribuição de pressão na interface. Primeiramente, é mostrada a modelagem matemática para o cálculo do aumento da tenacidade baseada no modelo analítico de Li *et al.* (1991b), utilizando a relação entre tensão de ponte e a abertura de trinca (*bridging stress – crack opening*). Em segundo, baseado nas considerações feitas, um modelo em elementos finitos é criado para simular a fibra em *pullout*. A interface fibra/matriz é representada através dos elementos de contato, juntamente com o modelo de zonas coesivas, onde especifica-se um comportamento para a tensão de cisalhamento em função do deslocamento de forma a caracterizar a degradação da interface. No pósprocessamento o efeito *spalling* e a distribuição de pressão na interface são analisados utilizando o MEF. Por fim, o capitulo apresenta o procedimento computacional criado com o objetivo de gerenciar os arquivos de entrada para o programa em elementos finitos, alterando os parâmetros e possibilitando realizar uma grande quantidade de simulações.

3.1 Relação tensão de ponte - abertura de trinca $\sigma_c - w$

Li *et al.* (1991b) propôs um modelo analítico capaz de descrever o aumento da tenacidade do compósito a partir da contribuição individual de cada fibra. Considerando uma distribuição aleatória de fibras na matriz e a posição da fibra em relação à superfície fraturada através de funções de probabilidade.

A Figura 19 mostra o modelo proposto em um instante antes da abertura da trinca onde esta a fibra de raio r_f (ou diâmetro d_f) e comprimento L_f arbitrariamente localizada com seu centroide a uma distância z da superfície fraturada e com um ângulo de orientação θ . L_e é o comprimento enterrado que deve ser sempre positivo e l_0 o comprimento descolado.

Pela Figura 19, pode-se notar que o comprimento enterrado pode ser escrito como,

$$L_e = \frac{L_f}{2} - \frac{z}{\cos\theta} - l_0 \tag{8}$$

Observando l_0 temos que,

$$\tan(90-\theta) = \frac{r_f}{l_o} \tag{9}$$

Figura 19- Configuração inicial do modelo antes da abertura da trinca

Pelas relações trigonométricas,

$$l_0 = r_f \tan \theta \tag{10}$$

Substituindo (10) em (8),

$$L_e = \frac{L_f}{2} - \frac{z}{\cos\theta} - \frac{d_f \cdot \tan\theta}{2}$$
(11)

Por fim, para $L_e > 0$,

$$0 < z < \frac{L_f}{2} \cos \theta - \frac{d_f \cdot sen\theta}{2} \tag{12}$$

Da mesma forma que Li *et al.* (1991b) adota-se um distribuição aleatória uniforme para a posição da fibra inserida na matriz, logo a função densidade de probabilidade p(z) é escrita pela Eq. 13 dentro do intervalo estipulado na Eq. 12.

$$p(z) = \frac{2}{L_f} \quad \text{para} \quad 0 \le z \le \frac{L_f \cos(\theta) - d_f \sin(\theta)}{2} \tag{13}$$

Para a orientação aleatória da fibra, considera-se que esta está dentro de uma superfície esférica, como mostra a Figura 20. Logo, a distribuição significa a probabilidade da parte final da fibra que esta enterrada estar em algum ponto desta superfície. Li *et al.* (1991b) ainda sugere que,

$$\theta \le \frac{\pi}{2} \tag{14}$$

No entanto, observando a Figura 19 verifica-se que o ângulo de inclinação da fibra que realmente contribuirá com a tenacidade é limitado por,

$$\theta < \arctan \frac{L_f}{d_f} \tag{15}$$

Assim, a função densidade de probabilidade para a orientação da fibra mostrada na Figura 20 tem seus limites dados por,

$$p(\theta) = sen(\theta) \quad \text{para} \quad 0 \le \theta \le arctg\left(\frac{\mathbf{L}_f}{d_f}\right)$$
 (16)

Figura 20- Probabilidade do ângulo de inclinação usando uma superfície esférica

Fonte: Lee et al. 2011.

Agora, quando uma trinca surge na matriz com um número dn de fibras com orientação θ para $\theta + \Delta \theta$ e localizadas em z para $z + \Delta z$ na superfície fraturada, a força de transferência agindo no compósito pode ser calculada por,

$$dn = n_t p(\theta) d\theta p(z) dz \quad para \quad \begin{cases} 0 \le \theta \le \operatorname{arctg}(L_f/d_f) \\ 0 \le z \le (L_f \cos(\theta) - d_f \operatorname{sen}(\theta))/2 \end{cases}$$
(17)

onde n_t é o número total de fibras na matriz de volume $A_c L_f$ que contem a força de ponte das fibras no plano de fratura da matriz de área A_c . Logo,

$$n_{t} = \frac{Volume \ total \ de \ fibras}{Volume \ por \ fibra} = \frac{A_{c}L_{f}V_{f}}{L_{f}A_{f}} = \frac{A_{c}V_{f}}{A_{f}}$$
(18)

onde A_f é a área da seção transversal da fibra e V_f é a fração volumétrica de fibras. Como mostra a Eq. 17 as variáveis $z \in \theta$ são independentes. Logo, para calcular a força total transmitida na abertura da trinca (w), é necessário analisar a força de ponte N (perpendicular a superfície fraturada) de cada fibra com um comprimento enterrado L_e e orientada a θ . Além disso, é claro que esta força de ponte muda com o aumento da abertura de trinca devido aos esforços na interface fibra/matriz, logo, pode-se concluir que N também depende de w e assim, $N(w, \theta, z)$.

Para definir a tensão transmitida pela abertura da trinca na seção fraturada, a contribuição de cada fibra que age como ponte de transferência é levada em consideração. Então, para cada abertura de trinca *w*, a tensão de ponte é dada por,

$$\sigma_{c}(w) = \frac{F}{A_{c}} = \frac{V_{f}}{A_{f}} \int_{0}^{\arctan(L_{f}/d_{f})} \int_{0}^{(L_{f}\cos(\theta) - d_{f}\sin(\theta))/2} N(w,\theta,z) p(\theta) p(z) dz d\theta$$
(19)

3.1.1 Aumento da energia de fratura G_c

O aumento de energia de fratura G_c , é encontrada através da área formada pela curva $\sigma_c - w$, ou seja, a integral da Eq. 19 em relação à abertura da trinca.

$$\mathbf{G}_{c} = \int_{0}^{w^{*}} \sigma_{c}\left(w\right) dw = \int_{0}^{w^{*}} \frac{V_{f}}{\mathbf{A}_{f}} \int_{0}^{\arctan(L_{f}/d_{f})} \int_{0}^{(L_{f}\cos(\theta) - d_{f}\sin(\theta))/2} \mathbf{N}(w,\theta,z) p(\theta) p(z) dz d\theta dw$$
(20)

onde w é uma abertura suficiente para que todas as tensões nas fibras estejam zeradas (fibras quebradas ou completamente retiradas da matriz).

3.2 Modelo em elementos finitos

Baseado na teoria apresentada na subseção anterior percebe-se que a chave para o correto cálculo do aumento da tenacidade está na determinação da relação força de ponte N e abertura da trinca w que é obtida através do ensaio de *pullout* de uma única fibra a uma distância z da superfície fraturada e orientação θ . Assim, através do método dos elementos finitos procura-se encontrar este valor mais corretamente. A simulação do ensaio de *pullout* fornece a força de reação resultante em cada lado da matriz, ou seja, a força de ponte.

O modelo 3D (Figura 21) é criado através da linguagem de programação ANSYS Parametric Design Language (APDL) do software comercial ANSYS 11.0.

Figura 21- Modelo em elementos finitos e deslocamentos aplicados

O código para gerar um modelo genérico segue basicamente os seguintes processos:

- Dados de entrada: nesta etapa são informadas todas as propriedades mecânicas e geométricas da fibra, matriz e interface (propriedades do contato) e claro, os parâmetros utilizados para o modelo matemático, ou seja, o comprimento enterrado, ângulo de inclinação e a abertura da trinca.
- Geometria: a partir dos dados iniciais, a geometria do modelo é definida. No modelo proposto à superfície fraturada é a que sofre inclinação enquanto a fibra permanece horizontal, como mostra a Figura 21.
- Malha: a malha de todos os modelos é criada por *sweep*, uma vez que a geometria é irregular. A convergência da malha é mostrada na subseção 4.1.3.
- Materiais: as propriedades mecânicas inseridas nos dados de entrada são repassadas ao modelo.
- Contato: o algoritmo de contato, *penalty function*, apresentou os melhores resultados e maior casos de convergência, sendo este utilizado. Apenas o lado esquerdo possui contato, os volumes de fibra e matriz do lado oposto são unidos,

o que evita o escorregamento indesejável de ambos os lados e principalmente diminui a área de contato melhorando a convergência da solução.

- Carregamento: no modelo são aplicados deslocamentos de forma vetorial em X e Y com um deslocamento resultante igual a metade da abertura de trinca (w/2) para cada um dos lados. Além disso, é aplicada a simetria ao modelo também buscando diminuir a área de contato.
- Solução: alguns parâmetros como número de interações, incremento de tempo são alteradas buscando a convergência da solução.
- Pós-processamento: *scripts* secundários em APDL são chamados pelo principal analisando os resultados, como, força de ponte, *spalling* na matriz e a distribuição de pressão na interface. Além disso, exporta os resultados em diretórios prédefinidos o que facilita uma análise posterior.

3.2.1 Interface fibra/matriz

Neste trabalho o modelo de zonas coesivas bilinear proposto por Alfano e Crisfield (2001) é utilizado através do *software* ANSYS para representar o comportamento da interface durante o processo de *pullout* em conjunto com o modelo $\tau(s)$, que é a tensão de contato tangencial na interface em relação a distância de escorregamento *s*. Lembrando que esse modelo depende do tipo de fibra como visto na subsecção 2.4 deste trabalho.

A separação de superfícies no ANSYS pode ser modelada de duas formas: (1) Através da aplicação direta de elementos de interfaces e o modelo de zonas coesivas (CZM) e (2) com elementos de contato, com a opção de contato *bonded* e a CZM como material. Em ambos os casos, há a opção de relacionar as trações agindo na interface com as distâncias de separação normal e tangencial ou em relação às energias críticas de fratura nos modos de falha I e II.

Neste trabalho a segunda opção é utilizada, uma vez que a geometria irregular da região de contato criado pela fibra cilíndrica dificulta o uso de elementos de interface, além disso, o modelo utiliza as energias de fratura críticas como critério de separação já que são dados mais utilizados por outros modelos sendo mais fácil estimá-las.

Figura 22- Modelo de zonas coesivas bilinear

Fonte: Adaptado de Demir et al. 2014.

A Figura 22 mostra o comportamento bilinear do material da zona coesiva. Entre os pontos AO é a zona de carregamento elástico linear e quando o ponto A é alcançado, ou seja, a máxima tensão normal σ_{max} , a descolagem é iniciada entre as duas superfícies. Entre os pontos AC o comportamento linear *softening* é dado pelo decaimento gradual da tensão de contato normal até atingir o valor zero no ponto C, onde a descolagem é completa. A inclinação da reta AC caracteriza como será este decaimento da tensão normal de contato, indicando o tipo de fratura, frágil ou dúctil. Após iniciada a descolagem presume-se que esta seja cumulativa, ou seja, qualquer descarregamento e subsequente carregamento ocorrem de forma linear ao longo da linha OB com uma inclinação mais gradual.

A equação que descreve a curva OAC é dada por:

$$\sigma = K_n u_n (1 - d_m) \tag{21}$$

onde, σ é a tensão de contato normal, K_n é a rigidez de contato normal, u_n distância normal de separação e d_m é o parâmetro de descolagem no modo misto, ou seja, descolagem nas direções normal e tangencial e pode ser escrito como,

$$d_{m} = \left(\frac{\Delta_{m} - 1}{\Delta_{m}}\right) \chi \quad \begin{cases} d_{m} = 0 \quad para \quad \Delta_{m} \leq 1\\ 0 < d_{m} \leq 1 \quad para \quad \Delta_{m} > 1 \end{cases}$$
(22)

onde:

$$\Delta_m = \sqrt{\Delta_n^2 + \Delta_t^2} \quad , \quad \Delta_n = \frac{u_n}{u_n} \quad e \quad \Delta_t = \frac{u_t}{u_t} \tag{23}$$

e,

$$\chi = \left(\frac{u_n^c}{u_n^c - \overline{u_n}}\right) = \left(\frac{u_t^c}{u_t^c - \overline{u_t}}\right)$$
(24)

Finalmente, $\overline{u_n} e \overline{u_t}$ são as distâncias de separação no instante de máxima tensão normal e tangencial, respectivamente, e $u_n^c e u_t^c$ são as distâncias de separação normal e tangencial para a completa descolagem, respectivamente.

A tensão de contato tangencial é definida como,

$$\tau = K_t u_t (1 - d_m) \tag{25}$$

onde, τ é a tensão de contato tangencial (tensão de cisalhamento), K_t é a rigidez de contato tangencial e u_t distância de separação tangencial.

Para o modo misto de descolagem, ambos os esforços de contato, normal e tangencial, contribuem para a energia de fratura total e a descolagem é completa quando atinge um valor crítico de energia de fratura ($G_{cn} \ e \ G_{ct}$), assim um critério baseado na energia é usado para definir a completa descolagem:

$$\left(\frac{G_n}{G_{cn}}\right) + \left(\frac{G_t}{G_{ct}}\right) = 1$$
(26)

onde:

$$G_n = \int \sigma du_n \quad e \quad G_t = \int \tau du_t \tag{27}$$

são, respectivamente, as energias de fratura normal e tangencial.

3.2.2 Elementos utilizados

O *software* ANSYS possui um grande número de elementos para as mais diversas aplicações. O elemento isoparamétrico tridimensional de oito nós solid65 (Figura 23), é utilizado para modelar a matriz de concreto. O elemento é capaz de trincar (*cracking*), nas três direções ortogonais, esmagar (*crushing*), deformar plasticamente e fluir (sofrer fluência). O comportamento linear e não linear do material é dado pela relação tensão-deformação para o concreto em compressão, módulo de elasticidade (*E*) e o coeficiente de Poisson (v).

Figura 23- Elemento Solid65

Fonte: Adaptado de ANSYS, 2007.

O elemento solid45, também com oito nós, representa a fibra de comportamento linear elástico (E, v). O contato entre as superficies, ou seja, a interface fibra/matriz é simulada pelo par de contato CONTA174 e TARGET170, como mostra a Figura 24. Segundo ANSYS (2007) a superfície de "contato" (*contact*) deve ser sempre a que apresentar a menor rigidez, neste caso a matriz, e a superfície "alvo" (*target*) a fibra com uma rigidez superior. Este tipo de definição é importante e parte de um conceito básico de que todos os materiais deformam, no entanto, de maneiras diferentes, por exemplo, plasticamente e linearmente.

O contato é o principal ponto de não convergência da solução, fatores como a malha, algoritmo de contato, penetração inicial, região de *pinbal* entre outros são difíceis de controlar ou determinar um padrão para o modelo, logo, fixa-se alguns destes parâmetros e estuda-se a influência dos demais sobre a convergência.

Figura 24- Definição das superfícies de contato

Fonte: Adaptado de ANSYS, 2007.

3.2.3 Critério de falha para o concreto e quantificação do spalling na matriz

O modelo de material do elemento solid65 (*concrete*) é definido pelo critério de cinco parâmetros de William-Warnke (1975) (ANEXO A) utilizado para representar a trinca ou esmagamento do material. O elemento possui oito pontos de integração de Gauss em que a fissura e esmagamento são analisados, comportando-se de maneira linear elástica até a resistência a tração ou a compressão especificada ter seu limite excedido.

Uma projeção no plano da superfície de falha do concreto é mostrada na Figura 25. As tensões principais mais significativas são diferentes de zero nas direções X e Y, representadas por σ_{xp} e σ_{yp} , respectivamente. Três superfícies de falha são mostradas como projeções sobre o plano $\sigma_{xp} - \sigma_{yp}$. O modo de falha é uma função do sinal de σ_{zp} (tensão principal na direção z). Por exemplo, se σ_{xp} e σ_{yp} são ambas negativas (compressão) e σ_{zp} é positiva (tensão), a trinca (*cracking*) é prevista em uma direção perpendicular a σ_{zp} . Entretanto, se σ_{zp} é zero ou negativo, assume-se que o material está esmagado (*crush*) (ANSYS, 2007).

Figura 25-Projeção no plano da superfície de falha para o concreto

Fonte: Adaptado de ANSYS, 2007.

Através da superfície de falha do concreto o ANSYS identifica o *status* de cada elemento solid65. Com um total de dezesseis combinações (Quadro 1) possíveis, o *status* é obtido para cada uma das três direções principais e pode ser classificado em quatro tipos: *Crushed*- indica que o elemento está esmagado, *Open*- o sólido está trincado e a trinca esta aberta, *Close*- o sólido está trincado e a trinca está fechada e *Neither*- o sólido nem está esmagado nem trincado.

Status	Status na direção 1	Status na direção 2	Status na direção 3	
1	Crushed	Crushed	Crushed	
2	Open	Neither	Neither	
3	Closed	Neither	Neither	
4	Open	Open	Neither	
5	Open	Open	Open	
6	Closed	Open	Open	
7	Closed	Open	Neither	
8	Open	Closed	Open	
9	Closed	Closed	Open	
10	Open	Closed	Neither	
11	Open	Open	Closed	
12	Closed	Open	Closed	
13	Closed	Closed	Neither	
14	Open	Closed	Closed	
15	Closed	Closed	Closed	
16	Neither	Neither	Neither	

Quadro 1- Status de elementos do concreto

Fonte: Adaptado de ANSYS, 2007.

Com a possibilidade de identificar os elementos danificados na matriz, o *spalling* pode ser quantificado assim como a evolução do dano conforme o aumento da abertura da trinca *w*. Primeiramente, para ser considerado danificado, o elemento deve apresentar os *status Crushed* ou *Open* em qualquer uma das direções principais, posteriormente deve atender a uma destas duas condições: 1) fazer parte dos elementos expostos a superfície fratura (ver Figura 21) e; 2) o elemento ou elementos que fazem fronteira com suas faces já terem sido considerados danificados. Esse procedimento evita que elementos no interior da matriz sejam considerados danificados, já que na realidade mesmo danificado o volume permaneceria sendo utilizando como forma de apoio pelo material ao seu redor, uma vez que não teria forma de sair do interior da matriz. Assim, o modo como o *spalling* inicia e se propaga é quantificado e analisado de forma mais real e sua influência pode ser melhor detectada.

Para quantificar o dano e sua evolução, o volume danificado é o acumulado a cada incremento de abertura (Δw), correspondendo somente aos novos elementos que aparecem danificados na matriz baseados nos critérios já citados. Estes elementos identificados formam uma lista lida pelo ANSYS para que na próxima abertura *w* tenham sua rigidez retirada através do comando EKILL, ou seja, o elemento não terá mais influência sobre o próximo resultado, criando um comportamento mais realístico. O recurso EKILL pode ser acessado através da função *element birth and death* no menu do ANSYS e é utilizado para análise de escavação (como na mineração e túneis), estágios na construção civil, montagem sequencial (como na fabricação de chips de computador em camadas) entre outras aplicações.

Acredita-se que o dano máximo na matriz ocorre até o pico máximo de descolagem que ocorre em w_d , sendo essa a máxima abertura para estudo do *spalling*. No entanto, devido a não convergência da solução em alguns casos, nem sempre o estudo alcançará a abertura máxima ($w_d = w_{max}$). A razão entre o volume acumulado em V(w_{max}) pelo volume total da matriz de concreto expressa o *spalling*.

É importante salientar que o modelo em elementos finitos utilizado para o estudo da força de ponte e posteriormente da tensão de ponte e da tenacidade, não tem a retirada da rigidez dos elementos para reproduzir a propagação do *spalling*, uma vez que esse procedimento dificulta a solução, de forma ainda mais acentuada quando a abertura da trinca é grande. No entanto, o modelo considera a superfície de falha em seus resultados, ou seja, o concreto sofre esmagamento e a fissuração.

3.2.4 Distribuição de pressão na interface

A distribuição de pressão na interface é produzida pelos esforços da fibra inclinada sobre a matriz através de forças como a força cortante e o momento fletor na saída da fibra da matriz. Através dos elementos de contato, pode-se obter a pressão de contato em cada nó de elemento ao longo do comprimento enterrado da fibra.

A Figura 26a mostra como é obtida a distribuição de pressão resultante agindo na interface. Como regra considera-se que se comprimir a região superior da matriz, a pressão é positiva, e se comprimir a região inferior da matriz, a pressão é negativa.

Ainda na Figura 26, a distribuição de pressão circunferencial é representada em torno da circunferência da fibra. Para isso, a pressão normal em cada nó é decomposta em horizontal e vertical (X e Y).

Figura 26- Distribuição de pressão na interface

A distribuição de pressão na interface é um parâmetro ainda pouco estudado nos modelos analíticos e computacionais. O principal ponto de investigação é a forma com que esta distribuição afeta o dano gerado na matriz na região de saída da fibra, sobre a variação das propriedades mecânicas da fibra, matriz e interface além das propriedades geométricas da fibra.

3.3 Procedimento computacional

Um dos principais objetivos em realizar procedimento computacional, ou seja, um algoritmo de controle de atividades, é aumentar a capacidade de autogerenciamento das tarefas, otimizando o tempo de simulação. Entre os *softwares* mais usados para este fim está o MATLAB®, um programa utilizado em diversas áreas, em especial nas engenharias pelo diferencial trabalho com matrizes.

Neste trabalho, é realizada uma interatividade entre MATLAB® R2012a e ANSYS permitindo com que o *software* de gerenciamento, edite o *script* em APDL, leia e organize os dados de saída do ANSYS, bem como, realize um pré-tratamento dos dados para posterior análise. Desta maneira, é possível obter uma quantidade de dados significativa para o cálculo da tenacidade, uma vez que, trabalhando com funções densidade de probabilidade essa quantia seja relevante para aumentar a precisão dos resultados. Todas as sub-rotinas citadas a baixo encontram-se nos APÊNDICES A, B e C deste trabalho, bem como o *script* em APDL no APÊNDICE D.

A Figura 27 mostra o procedimento computacional realizado pelo *software* MATLAB em conjunto com ANSYS para a realização das simulações e obtenção da tenacidade.

Figura 27 - Procedimento computacional - Tenacidade

Primeiramente a sub-rotina *RUN ANSYS_MATLAB.m* é iniciada contendo todos os parâmetros de controle, ou seja, números de ângulos de inclinação (*nt*), comprimentos enterrados (*nz*) e de aberturas (*nw*) entre outros dados de entrada. A sub-rotina lê um *script* padrão sem as variáveis que serão alteradas e reescreve um novo arquivo de texto (*.txt*) preenchendo os parâmetros.

Na sequência, se o valor de *dteta* é igual a 1, tem-se a primeira simulação e assim a criação do arquivo *Nforca.m* (APÊNDICE E) responsável por armazenar os resultados das reações para cada ciclo completo, ou seja, para um dado ângulo de inclinação, um dado comprimento enterrado e todas as aberturas de trinca possíveis. Caso a resposta seja negativa, significa que a simulação esta reiniciando, seja por motivos normais, ou seja, termino do ciclo, ou então por parada não programada, como por exemplo, erro do ANSYS (sobrecarga de tempo de simulação), computador sobrecarregado pelo esforço computacional elevado (falta de memória) e até mesmo quedas de energia.

O pós-processamento do ANSYS contido no *script*, tem um papel fundamental no procedimento proposto. Embora o MATLAB seja muito bom em trabalhos de arquivos de texto, o ANSYS também consegue organizar de forma simples algumas exportações de dados desejados de maneira muito similar ao trabalho com esse tipo de arquivo na linguagem Fortran. Assim, a união no gerenciamento de arquivos é o ponto chave no procedimento aplicado.

A sub-rotina sempre é iniciada com um valor de abertura de 0,1 mm que é considerada a abertura máxima de descolagem tendo assim um bom mapeamento da curva formada. Posteriormente a primeira abertura, segue-se com incrementos de 0,5 mm. Após um ciclo completo a sub-rotina lê o arquivo contendo as forças de reações em cada abertura e interpola valores para um incremento de 0,1 mm, o que é necessário para a integração da Eq. 20. Logo após, os valores são distribuídos na função *Nforca.m* em seus devidos lugares. Concluindo todos os laços e *Nforca.m* completo, pode-se então calcular a tenacidade através da função *Tenacificação.m* (APÊNDICE F).

A Figura 28 mostra o procedimento utilizado para obtenção dos resultados do efeito *spalling*. Mais uma vez, o papel do ANSYS é fundamental na organização dos arquivos de saída, facilitando a posterior análise do MATLAB. Da mesma forma que o procedimento aplicado para obtenção da tenacidade, a simulação começa com uma abertura pequena dentro do comprimento máximo de *spalling* (w_d) e a cada abertura a sub-rotina avalia os arquivos *dano_el.txt* e *dano_ar.txt* gerados pelo ANSYS contendo o número dos elementos danificados, seus volumes e as coordenadas de seus nós. Primeiramente ele identifica se o

elemento esta nas faces de simetria do modelo, logo ele poderia danificar já que esta na superfície fraturada. O restante dos elementos tem suas faces comparadas com os elementos já danificados e armazenados pelo MATLAB, assim evita-se mascarar os resultados com elementos danificados no interior da matriz. Após estas análises somente o volume dos novos elementos danificados são somados.

Para melhor representar o comportamento do dano gerado na matriz, o MATLAB cria uma lista contendo os elementos danificados a cada abertura e cria um arquivo padrão chamado *Ekill_list.txt* lido pelo APDL durante a criação do modelo em MEF. Os arquivos selecionados nessa lista tem sua rigidez retirada de forma a não interferir mais nos resultados. Dessa forma, cria-se uma maneira mais real de simular a propagação do dano.

Por fim, como forma de melhor visualizar os resultados, a sub-rotina cria um arquivo de texto que é lido pelo ANSYS contendo os conjuntos de elementos danificados a cada abertura.

Dados de entrada scrip APDL df, Lf, Vf, Ef, vf, Em, vm, σ-ε concreto, ft, fc Gcn, Gct, σmax, τmax, FKT, FKN, w, θ, Le Solução se time==1 Saida: no pressure teta Le.txt contato teta Le.txt MATLAB Dis pressure.m Dis_pressure.m Funcões: Ler no_pressure_teta_Le.txt Ler contato teta Le.txt Calcular a pressao normal em cada nó Reorganizar os valores por seção e circunferencialmente Escrever Dis_pressure_teta_Le.txt Salvar as figuras dis_p vs Le.fig e Circun.fig FIM

Figura 29- Procedimento computacional - Distribuição de pressão na interface

O último algoritmo utilizado é mostrado na Figura 29. Com o objetivo de analisar a distribuição de pressão na interface, a sub-rotina tem como função principal facilitar a visualização dos resultados criando diversas figuras para esse fim. Como pode-se observar a o procedimento é menor e mais restritivo que os anteriores, visto que, quando o ANSYS roda em *bach mode*, ou seja, em segundo plano, já que esta sendo gerenciado pelo MATLAB, a lista de resultados sobre a pressão de contato (*contato_teta_Le.txt*) é exportada de maneira

não convencional com falhas entre linhas e números soltos ao longo da lista, o que dificultou a leitura pelo MATLAB. Assim, a simulação é iniciada manualmente necessitando apenas rodar a sub-rotina posteriormente a solução para organizar e plotar os resultados.

Na investigação da distribuição de pressão na interface, a abertura aplicada não é maior que a abertura de inicio do *spalling* devido a uma inconsistência dos resultados quando é iniciada a retirada da rigidez dos elementos danificados da matriz. Assim, na maioria dos casos, apenas uma abertura é analisada na distribuição de pressão, sendo esta abertura próxima da abertura de inicio do *spalling*.

Em geral a criação de um procedimento computacional eficiente exige perícia do usuário na linguagem de programação de ambos os programas a serem conectados, mas traz uma série de vantagens como, por exemplo, menor tempo de simulação, maior quantidade de simulações, análise de dados em tempo real, alternância entre variáveis, correção conforme pré-análise de resultados, monitoramento dos resultados através da geração de imagens (figuras), entre outros. Sendo assim, o ideal é combinar o melhor de ambos os *softwares* de forma a trabalhar em alta capacidade de gerenciamento e organização.

4 **RESULTADOS E DISCUSSÕES**

Neste capítulo são apresentados os resultados obtidos no modelo computacional em relação à força de ponte, tensão de ponte, aumento da tenacidade, *spalling* e distribuição de pressão na interface. Além disso, a influência de parâmetros como comprimento enterrado, ângulo de inclinação da fibra, propriedades mecânicas de fibra, matriz e interface, além da geometria da fibra são analisados.

4.1 Validação do modelo proposto – Concreto reforçado com fibras de aço (CRFA)

Nesta subseção é realizada a validação do modelo em elementos finitos procurando determinar mais corretamente a força de ponte necessária para o cálculo do aumento da tenacidade, apontada na Eq. 20 como peça fundamental para a obtenção de resultados mais precisos.

4.1.1 Ensaio experimental

Para validação do modelo proposto, utilizou-se o trabalho experimental de Leung e Shapiro (1999) que investigou o efeito da tensão de ruptura (f_y) de fibras de aço com diferentes ângulos de inclinação. O detalhamento do ensaio e das propriedades mecânicas da fibra e principalmente da matriz de concreto ajudam na reprodução do modelo em elementos finitos e na posterior análise do efeito *spalling*.

Figura 30- Ensaio de *pullout* de Leung e Shapiro (1999): a) Propriedades geométricas das amostras; b) Curva Força de *pullout* N *vs*. deslocamento *w* medida experimentalmente.

Fonte: Adaptado de Fantilli e Vallini, 2007.

O ensaio consiste em dois blocos feitos de Plexiglas (acrílico) e concreto (Figura 30a), respectivamente. Cada fibra inicialmente é inserida no bloco de Plexiglas em três possíveis ângulos ($\alpha = 90^{\circ}$, $\alpha = 60^{\circ}$ e $\alpha = 30^{\circ}$) em seguida a argamassa é colocada em um molde de aço apropriado. As amostras têm aproximadamente 0,05% de fração volumétrica de fibras, cada fibra tem um comprimento enterrado de 10 mm. Durante os ensaios, o diagrama Força de ponte (N) *versus* deslocamento (*w*) é medido, Figura 30b.

Do total de cinco tipos de fibras testadas por Leung e Shapiro (1999), optou-se por conveniência pela simulação da amostra do tipo B. A fibra fabricada a partir da laminação a quente (*hot rolled bar*) tem suas propriedades mecânicas e geométricas, assim como a matriz de concreto, mostradas na Tabela 1, onde f_t e f_c são as resistências a tração e compressão da matriz, que serão utilizadas no modelo de falha de William-Warnke (1975). Além disso, o ANSYS requer a curva tensão-deformação do concreto em compressão, mostrada na Figura 31, com a máxima tensão de compressão igual a f_c . O bloco de Plexiglas tem como propriedades mecânicas $E_p = 3,3$ GPa e $v_p = 0,37$.

Tabela 1-Propriedades geométricas e mecânicas da amostra do tipo B

	Fibra					Mat	riz			
Tipo da	$d_{_f}$	L_{f}	f_y	E_f	V_{f}	_	f_c	f_t	E_m	V_m
amostra	(mm)	(mm)	(MPa)	(GPa)			(MPa)	(MPa)	(GPa)	
В	0,5	20	469	200	0,3		36,5	3,7	30	0,15

Figura 31- Curva tensão-deformação para o concreto em compressão

4.1.2 Modelo $\tau(s)$ para fibras de aço

Neste trabalho a relação entre a tensão de cisalhamento na interface (τ) e o deslocamento (s) é dada pelo modelo τ (s) de Fantilli e Vallini (2003), Figura 32a. A Eq. 28 e 29 representam a relação para os intervalos de deslocamentos dos processos de descolagem e *pullout*, respectivamente. A relação constitutiva é definida por:

$$\tau = \tau_{\max} \left(\frac{s}{s_1}\right)^{0.5} \quad se \quad s \le s_1 \tag{28}$$

$$\tau = \tau_{fin} + (\tau_{\max} - \tau_{fin})e^{k(s_1 - s)} \quad se \quad s > s_1$$

$$\tag{29}$$

onde, τ_{max} é a tensão de cisalhamento máxima, *s* o deslocamento aplicado (ou seja, igual a *w*), *s*₁ o deslocamento máximo para descolagem, τ_{fin} é a tensão de cisalhamento mínima e *k* um coeficiente. Estes três últimos parâmetros dependem do tipo de fabricação da fibra e tem seus valores ótimos mostrados na Figura 32b, onde *f_c* é a resistência a compressão da matriz.

Figura 32- a) Relação $\tau(s)$; b) parâmetros ótimos para diferentes tipos de fibras

Fonte: Adaptado de Fantilli and Vallini, 2007.

A interface modelada por elementos de contato juntamente com o modelo de zonas coesivas de Alfano e Crisfield (2001) é função das tensões normal e tangencial agindo na interface e das energias de fratura críticas também nas direções normal e tangencial. A tensão normal adotada foi de 3 MPa, e ambas as energias de fratura de 5 J/m². Na literatura são raros

os trabalhos experimentais em que este tipo de propriedade é medido devido à complexidade do ensaio, no entanto, acredita-se que os valores estimados estão dentro de uma faixa aceitável. A tensão de cisalhamento tem seu comportamento dado pela Eq. 28 e 29, assumindo uma tensão de cisalhamento máxima (τ_{max}) de 3 MPa.

Em um instante inicial das simulações, principalmente quando o ângulo de inclinação entre fibra e superfície fraturada é pequeno, a não convergência da solução era constante, o que obrigou a mudança da rigidez de contato normal e tangencial. O ANSYS prevê esta mudança em casos de não convergência e permite alterar a rigidez por completa, inserindo um valor, ou apenas multiplicando a rigidez atual por um fator, FKN para rigidez normal e FKT para rigidez tangencial, sugerindo que os fatores fiquem dentro do intervalo de 0,01 a 1. Considerando que FKT=FKN, a Tabela 3 mostra os valores adotados para o fator que altera a rigidez, simplesmente chamado agora de FK, para diferentes ângulos de inclinação e também para os diferentes processos, descolagem e *pullout*, uma vez que para grandes deslocamentos aplicados, como no caso do processo de *pullout*, a alta rigidez impossibilita a convergência. Para a fibra em *pullout* em $\alpha = 30^\circ$, o fator fora dos limites sugeridos pelo ANSYS foi à única solução para obtenção da curva completa de N-w.

α	Descolagem	Pullout
90°	0,1	0,01
60°	0,1	0,01
30°	0,01	0,005

Tabela 2-FK para diferentes ângulos de inclinação e processos

4.1.3 Convergência da malha

Há uma série de fatores que influenciam na qualidade de um resultado de simulação, como por exemplo, tamanho da malha, tipos de elementos, números de pontos de integração em cada elemento, entre outros.

Uma das atividades mais importantes durante a criação do modelo em elementos finitos é a geração da malha. Sabe-se que o número de elementos e consequentemente de nós, dentro de uma análise em elementos finitos pode diferenciar um resultado aceitável de um desprezível.

Neste trabalho, criaram-se cinco tamanhos de malhas diferentes e analisou-se sua influência diante do surgimento de um único elemento danificado, conforme critérios citados na subseção 3.2.3. Acreditando que o surgimento do *spalling* é um fenômeno que demanda maior atenção da malha, optou-se por tratar este parâmetro como base para os demais. Assim, utilizando um ângulo 30° entre a superfície fraturada e a fibra o *spalling* é analisado. Conforme o modelo em elementos finitos mostrado na Figura 21, o número de divisões das linhas nas direções X, Y e Z do modelo foram alterados como mostra Tabela 3.

Divisões em	Divisões em	Divisões em	N°	Abertura de início de
Х	Y	Z	elementos	<i>spalling</i> w _i [mm]
30	15	6	5400	0,008
36	16	6	6912	0,006
36	18	6	7776	0,002
36	18	8	10368	0,002
40	18	8	11520	0,002

Tabela 3- Análise de convergência da malha – início do spalling

Como pode-se notar, a partir de determinada quantidade de elementos a abertura de início de *spalling* não muda, ou seja, a malha é um fator que não mais influência diretamente no resultado, esse fenômeno é chamado de convergência da malha. Assim, pode-se adotar as divisões de 36, 18 e 6 para as correspondentes linhas nas direções X, Y e Z.

4.1.4 Resposta Força de ponte vs. Abertura da trinca N-w

A Figura 33 mostra a comparação entre os resultados experimental e numérico para as curvas da força de ponte *versus* deslocamento *w* para os diferentes ângulos de inclinação. Optou-se por não manter a convenção utilizada pelo ensaio em relação ao ângulo de inclinação, utilizando dessa forma seu ângulo complementar chamado de θ conforme geometria utilizada na modelagem matemática mostrada na Figura 19. Na Figura 33a a amostra com a fibra alinhada ($\theta = 0^\circ$) tem boa aproximação com o resultado experimental mostrando um decaimento continuo da força de ponte. A curva N-*w* mostra que a resposta do modelo esta dentro do intervalo medido experimentalmente, apontando a correta estimativa dos parâmetros interfaciais.

Figura 33- Comparação entre o resultado do modelo em elementos finitos e os ensaios experimentais; a) $\theta = 0^{\circ}$; b) $\theta = 30^{\circ}$; c) $\theta = 60^{\circ}$

Quando a fibra não esta alinhada ($\theta \neq 0^{\circ}$) a comparação em geral apresentou bom resultado. Entretanto, em $\theta = 60^{\circ}$ ocorre excesso de penetração do modelo em elementos finitos, dificultando a solução e chegando a um deslocamento máximo menor do que o ideal, como mostra a Figura 33c. Neste caso, é evidente o problema de contato. Alguns parâmetros como, por exemplo, penetração, deslizamento (*sliding*), rigidez normal e tangencial, interagem entre si e impossibilitam um controle maior sobre a região de contato. Em ambos os casos o modelo não conseguiu reproduzir o aumento da força de ponte na parte final da curva N-w, esse efeito acontece quando o comprimento enterrado da fibra fica cada vez menor, então a rigidez de flexão aumenta significativamente, o que dificulta dobrar a parte ainda enterrada da fibra. Em alguns casos, ao invés de dobrar, a fibra gira como um cilindro curto e rígido arrancando partes da matriz como mostra Figura 34. Outro detalhe são as ranhuras deixadas na fibra no momento do giro.

A Figura 35 mostra a comparação da máxima força de ponte para cada ângulo de inclinação. Nos resultados experimentais utilizou-se a média das curvas de Leung e Shapiro (1999) e nos resultados obtidos no modelo o valor corresponde na máxima abertura de descolagem, ou seja, w_d =0,1 mm.

Os resultados apresentam boa correspondência com os valores obtidos experimentalmente. A máxima força de ponte é um importante parâmetro a ser determinado,

pois sabe-se que a tensão de ponte e consequentemente a tenacidade são dependentes da força de ponte e a aproximação com cada ponto dos resultados experimentais aumenta a precisão dos resultados.

Figura 34- Pedaços da matriz ligada a parte final da fibra inclinada

Fonte: Leung e Shapiro, 1999.

Figura 35- Comparação entre os resultados do modelo proposto e os ensaios experimentais de Leung e Shapiro (1999)

Outro parâmetro analisado a partir das curvas obtidas nos ensaios experimentais é o chamado trabalho de *pullout*, que é a área sobre a curva N-w. Em relação ao problema de contato, o fato influenciou consideravelmente quando o trabalho de *pullout versus* o ângulo de inclinação é analisado comparando os resultados experimental e numérico como mostra a Figura 36. Fica evidente que o decaimento precoce da curva quando $\theta = 60^{\circ}$ deixa de contribuir ficando fora do trabalho de *pullout* dos dois pontos que representam os extremos encontrados nos ensaios experimentais. Os outros ângulos de inclinação apresentam bons resultados. Quando a fibra esta alinhada os mecanismos da fibra em *pullout* são menos intensos e o trabalho de *pullout* é basicamente dependente do processo de descolagem com pouca contribuição do atrito da interface. No entanto, a fibra inclinada precisa de uma energia maior para dobrar e deformar, ou seja, é necessário um aumento do trabalho para retirar a fibra da matriz.

Figura 36- Comparação do trabalho de *pullout vs.* ângulo de inclinação para o modelo proposto e os ensaios experimentais de Leung e Shapiro (1999)

4.2 Tensão de ponte – abertura de trinca $\sigma_c - w$

Os resultados encontrados no modelo em elementos finitos em relação a força de ponte, apontaram bons resultados, o que espera-se refletir nos resultados da tensão de ponte e consequentemente da tenacidade. Nesta seção, são mostrados os parâmetros utilizados nas simulações para obtenção da tensão de ponte e os comparativos realizados entre propriedades geométricas e mecânicas da fibra.

4.2.1 Parâmetros e simulações

A partir da modelagem mostrada na subseção 3.1 deste trabalho, definiram-se os parâmetros a serem utilizados nas funções densidades de probabilidade, como mostra Tabela 4. A partir destes parâmetros são definidas as simulações e posteriormente o cálculo da tensão de ponte como mostra a Eq. 19.

Os parâmetros são inseridos na programação em MATLAB para que sejam alterados automaticamente pelo procedimento criado para a tenacidade e claro, para a tensão de ponte. Com a utilização do procedimento computacional a alternância entre varáveis acontece de forma simples, rápida e sem a presença do usuário. Dessa forma foi possível realizar um total de aproximadamente 8000 simulações para traçar o comportamento da tensão de ponte *versus* a abertura *w* considerando os demais parâmetros investigados como as propriedades geométricas e mecânicas da fibra.

Parâmetros	Intervalos	Quantidade
θ [°]	0: 5: 60	13
Z [mm]	0: 1: 9	10
<i>w</i> [mm]	0: 0,1: 10	100

Tabela 4- Parâmetros utilizados na modelagem

Para todas as simulações foram utilizadas as mesmas propriedades interfaciais citadas na validação do modelo em elementos finitos na subseção 4.1, bem como as propriedades mecânicas da matriz (ver Tabela 1) incluindo curva tensão x deformação para o concreto em compressão (Figura 31) e a fração volumétrica de fibras. Tanto no estudo da

tensão de ponte, como da tenacidade, não foram analisadas as tensões na fibra, logo, a fibra foi considerada efetiva durante os processos de descolagem e *pullout*. Este parâmetro será avaliado juntamente com o *spalling* quando considera-se a rigidez na interface padrão (sem alterações na rigidez) proporcionando resultados mais confiáveis.

4.2.2 Influência do diâmetro da fibra - d_f

Utilizando a Eq. 19 é possível obter os resultados da tensão de ponte sobre a influência das propriedades geométricas da fibra. A Figura 37 mostra a resposta do compósito reforçado com fibras de aço de diferentes diâmetros. Em todos os casos o compósito tem a mesma fração volumétrica de 0,05% permitindo uma melhor comparação. O diâmetro da fibra é um importante parâmetro a ser analisado, visto a diversidade de opções disponíveis no mercado para esta questão. As demais propriedades utilizadas na simulação são mostradas na Figura 37. Percebe-se que quanto menor o diâmetro da fibra maior é a tensão de ponte, ou seja, as fibras menores oferecem uma resistência maior do compósito a propagação da trinca.

A inserção de fibras mais grossas em compósitos, ao contrário do que se espera, não apresenta uma tensão de ponte maior, isso porque, observando a Eq. 19, é possível perceber que a relação entre área da seção transversal da fibra é inversamente proporcional a tensão de ponte, logo, explica-se a relação apresentada na Figura 37.

Figura 38- Força de ponte para diferentes ângulos de inclinação e comprimentos enterrados de fibras de 0,25 mm e 0,75 mm

Também é possível observar na Figura 37, que as fibras mais grossas permanecem por maiores aberturas com uma tensão de ponte alta, não caindo gradativamente como a fibra de menor diâmetro. Esse comportamento também chamado de endurecimento ou *hardening* realizado pela fibra de maior diâmetro ocorre devido a uma dificuldade natural de dobrar a fibra durante a saída matriz e pode ser visto mais claramente pela Figura 38d. Este fato faz com que haja um aumento da força de ponte necessária para retirar a fibra. O comportamento também depende do comprimento enterrado e do ângulo de inclinação como já havia apontado Leung e Shapiro (1999) em seu trabalho experimental Na Figura 38 o comparativo realizado entre as duas fibras, mostra que o comportamento é significativamente alterado conforme aumenta o ângulo de inclinação da fibra em ambos os diâmetros. Como o objetivo era comparar o comportamento das curvas, não foi requisito a utilização dos mesmos comprimentos enterrados em ambos os diâmetros.

4.2.3 Influência do módulo de elasticidade da fibra - E_f

O módulo de elasticidade da fibra é outro fundamental parâmetro para determinação das propriedades ótimas do aumento da resistência e tenacidade de compósitos cimentíceos.

Para avaliar a influência do módulo de elasticidade da fibra foram simulados três tipos fibras: 1) fibra de vidro do tipo S, que possui alta relação tensão/peso e resistência/peso, além da resistência a altas temperaturas - 85 GPa (Rios, 2012); 2) fibras de aço, que são as mais utilizadas pelo mercado - 200 GPa (Leung e Shapiro, 1999) e; 3) fibras de Kevlar ou boro, utilizadas em cabos e na indústria aeroespacial - 350 GPa (Rios, 2012).

No modelo em elementos finitos não foi alterada a relação entre a tensão de cisalhamento e deslocamento $\tau(s)$ da interface, uma vez que o modelo não conseguiu convergência da solução quando implementado outro modelo de relação, como o de *hardening* para fibras sintéticas, por exemplo. Assim, independente do tipo de fibra o comportamento se manteve conforme Figura 32a.

Figura 39- Influência do módulo de elasticidade da fibra na tensão de ponte

A Figura 39 mostra o resultado da tensão de ponte para os diferentes tipos de fibras. Como pode-se notar, as fibras mais rígidas de 200 GPa e 350 GPa apresentam um pico de tensão de ponte maior, no entanto, as curvas são muito próximas com leve desvio entre 0,5 e 3 mm de abertura de trinca.

Para determinar a influência do módulo de elasticidade da fibra, é necessário avaliar a tenacidade final do compósito para uma melhor comparação.

4.3 Aumento da tenacidade - G_c

A partir da Eq. 20 é possível obter os resultados do aumento da tenacidade do compósito reforçado com fibras. Os resultados são obtidos através da integração da tensão de ponte em relação a abertura da trinca, analisando os parâmetros geométricos e mecânicos da fibra.

Para melhor quantificar o aumento da tenacidade, os resultados foram comparados com valores experimentais da tenacidade do concreto sem reforço, obtidos em ensaios de tração por Petersson (1980), no qual encontrou um valor médio de 1700 J/m².

4.3.1 Influência do diâmetro da fibra - d_f

Com as curvas geradas na Figura 37 é possível obter o aumento da tenacidade para compósitos com fibras de diferentes diâmetros. A Figura 40 mostra o aumento da tenacidade para os três valores de diâmetros testados. Assim como apresentou a tensão de ponte, a fibra mais fina mostra um aumento da tenacidade significativo em relação às demais.

A modelagem computacional proposta, apresenta resultados coerentes em seus valores para o aumento da tenacidade, mesmo para uma baixa fração volumétrica de fibras. Fato que muito se deve a validação do modelo realizada através de ensaios experimentais que proporcionaram maior precisão nos resultados. Comparado ao valor obtido por Petersson (1980) o compósito reforçado com fibras finas teve um aumento de aproximadamente 4,69% de tenacidade, enquanto a fibra mais grossa apresentou 2,35% de aumento, ou seja, quando o diâmetro triplica a tenacidade diminui pela metade, aproximadamente.

Na literatura outros autores como Kerans e Parthasarathy (1991) e Pavan (2006), também concluíram que aumento da tenacidade é mais significativo em fibras mais finas. Fatores como, por exemplo, a maior ocorrência de *spalling* na região de saída da fibra, aumentando a quantidade de fibras efetivas atuando como ponte de tensão é uma hipótese.

Figura 40- Aumento da tenacidade - Influência do diâmetro da fibra

4.3.2 Influência do módulo de elasticidade da fibra - E_f

A Figura 41 apresenta os resultados do aumento da tenacidade para três tipos de fibras descritas na subseção 4.2.3. Como pode-se observar o aumento da tenacidade é diretamente proporcional ao aumento do módulo de elasticidade da fibra. Uma vez que as fibras mais rígidas necessitam de um momento maior para dobrar, a força de ponte necessária para arrancá-la da matriz aumenta e assim o somatório da contribuição de cada fibra proporciona um valor ligeiramente maior em comparação aos demais tipos de fibras.

A não utilização de um novo modelo para a tensão de cisalhamento da interface $\tau(s)$ pode ser questionável em relação a fibra menos rígida, já que seu comportamento deveria ser mais parecido com *hardening* (ver Figura 12). No entanto, o grande número de parâmetros envolvidos dificulta a modelagem do contato em elementos finitos, o que torna o controle da região de contato limitado. Assim, a mudança para um modelo de atrito onde a tensão de cisalhamento aumente com o deslocamento não favorece a convergência, principalmente quando o ângulo de inclinação da fibra aumenta.

Figura 41- Influência do módulo de elasticidade no aumento da tenacidade

Observando os resultados comparativos aos valores obtidos por Petersson (1980), o aumento ainda permanece coerente, não apresentando valores em grandezas maiores das encontradas quando analisou-se a influência do diâmetro da fibra.

Pode-se concluir que um compósito ideal, ou seja, com um maior aumento da tenacidade, seria composto por fibras finas e de alta resistência. No entanto, os mecanismos influentes que propiciam essa melhora nas propriedades mecânicas ainda não foram apontados. Na próxima seção procura-se conectar os bons resultados obtidos na modelagem computacional proposta para o cálculo da tensão de ponte e tenacidade, com os mecanismos envolvidos nestes processos: o efeito *spalling* e a distribuição de pressão na interface.

4.4 Efeito *spallling* e distribuição de pressão na interface

Com o mesmo modelo utilizado para validação e através do *status* dos elementos que o ANSYS disponibiliza, o *spalling* na matriz é quantificado utilizando o procedimento computacional mostrado na Figura 28, permitindo avaliar propriedades mecânicas de fibra, matriz e interface além da geometria da fibra. No entanto, no modelo que analisa o *spalling* as rigidez normal e tangencial tiveram seus valores mantidos em todos os casos, ou seja, a interface é definida pelas propriedades de contato originais que o ANSYS atribui. Pois entende-se que é mais adequado não alterar estes parâmetros a fim de obter um resultado mais preciso.

Com a programação em APDL também é possível analisar a tensão da fibra na região de saída da matriz, podendo registrar o relaxamento das tensões na fibra quando o *spalling* evolui.

Para melhor representar o efeito *spalling*, foi necessário diminuir o valor da tensão normal máxima (σ_{max}) da interface utilizada no CZM para próximo de zero, pois a tensão normal de tração pode provocar a solicitação dos elementos acima da região de saída trincando ou esmagando os elementos, o que não condiz com a realidade. Também como forma de aumentar a convergência da solução optou-se por continuar mantendo apenas um lado com contato como mostrado na Figura 21.

De modo a facilitar a análise dos mecanismos envolvidos no aumento da tenacidade, este capítulo avalia não somente o dano gerado na matriz como também a distribuição de pressão na interface, uma vez que estudos indicam que estes dois fenômenos estão diretamente ligados, de forma a influenciar também na resposta do compósito, ou seja, na tensão de ponte e tenacidade.

4.4.1 Influência do ângulo de inclinação da fibra - θ

A Figura 42 mostra a influência do ângulo de inclinação na evolução do *spalling* na matriz. Os resultados apontam que a maior evolução do dano ocorre quando $\theta = 15^{\circ}$, não apresentando diferenças significativas entre os demais valores de θ testados.

Contudo, observando a Figura 43, que mostra os elementos danificados na matriz em $\theta = 15^{\circ}$ e $\theta = 60^{\circ}$, percebe-se que a propagação do dano ocorre por motivos distintos. Quando $\theta = 15^{\circ}$ a tensão de cisalhamento tem papel fundamental na quantificação do dano na matriz,

uma vez que o spalling se propaga somente na região de contato entre fibra e matriz. Já em $\theta = 60^{\circ}$ o effito snubbing é maior e consequentemente o dano se propaga quase que exclusivamente na região de saída, caracterizando por ser um dano mais profundo (direção -Y).

Figura 42- Influência do ângulo de inclinação na evolução do spalling

Figura 43- Elementos danificados na matriz sob $\tau_{max} = 3$ MPa: a) $\theta = 15^{\circ}$ e w=0,018 mm; b) $\theta = 60^\circ$ e w=0,016 mm

A fim de avaliar a influência da interface, são realizadas novas simulações do *spalling* para os diferentes ângulos de inclinação utilizando uma tensão de cisalhamento máxima na interface de 0,5 MPa, bem abaixo da utilizada no modelo anterior de 3 MPa (Figura 44).

Figura 44- Evolução do *spalling* e distribuição de pressão na interface- influência de θ

A Figura 44a mostra um comportamento bem diferente do observado na Figura 42. Embora, não apresente diferença significativa entre os ângulos de 15° , 30° e 45° , o ângulo de 60° apresenta um dano mais severo a matriz logo no inicio da abertura da trinca, justificado por uma maior pressão imposta pela fibra sobre a matriz como mostra a Figura 44b em *w*= 0,001 mm. É possível observar também a tração da fibra sobre matriz quando *x*= 3 mm. Este movimento é registrado quando a fibra passa por um ponto de apoio criado pela matriz, como se fosse uma roldana por onde passa a fibra. Como reação, parte da fibra anterior ao apoio dobra-se pressionando a parte superior da matriz.

Em todos os casos, a quantidade de matriz danificada apresentou valores baixos, não passando do limite de 1% do volume da matriz, o que por intuição, parece coerente.

A Figura 45 mostra a distribuição de pressão resultante para $\theta = 15^{\circ}$, analisando os dois valores diferentes de tensão de cisalhamento máxima na interface utilizados como comparativos na quantificação do *spalling*. Pode-se notar que a pressão exercida pela fibra na matriz é aproximadamente três vezes maior quando a tensão de cisalhamento máxima da interface é menor. Assim, em $\theta = 15^{\circ}$ e $\tau_{max} = 3MPa$ os elementos localizados na interface fibra/matriz são danificados possivelmente pelo aumento da tensão de cisalhamento (mas inferior à 3 MPa) devido a alta aderência entre fibra e matriz, enquanto que em $\tau_{max} = 0,5MPa$ a componente da pressão é maior e concentra-se na região de saída.

Figura 45- Distribuição de pressão resultante na interface – influência de τ_{max}

O detalhe da Figura 45 aponta para o fato de que a distribuição de pressão resultante sempre permanece a cima da linha da fibra, ou seja, ela é negativa, comprimindo a interface superior da maior parte enterrada da fibra até o inicio do apoio sólido. Em todos os casos foi observado o mesmo comportamento, no entanto, estes valores de compressão são sempre próximos à zero. A partir do inicio do ponto de apoio sólido, a pressão resultante é positiva, isto pode ser considerado que a interface inferior está sendo comprimida. Outro ponto a observar é que as pressões a partir do inicio do apoio sólido até a saída da matriz são menores quando a tensão de cisalhamento da interface é maior, devido a maior aderência da interface que partilha (ou segura) mais a força de *pullout*, logo, é exercida menos pressão na saída da matriz.

A Figura 46 mostra a distribuição de pressão circunferencial para o ponto em detalhe da Figura 45 aumentado em 10 vezes para melhor visualizar o comportamento da distribuição.

É perceptível que a fibra é forçada contra a parte superior da matriz. A distribuição da pressão normal em cada nó mostra-se homogênea a exceção dos pontos centrais (Y=0) que não apresentam mudança.

Figura 46- Distribuição de pressão circunferencial em *x*=0 mm

Como consequência do *spalling*, as tensões na fibra relaxam e diminuem, tornandoas efetivas, ou seja, ainda contribuem na melhora das propriedades mecânicas do compósito. A Figura 47 mostra as tensões na fibra para os casos analisados na Figura 44a. Observando especificadamente o ângulo de 60° , pode-se notar um relaxamento maior das tensões da fibra e uma queda levemente abrupta da tensão quando *w* igual a 0,005 mm que corresponde ao primeiro pico de *spalling* na Figura 44a.

A queda da tensão é um comportamento característico do *spalling* e é uma das melhores formas de observá-lo experimentalmente como mostra a Figura 48 do trabalho de Kanda e Li (1998), analisando fibras sintéticas de alta resistência.

Os resultados do efeito *spalling* em relação ao ângulo de inclinação da fibra obtidos por Kanda e Li (1998) foram similares aos observados nos resultados obtidos com o modelo em elementos finitos, uma vez que a real diferença entre o dano gerado na matriz e a consequente queda das tensões da fibra, ocorre somente quando o ângulo entre fibra e superfície fraturada é grande, ou seja, maiores que $\theta = 30^{\circ}$ ou quando o dano supera o comprimento enterrado da fibra como mostra a Figura 49.

Figura 47- Tensão da fibra para diferentes ângulos de inclinação

Figura 48- Spalling observado experimentalmente

Fonte: Adaptado de Kanda e Li (1998)

Figura 49- Dano gerado na matriz para $\theta = 30^{\circ}$

Como observado nos resultados, o efeito *spalling* mostrou-se mais complexo do que se imaginava. A resistência ao cisalhamento da interface τ_{max} tem um papel decisivo na forma com que o *spalling* se propaga, o que também influi na tensão da fibra e por fim na tenacidade do compósito. Logo, o *spalling* na verdade não depende apenas do ângulo de inclinação, mas também, da pressão exercida pela fibra na matriz e da resistência de cisalhamento na interface.

O comportamento da distribuição de pressão resultante obtido é muito semelhante ao sugerido por Wang e Friedrich (2013) (Figura 14) considerando a distribuição como uma função quadrática. Nenhum outro trabalho na literatura foi encontrado para comparação. A metodologia emprega utilizando o modelo em elementos finitos parece satisfatória e coerente ao analisar os resultados encontrados para a distribuição de pressão na interface.

4.4.2 Influência do comprimento enterrado da fibra - L_e

A Figura 50 apresenta a influência do comprimento enterrado da fibra em relação a propagação do *spalling* na matriz para dois valores de tensão máxima de cisalhamento da

interface, 0,5 e 3 MPa. Em ambos os casos pode-se observar que quanto menor o comprimento enterrado, maior é a quantidade de dano gerado na matriz, no entanto, as causas são distintas entre as respostas mostradas nas Figura 50a e Figura 50b, como já mencionado na comparação entre os ângulos de inclinação da fibra.

Figura 50-Influência do comprimento enterrado da fibra em relação ao dano gerado na matriz. A curta extensão de é devido a dificuldade de convergência.

Figura 51- Distribuição de pressão resultante na interface – influência L_e

Quando o comprimento enterrado diminui, a fibra precisa de uma força maior para dobrar e sair da matriz, isso faz com a pressão na região de saída aumente consideravelmente, como mostra a Figura 51 para $\tau_{max} = 0,5MPa$. A Figura 52 mostra a tensão da fibra sobre a influência de diferentes comprimentos enterrados. A Figura 52b aponta para uma linearidade das curvas tensão x abertura de trinca para todos os comprimentos enterrados. No entanto, quando $\tau_{max} = 0,5MPa$ em todos os casos houve relaxamento das tensões da fibra uma vez que o dano superou o comprimento enterrado como já registrado na Figura 49 e agora na Figura 53.

Figura 52- Tensões na fibra para diferentes comprimentos enterrados

Figura 53- Dano na matriz para L_e =3 mm e τ_{max} = 0,5*MPa*

4.4.3 Influência do diâmetro da fibra - d_f

Outro parâmetro influente a ser considerado na análise do *spalling* é o diâmetro da fibra. A Figura 54 apresenta a influência do diâmetro de fibras de aço de 0,25, 0,5 e 0,75 mm para o ângulo de inclinação de 30° considerando $\tau_{max} = 0,5MPa$. Para uma melhor comparação utilizou-se a mesma fração volumétrica de 0,05% para os três casos.

Figura 54- Influência do diâmetro de fibras de aço em relação ao spalling na matriz

Os resultados apontam um dano mais severo na matriz causado por fibras de diâmetro menor. Dessa forma, no compósito com fibras mais finas deve haver um relaxamento maior de tensões e uma contribuição considerável já que o *spalling* permitirá a efetividade da fibra, o que vai ao encontro dos resultados obtidos da tenacidade quando se comparou diferentes diâmetros (Figura 37), mesmo que naquela configuração o modelo não considere a retirada da rigidez dos elementos danificados da matriz.

A Figura 55 apresenta os resultados do dano na matriz em relação ao diâmetro da fibra considerando os diferentes ângulos de inclinação. Para cada ângulo de inclinação considera-se a abertura de trinca máxima comum (w_{max}) em todos os diâmetros. Os resultados mostram que em todos os casos a fibra mais fina apresentou o maior *spalling* na matriz e esse valor diminui conforme aumenta o diâmetro da fibra.

Figura 55- Influência do diâmetro da fibra e ângulo de inclinação

Outro ponto a observar é que a fibra de maior diâmetro não apresentou dano na matriz quando $\theta = 60^{\circ}$. Mesmo não registrando aberturas de trincas maiores devido a não convergência da solução, era esperado que ocorresse algum registro de *spalling* justamente por se tratar de um ângulo de inclinação elevado.

No entanto, observando a Figura 56 é possível observar que a fibra em questão apresenta valor da distribuição de pressão resultante relativamente menor que a fibra de diâmetro menor, por exemplo. Presume-se que com maiores aberturas de trincas seria possível captar o surgimento e a evolução do *spalling* de forma rápida (catastrófica), uma vez que a fibra mantem-se na mesma posição até que o momento fletor gerado na região de saída da fibra vença seu estado inercial surgindo o *spalling*.

4.4.4 Influência do módulo de elasticidade da fibra - E_f

A Figura 57 apresenta a influência do módulo de elasticidade da fibra para os ângulos de inclinação de 30° e 60° considerando $\tau_{max} = 0,5MPa$ e $\tau_{max} = 3MPa$. O compósito foi simulado para os mesmo três tipos de fibras utilizadas no cálculo do aumento da tenacidade (Figura 41), ou seja, 85, 200 e 350 GPa.

A partir da comparação do dano gerado pela fibra em $\theta = 30^{\circ}$, ou seja, Figura 57a e Figura 57b, pode-se observar que as fibras mais rígidas proporcionam uma maior quantidade de dano a matriz, no entanto, esse comportamento é mais evidente quando $\tau_{max} = 0,5MPa$. A fibra de 85 GPa, não apresentou convergência da solução para maiores aberturas de trincas, não favorecendo uma melhor comparação. A fibra mais flexível penetra mais no modelo em elementos finitos e a solução fica prejudicada. Já quando $\theta = 60^{\circ}$ o dano tem um comportamento distinto frente aos dois valores de resistência de cisalhamento da interface. Os resultados deixam claro que quando a tensão de cisalhamento é baixa o dano acontece de forma rápida para quaisquer tipos de fibras, Figura 57c. No entanto, quando a tensão é alta na interface as fibras mais rígidas tem um dano maior, porém, o dano evolui de forma gradual.

Figura 57- Influência do módulo de elasticidade da fibra na evolução do dano na matriz

A Figura 58 mostra a comparação da distribuição de pressão resultante na interface para os três tipos de fibras em $\theta = 30^{\circ} e \theta = 60^{\circ} \text{ com } \tau_{\text{max}} = 0,5MPa$. Em ambos os casos percebe-se que não há diferença significativa no comportamento entre as diferentes fibras analisadas. No entanto, na Figura 58a a fibra mais flexível apresenta um pico de pressão na superfície superior da fibra que antecede o ponto de mudança de sentido da distribuição de pressão resultante que acontece em 1,5 mm. Para os demais tipos de fibras, a alta rigidez destas é maior e ao pressionar a matriz consegue danifica-la facilmente e de maneira progressiva, causando uma reação da fibra menor no local mais longe da saída da matriz.

Na Figura 58b percebe-se a influência determinante do ângulo de inclinação da fibra que aproxima ainda mais os comportamentos das fibras, tanto que o valor final dos três tipos é aproximadamente o mesmo. Isso explica porque os valores do *spalling* para os diferentes tipos de fibras são tão próximos.

Figura 58- Distribuição de pressão resultante na interface para diferentes tipos de fibras

Figura 59- Influência de $\tau_{\rm max}$ na tensão na fibra quando $\theta = 60^{\circ}$

Como os resultados mais interessantes mostraram-se ser o comparativo de $\theta = 60^{\circ}$ em relação às duas tensões de cisalhamento da interface, a Figura 59 mostra os resultados da tensão na fibra para os dois casos em análise, no entanto, como os comportamentos de todos os tipos de fibras são semelhantes somente um tipo foi analisado, neste caso, $E_f = 85$ GPa. Percebe-se que a grande quantidade de dano causado a matriz logo no inicio da abertura fez com que as tensões na fibra diminuíssem quando $\tau_{max} = 0,5MPa$. Por outro lado, quando a tensão de cisalhamento é alta, as tensões na fibra continuam a aumentar de forma quase linear, uma vez que o dano acontece de forma progressiva até o pico em 0,009 mm, que corresponde ao ponto onde a tensão da fibra para de aumentar.

Os resultados encontrados para o aumento da tenacidade em compósitos com diferentes tipos de fibras haviam apontado para uma melhor resposta do material quando composto por fibras mais rígidas. Sobre o ponto de vista dos mecanismos envolvidos e analisados acima, pode-se perceber que há mais influência das fibras mais rígidas, tanto no *spalling* como na distribuição de pressão.

4.4.5 Influência do módulo de elasticidade da matriz - Em

Um dos pontos mais importantes na quantificação do *spalling* são as propriedades mecânicas da matriz e como elas interferem no comportamento do compósito. Através do critério de cinco parâmetros de William e Warneck (1975) utilizado pelo ANSYS e do procedimento computacional desenvolvido, é possível determinar a quantidade de elementos danificados pelos esforços solicitantes da fibra sobre a matriz.

A Figura 60 mostra a quantificação do *spalling* para diferentes módulos de elasticidade da matriz para $\theta = 30^{\circ}$ e $\theta = 60^{\circ}$, utilizando uma tensão de cisalhamento de interface máxima de 0,5 MPa. Os valores para os módulos de elasticidade foram determinados a partir do valor base utilizado nas demais simulações anteriores de 30 GPa, como uma variação de 25% para mais e para menos.

Na Figura 60a é possível observar que a matriz de maior rigidez apresentou a maior quantidade de *spalling* quando a inclinação da fibra não é grande ($\theta \le 30^\circ$). A Figura 60a apresenta uma relação direta entre *spalling* e a rigidez da matriz. Já na Figura 60b não é possível identificar um padrão, com a matriz $E_m=30$ GPa apresentando um dano maior que as demais. Neste caso, o procedimento de retirada da rigidez dos elementos que compõem a matriz pode acarretar resultados imprevisíveis, visto a dinâmica aplicada para deixar o comportamento do *spalling* mais real, logo, nem todos os casos se comportam de maneira semelhante, ainda mais se tratando de uma inclinação da fibra elevada.

Figura 60- Influência do módulo de elasticidade da matriz na quantificação do dano

A análise da distribuição de pressão resultante é um fator que pode esclarecer de certa forma como esta se comportando a matriz diante da alteração de sua rigidez. A Figura 61 mostra o comportamento da distribuição de pressão resultante na interface para $\theta = 30^{\circ}$.

Figura 61- Distribuição de pressão resultante na interface para diferentes módulos de elasticidade da matriz $\theta = 30^{\circ}$

Os resultados apontam para uma relação direta entre rigidez da matriz e a distribuição de pressão resultante na interface, uma vez que a matriz mais dura obriga que a fibra faça uma força maior para sair da matriz, o que pode ser visto na Figura 61 e na Figura 62 que mostra a força de ponte do compósito. Sendo assim, a matriz mais rígida acarreta em uma distribuição de pressão maior gerando um dano maior a matriz, uma vez que, os parâmetros que definem o critério de falha do concreto ($f_t e f_c$) não se alteram, por isso os resultados não apontam um *spalling* maior na matriz mais frágil.

Figura 62- Força de ponte do compósito para diferentes matrizes quando $\theta = 30^{\circ}$

A Figura 63 mostra a distribuição de pressão circunferencial à fibra no ponto de saída da matriz em w=0,001 mm e θ = 30°. Os valores em X foram normalizados para o valor do diâmetro da fibra para melhor comparação. É possível observar que toda a parte inferior da fibra exerce pressão sobre a matriz, logo, a ocorrência e propagação do dano é inevitável. Assim como na Figura 61, é observada uma relação direta entre o módulo de elasticidade da matriz e a pressão.

Figura 63- Distribuição de pressão circunferencial da região de saída da matriz

Como forma de avaliar os resultados relativos à distribuição de pressão circunferencial, o comportamento das curvas obtidas pelo modelo em elemento finitos é comparado com o modelo de distribuição analítico sugerido por Piaceski (2010) (ver Figura 14), onde a distribuição de pressão pode ser descrita pelo cosseno do ângulo iniciado na posição vertical. A Figura 64a mostra que em w=0,001 mm o comportamento das curvas é similar, no entanto, a curva obtida pelo modelo proposto neste trabalho pode ser mais bem descrita por uma função parabólica. Obviamente o comportamento da curva não necessariamente é igual em todos os casos, quando a abertura da trinca é cada vez menor, o comportamento tende a aproximar-se, como mostra a Figura 64b em w=0,0001 mm.

Figura 64- Comparação da distribuição de pressão circunferencial obtida pelo modelo em MEF e analítico proposto por Piaceski (2010)

 d_f = 0,5 mm , L_f = 20 mm , E_m = 30 GPa, E_f =200 GPa , f_c = 36,5 MPa , f_t = 3,7 MPa , θ = 30°, τ_{max} = 0,5 MPa

4.4.6 Influência da resistência à tração da matriz - f_t

A influência da resistência à tração da matriz é uma variável que interfere diretamente nos resultados do efeito *spalling*. A resistência à tração é uma das propriedades que mais limita as aplicações do concreto, pois como sabe-se, ele possui um comportamento frágil quando tracionado.

No modelo em elementos finitos, a superfície de falha de William-Warnke (1975) utiliza a resistência à tração como um dos principais parâmetros necessários para identificar os *status* dos elementos que correspondem a matriz. Para avaliar a importância deste fator, três valores de resistência à tração são analisados na Figura 65.

O compósito simulado, é reforçado por uma fibra de aço de 0,5 mm de diâmetro, com uma resistência de cisalhamento máxima na interface de 0,5 MPa. O *spalling* é quantificado para duas inclinações da fibra, 15° e 60°. Os resultados ficam mais evidentes quando observada a propagação do *spalling* em 15°. O aumento da resistência à tração diminui a quantidade de *spalling*, uma vez que o concreto fica mais resistente quando a

resistência à tração é maior. Outro ponto a observar ainda na Figura 65a, é o inicio da abertura de surgimento do *spalling* que aumenta conforme aumenta a resistência à tração, ou seja, o concreto mais resistente em tração suporta trincas maiores antes de apresentar falhas. Na Figura 65b, a influência do ângulo de inclinação é notada na evolução do dano. Já não há uma distinção nos comportamentos das curvas entre as duas maiores tensões de tração, no entanto, a matriz mais frágil continua apresentando o maior *spalling*. Além disso, o concreto mais resistente apresenta o inicio do dano mais tardio, da mesma forma que apresentou a Figura 65a.

Figura 65- Análise da resistência à tração do concreto em relação ao spalling

Na Figura 66 é possível observar a distribuição de pressão resultante na interface sobre a influência da tensão de tração do concreto para $\theta = 60^{\circ}$. Os resultados mostram que quanto menor a resistência a tração, menor é pressão exercida pela fibra sobre a matriz.

A matriz mais resistente cria uma dificuldade para fibra dobrar o que aumenta a força de arrancamento, como mostra a Figura 67. No entanto, a força não é grande o suficiente para causar um dano mais significativo, mesmo porque a matriz está mais resistente, por isso o concreto mais frágil continua apresentando um dano maior tanto em $\theta = 15^{\circ}$ como em $\theta = 60^{\circ}$ como mostrado na Figura 65a.

Figura 66- Distribuição de pressão resultante na interface sob a influência da tensão de tração

Figura 67- Força de ponte - influência da tensão de tração da matriz

4.4.7 Influência da resistência a compressão da matriz $-f_c$

A Figura 68 mostra a influência da resistência à compressão do concreto sobre o *spalling*. Na superfície de falha utilizada pelo ANSYS este parâmetro é outro de fundamental importância na identificação dos elementos danificados na matriz.

Figura 68- Influência resistência à compressão do concreto na evolução do spalling

Observando a Figura 68a, quando $\theta = 15^{\circ}$, é possível notar que há uma diferença de comportamento das curvas somente após *w*=0,01 mm, quando o dano gerado pela matriz de maior resistência a compressão aumenta. No entanto, quando $\theta = 60^{\circ}$, as curvas não diferem uma das outras. Logo, pode-se inferir que assim como nos demais parâmetros analisados até o momento, o ângulo de inclinação desenvolve importante papel na evolução do dano na matriz, tanto que, independente da característica mecânica da matriz analisada, o *spalling* irá evoluir da mesma forma, mesmo tratando-se de uma matriz três vezes mais resistente como mostrou o comparativo.

A Figura 69 mostra o comparativo da distribuição de pressão resultante na interface para diferentes valores da resistência à compressão da matriz. Da mesma forma que os resultados do *spalling*, não houve diferença entre o comportamento das curvas. Correlacionando o *spalling* e a pressão resultante na interface, fica claro que o parâmetro analisado não influência na forma como o dano evolui, até mesmo porque a pressão exercida pela fibra sobre a matriz não se altera. A não alteração é lógica, pois a resistência de compressão do concreto se envolve apenas no pós-processamento, ou seja, no cálculo de danos.

Figura 69- Distribuição de pressão resultante para diferentes resistências à compressão da matriz

A Figura 70 apresenta a força de ponte do compósito para os diferentes tipos de matriz analisados na Figura 68. Como esperado, em ambos os ângulos de inclinação da fibra analisados, não é possível observar diferença significativa, assim como observado na análise da evolução do dano na matriz, Figura 68.

Figura 70- Força de ponte do compósito sobre a influência da resistência a compressão

5 CONCLUSÕES

Neste trabalho é proposto um modelo computacional para o cálculo do aumento da tenacidade de compósitos cimentíceos reforçados com fibras. Um modelo em elementos finitos simula a interação fibra/matriz através da combinação do modelo de zonas coesivas (CZM) e o comportamento da resistência de cisalhamento na interface $\tau(s)$. A fim de aumentar a precisão dos resultados para o cálculo do aumento da tenacidade, um procedimento computacional é criado unindo ANSYS e MATLAB, proporcionando alterar as variáveis, organizar os arquivos, pré analisar resultados e plotar figuras de maneira independente da intervenção do usuário. Através dos resultados pode-se concluir que:

- A utilização do método dos elementos finitos apresenta-se como excelente opção no estudo do concreto reforçado com fibras, permitindo caracterizar com realismo as fases de fibra, matriz e interface;
- II) As vantagens da criação de um procedimento computacional mostram ser inúmeras e deixa claro que sem isso não é possível gerar uma quantidade de dados suficientes para garantir precisão aos resultados;
- III) Quando comparado com os ensaios experimentais, os resultados da força de ponte do modelo em elementos finitos apresentaram boa correspondência, no entanto, a alta inclinação da fibra dificulta a convergência da solução devido ao controle da região de contato ser limitado e com muitas variáveis;
- IV) Os resultados da tensão de ponte mostram que fibras mais finas e de alta resistência apresentam vantagem sobre os demais casos analisados;
- V) Através da comparação é possível notar que as fibras mais grossas tendem a um comportamento de *hardening*, que se apresenta maior conforme diminui o comprimento enterrado da fibra. Isso reflete o comportamento da curva quando analisa-se a tensão de ponte *versus* abertura da trinca;
- VI) Mesmo não apresentando diferença significativa as fibras mais resistentes se sobressaem sobre as demais. O modelo em elementos finitos não conseguiu convergir quando implementado o comportamento de *hardening* para fibras sintéticas;
- VII) Da mesma forma que a tensão de ponte, o aumento da tenacidade mostrou-se maior quando o compósito é reforçado com fibras mais finas. A modelagem

matemática mostra que a área da seção transversal da fibra e a tenacidade são grandezas inversamente proporcionais;

VIII) Por fim, o compósito de fibras finas e de alta resistência compõem as características ideais para uma melhora significativa no comportamento mecânico do material.

Neste trabalho também investigou-se os mecanismos envolvidos no aumento da tenacidade. Para isso, foram implementadas no MATLAB sub-rotinas ligadas ao *script* em APDL para analisar o modo como o *spalling* se forma e se propaga. No entanto, o *spalling* é um mecanismo que ainda carece de atenção, principalmente das causas que levam a matriz a danificar, assim, em uma linha de pesquisa ainda pouco estudada, procurou-se investigar a influência da distribuição de pressão resultante sobre a interface e o modo como ela se comporta em relação ao *spalling*. Pelos resultados obtidos, pode-se concluir que:

- O critério de cinco parâmetros de William-Warnke (1975) utilizado pelo ANSYS possui alta capacidade de representar o estado da matriz quando solicitada, no entanto, sem um procedimento computacional adequado o *spalling* não é representado de forma real;
- II) O procedimento computacional criado mostra que é possível analisar o *spalling* de forma correta quando se une o melhor de ambos os *softwares*, ANSYS e MATLAB;
- III) A tensão de cisalhamento da interface interfere de forma significativa na forma como o dano na matriz evolui. O comparativo com outro valor mostrou que o dano na matriz pode ser gerado por duas fontes, pela tensão de cisalhamento ou pela distribuição de pressão na interface. Uma terceira hipótese é observada quando há uma composição das duas fontes dependendo do ângulo de inclinação;
- IV) O alto ângulo de inclinação da fibra quando associado a uma baixa resistência de cisalhamento máxima na interface tem influência determinante na forma como o *spalling* evolui, uma vez que a distribuição de pressão resultante na interface aumenta na região de saída;
- V) Os comportamentos da distribuição de pressão resultante da interface e da distribuição de pressão circunferencial a fibra obtidos são semelhantes aos descritos em um dos poucos trabalhos encontrados na literatura sobre o assunto;

- VI) Como consequência do *spalling*, as tensões na fibra diminuem e salvam a fibra, fazendo com que esta continue a contribuir no aumento da tenacidade.
 Esse fenômeno foi registrado diversas vezes ao longo dos resultados;
- VII) Conforme diminui o comprimento enterrado da fibra, esta precisa de uma força maior para dobrar e sair da matriz, isto faz com que o *spalling* também aumente, uma das causas é o aumento da pressão resultante da interface que também é maior;
- VIII) Quanto menor o diâmetro da fibra maior é o dano registrado na matriz. Os resultados ainda apontam que fibras grossas (0,75 mm) tem uma resistência ao dobramento maior que as fibras finas, logo, o *spalling* é menor;
- IX) O spalling para diferentes tipos de fibras apresenta comportamento semelhante. No entanto, quando a resistência de cisalhamento da interface é baixa, as fibras mais rígidas apresentam um dano maior, uma vez que a pressão resultante também é maior na região de saída da fibra. No entanto, esse fato é determinante já que tem-se a queda da tensão na fibra que deixa de ser tensionada;
- Quando a rigidez da matriz é alta, é quantificado um dano significativo a matriz uma vez que a força para retirar a fibra aumenta;
- XI) A resistência à tração do concreto faz com que seja registrado um dano maior conforme diminui seu valor, uma vez que a matriz torna-se mais frágil.

Por fim, o trabalho apresenta uma solução eficaz ao problema da tenacificação de compósitos reforçados com fibras, mostrando ser uma etapa fundamental em projetos deste tipo de material. O trabalho fez contribuições significativas para a compreensão dos problemas do *spalling* e da distribuição de pressão na interface. Os resultados obtidos vão ao encontro de resultados analíticos, computacionais e ensaios experimentais disponíveis na literatura.
6 SUGESTÕES PARA TRABALHOS FUTUROS

O problema de contato encontrado na utilização do método dos elementos finitos é um entrave no avanço de melhores resultados, no entanto, faz parte do avanço dos métodos matemáticos e computacionais a busca e implementação de novos meios para solucionar este problema, que é considerado por muitos como o grande obstáculo a ser superado.

A utilização do método dos elementos discretos formado por barras (LDEM) pode ser uma boa opção. Levar ao DEM um modelo de zonas coesivas para simular a interface fibra/matriz durante o processo de descolagem e utilizar o atrito de Coulomb para representar a fibra em *pullout* pode ser uma alternativa. No entanto, seguindo uma nova tendência mundial, um modelo 3D em meso-escala com fibras aleatoriamente distribuídas na matriz poderia representar de maneira mais fiel o compósito, obviamente os problemas envolvendo a interface, quantidade de nós e elementos, ou seja, o esforço computacional seria grande.

REFERÊNCIAS

ALFANO, G. e SACCO, E., Combining interface damage and friction in cohesive-zone model, **International Journal for Numerical Methods in Engineering**, v.68, p.542–582, 2006.

ALFANO, G., CRISIELD, M.A., Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. **International Journal for Numerical Methods in Engineering**, v.50, p.1701–1736, 2001.

ALFANO, M., FURGIUELE, F., LEONARDI, A., MALETTA, C. e PAULINO, G. H., Mode I fracture of adhesive joints using tailored cohesive zone models, **International Journal of Fracture**, v.157, p. 193-204, 2009.

ALNAKI, A. A., WEGIAN, F. M., ABDALGHAFFAR, M. A., ALOTAIBI, F. A., AL-TEMEEMI, A. A. e ALKHAMIS, M. T., Behavior of high-performance pull-out bond strength of fibers reinforced concrete structures. **Jordan journal of civil engineering**, v.7, n.1, 2013.

ANDERSON, T.L., **Fracture Mechanics. Fundamentals and Applications**. CRC Press. Department of Mechanical Engineering, Texas, USA, 1995.

ANSYS Academic Research, Release 11.0, Help System, ANSYS, Inc., 2007.

BANTHIA, N., e TROTTIER, J. F., Concrete reinforced with deformed steel fibers, part 1: bond-slip mechanisms. **ACI Materials journals**, v.91, n.5, p. 435-446, 1994.

BAO, G. e SONG, Y. Crack bridging models for fiber composites with degraded interfaces. **Journal Mechanical Physics and Solids**, v.41, p.1425-1444, 1993.

BARENBLATT, G. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, v. 2, p.55–125, 1962. BECHER, C.H., HSUEH, H., ANGELINI, P. e TIEGS, T.N., Toughening behavior in fiberreinforced ceramic matrix composites, Journal of American Ceramic Society, v. 71, n. 12, p. 1050-1061, 1988.

BHEEMREDDY, V., CHANDRASHEKHARA, K., DHARANI, L.R. e HILMAS, G.E., Modeling of fiber pull-out in continuous fiber reinforced ceramic composites using finite element method and artificial neural networks. **Computational Materials Science**, v.79, p. 663–673, 2013.

BORG, R., NILSSON, L. e SIMONSSON, K., Simulating DCB, ENF and MMB experiments using shell elements and a cohesive zone model. **Composites Science and Technology**, v. 64, p.269–278, 2004.

CAMANHO, P.P., DAVILA, C.G. e DE MOURA, M.F., Numerical simulation of mixedmode progressive delamination in composite materials. **Journal of Composite Materials**, v.37, p.1415–1438, 2003. CHARALAMBIDE, P. G. e EVANS A. G. *Debonding* properties of residually stressed brittle-matrix composites. **Journal of the American Ceramic Society**, v.72, n.5, p. 746-753, 1989.

DEMIR, S., METIN, H. e PUL, S., Failure analysis of steel column-RC base connections under lateral cyclic loading. **Structural Engineering & Mechanics**, v.50, n.4, p.459-469, 2014.

DUGDALE, D.S., Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, v. 8, p.100–104, 1960.

EVANS, A. G., e McMeeking. R. M., On the toughening of ceramics by strong reinforcements, Acta Metall., v.34, n.12, p. 2435-2441, 1986.

EVANS, A. G., MING, Y. H. e HUTCHINSON, J.W., Interface *debonding* and fiber cracking in brittle matrix composites. **Journal of the American Ceramic Society**; v.72, n.12, pg. 2300-2303, 1989.

FANTILLI, A. P. e VALLINI, P. A cohesive model for fiber-reinforced composites. Proc., 2nd Int. Structural Engineering and Construction Conf. (ISEC-02), Balkema, Lisse, Switzerland, p.1443–1449, 2003.

FANTILLI, A. P. e VALLINI, P. A cohesive interface model for the pullout of inclined steel fibers in cementitious matrices. **Journal of Advanced Concrete Technology**, p.5, n.2, p. 247–258, 2007.

FIGUEIREDO A. D., **Concreto com fibras de aço**. Texto para obtenção do título de livre docente. São Paulo, 2011.

GALUSHECHAK, A. e KONONOVA, O., Micromechanics of elasto-plastic fiber pull out of elastic matrix, 4th International Conference CIVIL ENGINEERING`13 Proceedings Part I: STRUCTURAL ENGINEERING, vol. 4, 2013.

GRIFFITH, A., The phenomena of rupture and flow in solids, **Philosophical Transactions** royal society of London, series A, v.221, 1920.

INGLIS, C.E., Stresses in Plates Due to the Presence of Cracks and Sharp Corners, **Transactions of the Institute of Naval Architects**, v. 55, p. 219-241, 1913.

IRWIN, G.R., **Fracture Dynamics**, Fracturing of Metals, American Society for Metals, Cleveland, 1948.

JIANG, W.G., HALLETT, S.R., GREEN BG, e WISNOM MR. A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. **International Journal for NumericalMethods in Engineering**, v.69, p.1982–1995, 2007.

KANDA, T. e LI V. C. Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix. ASCE **Journal of Materials in Civil Engineering,** v.10, n.1, p. 5-13, 1998.

KANDA, T., LIN, Z. e LI, V.C. Tensile stress-strain modeling of pseudostrain hardening cementitious composites. ASCE **Journal of Materials in Civil Engineering**, v.12, n.2, p. 147-156, 2000.

KATZ, A. e LI, V., A special technique for determining the bond strength of micro-fibers in cement matrix by pullout test. **Journal of Materials Science**, v.15, p. 1821-1823, 1996.

KAWASHITA, L. e HALLETT, S.R., A crack tip tracking algorithm for cohesive interface element analysis of fatigue delamination propagation in composite materials, **International Journal of Solid and Structures**, v.49, n.21, p. 2898-2913, 2012.

KERANS, R. J. e PARTHASARATHY, T. A., Theoretical analysis of the fiber pullout and pushout tests. **Journal American Ceramic Society**, v.74, n.7, p.1585-1596, 1991.

KIM, J.K. e MAI, Y.W. Engineered Interfaces in Fiber Reinforced Composites, Elsevier, Oxford 1998.

KRASŅIKOVS, A., KONONOVA, O., MAČANOVSKIS, A. e KHABAZ, A. Pull-Out Micro-Mechanism for Fibers in Concrete. In: *15th European Conference on Composite Materials (ECCM15): CD-Proceedings*, Italia, Venice, p.1-8, 24-28 June, 2012.

LEE, S.-C., CHO, J.-Y. e VECCHIO, F.J., Diverse Embedment Model for Fiber Reinforced Concrete in Tension: Model Verification. **ACI Materials journal**, v.108, n.5, p.526-535, 2011.

LEUNG, C. K. Y. Design criteria for pseudo ductile fiber-reinforced composites. **Journal of Engineering Mechanics**, v.122, n.1, p.10–18, 1996.

LEUNG, C. K. Y. e SHAPIRO, N., Optimal steel fiber strength for reinforcement of cementitious materials. Journal of Materials in Civil Engineering, v.112, p.116–123, 1999.

LI, C.Y. e MOBASHER B. Finite element simulations of fiber *pullout* toughening in fiber reinforced cement based composites. **Advanced Cement Based Materials**, v.7, p. 123-132, 1998.

LI, V. C. On Engineered Cementitious Composites (ECC). A Review of the Material end Its Applications. **Journal of Advanced Concrete Tenchnology**. V.1, N.3, p. 215-230, 2003.

LI, V. C., WANG, Y. e BACKER, S. A micromechanical model of tension softening and bridging toughening of short random fiber reinforced brittle matrix composites. **Journal of the Mechanics and Physics of Solids**, v.39, n.5, p.607- 625, 1991b.

Li, V. C., WANG, Y. e BACKER, S. Effect of inclining angle, bundling, and surface treatment on synthetic fiber pull-out from a cement matrix. **Composites**, v.21, n.2, p. 132–140, 1990.

LI, V.C. e MAALEJ, M., Toughening in cement based composites. Part II: Fiber reinforced cementitious composites. **Cement & Concrete Composites**, v. 18, p.239-249, 1996. Li V. C., Wu, H. C. e Chan, Y. W., Interfacial property tailoring for pseudo strain-hardening cementitious composites. In Advanced Technology on Design and Fabrication of Composite Materials and Structures, p. 261-268, 1995.

Li, Z., MOBASHER, B. e SHAH, S. P. Characterization of interfacial properties of fiber reinforced cementitious composites. **Journal of the American Ceramic Society**; v.73, n.9, pg. 2156-2164, 1991a.

LIN, G., GEUBELLE, P.H. e SOTTOS, N.R., Simulation of fiber *debonding* with friction in a model composite pushout test. **International journal of solids and structures**, v.38, p.8547-8562, 2001.

LIN, Z. e LI, C. V., Crack bridging in fiber reinforced cementtious composites with sliphardening interfaces. **Journal of the Mechanics and Physics of Solids**, v.45, n.5, p.763-787, 1997.

LIN. Z., KANDA, T. e LI, V. C., On interface property characterization and performance of fiber-reinforced cementations composites. **Concrete Science and Engineering**, v.1, p.173-174, 1999.

MACCAFERRI. Empresa do Grupo Industrial Maccaferri. Maccaferri América Latina. 2002-2007.

MAROTZKE, C. e QUIAO, L., Interfacial crack propagation arising in single-fiber pull-out tests, **Composites Science and Technology**, v.57, p. 887-897, 1997.

MEDEIROS A. **Estudo do comportamento à fadiga em compressão do concreto com fibras**. Tese de doutorado em Engenharia Civil. PUC-Rio, Rio de janeiro, 2012.

MEHTA, K. e MONTEIRO, P.J.M, Concreto. Microestrutura, propriedades e materiais. 3^a Ed, Ibracon, São Paulo, pg. 674, 2008.

MORTON, J. e GROVES, G.W. The cracking of composites cosisting of discontinuous ductile fibres in a brittle matrix – effect of fibres orientation. **Journal of Materials Science**, v.9, p.1436-1445, 1974.

MORTON, J. e GROVES, G.W., The effect of metal wires on the fracture of fiber brittle matrix composites. **Journal of Materials Science**, v.11, p.617-622, 1976.

NAAMAN, A.E. e SHAH, S.P., Pull-out mechanism in steel fiber-reinforced concrete. Journal of the Structural Division-ASCE v.102, n.8, p. 1537–1548, 1976.

NAAMAN, A.E., NAMUR, G.G., ALWAN, J.M. e NAJM, H.S. Fiber *pullout* and bond slip I: analytical study. **Journal Structure Engeneering**, v.117, n.9, p. 2769–2800, 1991.

OROWAN, E., Fracture and Strength of Solids, Report of Progress in Physics, V.12, 1949.

PARISE, M. **Constitutive modeling of fiber reinforced concrete**. Dissertação de mestrado em engenharia civil. Universidade de Pádua. Pádua, Itália. 2014.

PAVAN, A.R., **Modelagem Matemática de tenacificação de materiais cerâmicos através da adição de microfibras**. 2006. 155 f. Dissertação (Mestrado em Modelagem Matemática) - Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí 2006.

PETERSSON, P. E., Fracture energy of concrete: Method of determination, **Cement and concrete research**, v.10, p. 78-89, 1980.

PIACESKI, N. F. **Modelagem Matemática do efeito de** *spalling* à tenacificação de materiais compostos reforçados por fibras. 2009. Dissertação (Mestrado em Modelagem Matemática) - Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí 2009.

POCHIRAJU, K.V., TANDOM, G.P. e PAGANO, N.J. Analyses of single fiber pushout consider interfacial friction and adhesion. **Journal Mechanical Physics and Solids**, v. 49, p.2307–2338, 2001.

PUPURS, A. e VARNA, J., 3-D modeling of fiber/matrix interface *debonding* in UD composites including surfaces effects, **Materials Science and Engineering**, v.31, 2012.

RIOS, A. S., **Estudo do envelhecimento acelerado de materiais compósitos revestidos com poliuretano aplicados em aero geradores**. 2012. Dissertação (Mestrado em Engenharia) – Universidade Federal do Ceará, Fortaleza, 2012.

RIZZUTI, L. e BENCARDINO, F., Effects of fiber volume fraction on the compressive and flexural experimental behavior of SFRC, **Contemporary Engeneering sciences**, v.7, n.8, p. 379-390, 2014.

SHANNAG, M.J., RUNE, B. e HANSEN, W., *Pullout* behavior of steel fibers from cementbased composites. **Cement and Concrete Research**. v.27, n.6, p. 925-936, 1997.

SONG, P.S. e HWANG, S. Mechanical properties of high-strength steel fiber-reinforced concrete, **Construction and Building Materials**, v.18, p. 669–673, 2004.

SWAMY, R. N., e BARR, B., Fibre Reinforced Cement and Concretes: Recent developments, Elsevier, p. 363-376, 1989.

TORRES, L., BAENA, M., TURON, A., CAHIS, X. e BARRIS, C., Simulation of bond behavior between fiber reinforced polymer bars and concrete. In: 8th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures: Grecia, Patras, Julho, 2007.

TSAI, J., PATRA, A.K. e WETHERHOLD, R., Finite element simulation of shaped ductile fiber *pullout* using a mixed cohesive zone/friction interface model. **Composites: Parte A**, v.36, p. 827-838, 2005.

WANG. C. e FRIEDRICH, L.F., Computational model of *spalling* and effective fibers on toughening in fiber reinforced composites at early stage of crack formation. Latin American Journal of Solids and Structures, n.10, p.797-811, 2013.

WANG Y., BACKER, S. e LI, V. C, A statistical tensile model of fiber reinforced cementitous composites. Journal of Composites, v.20, n.3, p. 265-274, 1990.

WANG Y., LI, V. C., e BACKER, S., Modeling of fiber *pullout* from a cement matrix. Composites. **The international journal of cement composites and lightweight concrete**, v.10, n.3, p. 143-149, 1988.

WESTERGAARD, H. M. Bearing pressures and cracks, Trans. ASME. Journal of Applied Mechanics. series A, v.49, p.A49-A53, 1939.

WILLIAM, K. J e WARNKE, E. P., Constitutive model for the triaxial behavior of concrete. In: Proceedings of international association for bridge and structure engineering, vol.19, ISMES, Bergamo; p. 174-86, 1975.

YANG, E.H., WANG, S., YANG, Y. e LI, V.C., Fiber-bridging Constitutive Law of Engineered Cementitious Composites, Journal Advanced Concrete Technology, v. 6, n.1, p.181-193, 2008.

APÊNDICE A- Procedimento computacional para a tenacidade

**** 0 0 UNIVERSIDADE FEDERAL DO PAMPA 8 8 8 PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA-PPEng 8 8 8 8 % MODELAGEM COMPUTACIONAL DO AUMENTO DA TENACIDADE DO CONCRETO 8 REFORÇADO COM FIBRAS UTILIZANDO O ANSYS 2 00 0 00 00 LEANDRO FERREIRA FRIEDRICH 0 0 0 Alegrete/2015 0 clear all; clc; tic teta=0:5:60; Z=0:1:9;load FK S %carrega as rigidez de contato para debonding and pullout Lf=20; nt=size(teta,2); % controle dteta 0:5:60 nz=size(Z,2); % controle dz 0:0.5:Le wt=0.1:0.1:Lf/2; nwmax=size(wt,2); di=1; v old=0; dd old=8; kk=111; %Numera a saida dos arquivos fid3 = fopen(['CASOS' '.txt'],'w'); teta fprintf(fid3,'Caso W ti zj wk \n'); Ζ for ti=12:nt %50 if ti==1 Nforca=dados(nt,nz,nwmax); % ORganiza os dados else load Nforca end tetai=teta(ti); for zj=1:nz Zi=Z(zj); w=[0.1 0.5 1:0.5:(Lf/2-Zi)]; % Incremento de w nw=size(w,2); % Numero total de aberturas not=0; %Controle para o caso de nao convergencia 2 vezes nao converge break!!! for wk=1:nw %Laço para a abertura w caso=[kk tetai Zi w(wk)] contador=[ti zj wk]; fprintf(fid3,' %i %i %i %2.2f %i %i %i \n',kk,tetai,Zi,w(wk),ti,zj,wk); fid1 = fopen(['Read matlab' '.txt'],'r'); fid2 = fopen(['write Matlab' '.txt'],'w');

```
line = 0;
            %57=teta 58=w 59=Z 60=FKD 61=FKP
                                                         % feof indica o fim
            while ~feof(fid1)
do arquivo ~feof= não há mais linhas a serem lidas
                tline = fgets(fid1);
                                                         % le cada linha do
arquivo
                fwrite(fid2,tline,'char');
                                                         %Escreve cada linha
do arquivo no fid2
                if line==55
                                                      % Na linha 158 insere o
parametro "teta= x"
                    fprintf(fid2, 'teta=%i', tetai);
                end
                if line==56
                                                      % Na linha 158 insere o
parametro "teta= x"
                    fprintf(fid2, 'w=%i',w(wk));
                end
                if line==57
                                                       % Na linha 158 insere
o parametro "teta= x"
                    fprintf(fid2, 'Lee=%i',Zi);
                end
                if line==58
                                                      % Na linha 158 insere o
parametro "teta= x"
                    fprintf(fid2, 'FKD=%i', FKD(ti));
                end
                if line==59
                                                      % Na linha 158 insere o
parametro "teta= x"
                    fprintf(fid2,'FKP=%i',FKP(ti));
                end
                                                      % Na linha 158 insere o
                if line==60
parametro "teta= x"
                    fprintf(fid2,'ind=%i',kk);
                end
                line = line + 1;
            end
            fclose(fid1);
            fclose(fid2);
            % running ansys
            dd=dos(['"C:\Program Files\ANSYS
Inc\v140\ansys\bin\winx64\ANSYS140.exe" -g -p -dir
"C:\Users\Friedrich\Documents\MATLAB\Mestrado\Ansys Matlab" -b -i
"write Matlab.txt" -o "model.out"'],'-echo')
            if dd==1 & dd old==1
               break
            end
            dd old=dd;
            % dano_m(di)=dano_matriz(di,v_old)
            % v old=dano m(di);
            % di=di+1;
            % w=w+0.01;
        end
        ntest=['reaction' num2str(kk)];
        FID = fopen([ntest '.txt'], 'r')
        if FID>0
        NomeArquivo=['reaction' num2str(kk) '.txt'];
        r=textread (NomeArquivo);
        if size(r,1)>1
        jjj=1;
```

```
for jj=1:size(r,1)
            if r(jj,1)==1
                wi(jjj,1)=r(jj,2);
                r2(jjj,1)=r(jj,3);
                jjj=jjj+1;
            end
        end
        xi=0.1:0.1:wi(jjj-1,1);
        yi=interp1q(wi,r2,xi');
        li=size(yi,1);
        yi=[yi;zeros((nwmax-li),1)];
        figure(ti)
        plot(wt',yi)
        hold on
        for wk=1:nwmax
            Nforca(ti,zj,wk)=yi(wk);
        end
        end
        end
        kk=kk+1;
        save('Nforca.mat', 'Nforca')
        r2=[];
        wi=[];
       end
fclose(fid3);
```

end toc

APÊNDICE B- Procedimento computacional para a spalling

*** 0 0 00 UNIVERSIDADE FEDERAL DO PAMPA 00 00 00 PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA-PPEng % 8 % 8 8 8 % MODELAGEM COMPUTACIONAL DO AUMENTO DA TENACIDADE DO CONCRETO 8 8 REFORÇADO COM FIBRAS UTILIZANDO O ANSYS 2 % % 00 8 LEANDRO FERREIRA FRIEDRICH % % 0 Alegrete/2015 % % 0 clear all; clc; tic teta=15:15:60; $Z = [0 \ 3 \ 6 \ 8];$ load FK dano %carrega as rigidez de contato para debonding and pullout Lf=20; % controle dteta 0:5:60 nt=size(teta,2); nz=size(Z,2); % controle dz 0:0.5:Le %Todos ficam color 14 fibra 0- black color=[13 13 13 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 2 1]; wtt=[0.001:0.001:0.009 0.01:0.002:0.1]; par=54.75; di=1; dd old=8; kk=1;%Numera a saida dos arquivos warning('off') fid55 =fopen(['kill elementos' '.txt'],'w'); fclose(fid55); for ti=4:4 %nt %50 dano old=0 $Ro = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0];$ r ar=[]; r dano=[]; spa=0; yy=1; yyy=1; tetai=teta(ti); kkk=1;kkkk=1;kini=1; wt=wtt(kkkk); for zj=1:1 %nz Zi=Z(zj);

```
fid4 = fopen(['dano w ' num2str(tetai) ' ' num2str(par)
'.txt'],'w');
        while wt<=0.1
                                           %Laço para a abertura w
            caso=[kk tetai Zi wt]
            fid1 = fopen(['Read Matlab spalling' '.txt'],'r');
            fid2 = fopen(['write Matlab' '.txt'],'w');
            line = 0;
            %57=teta 58=w 59=Z 60=FKD 61=FKP
            while ~feof(fid1)
                                                        % feof indica o fim
do arquivo ~feof= não há mais linhas a serem lidas
                tline = fgets(fid1);
                                                        % le cada linha do
arquivo
                fwrite(fid2,tline,'char');
                                                        %Escreve cada linha
do arquivo no fid2
                if line==55
                                                     % Na linha 158 insere o
parametro "teta= x'
                    fprintf(fid2,'teta=%i',tetai);
                end
                if line==56
                                                     % Na linha 158 insere o
parametro "teta= x"
                    fprintf(fid2,'w=%i',wt);
                end
                if line==57
                                                      % Na linha 158 insere
o parametro "teta= x"
                    fprintf(fid2, 'Lee=%i',Zi);
                end
                if line==58
                                                     % Na linha 158 insere o
parametro "teta= x"
                    fprintf(fid2,'FKD=%i',FKD(ti));
                end
                                                     % Na linha 158 insere o
                if line==59
parametro "teta= x"
                    fprintf(fid2, 'FKP=%i', FKP(ti));
                end
                if line==60
                                                     % Na linha 158 insere o
parametro "teta= x"
                    fprintf(fid2,'ind=%i',kk);
                end
                line = line + 1;
            end
            fclose(fid1);
            fclose(fid2);
            % running ansys
            dd=dos(['"C:\Program Files\ANSYS
Inc\v140\ansys\bin\winx64\ANSYS140.exe" -g -p -dir
"C:\Users\Friedrich\Documents\MATLAB\Mestrado\Ansys Matlab\Spalling" -b -i
"write Matlab.txt" -o "model.out"'],'-echo')
            if dd==1
                break
            end
            dd old=dd;
            FID2 = fopen('dano ar.txt', 'r');
            if FID2>0 || spa==1
```

```
spa=1;
%calcula o volume de dano na matriz
volu matriz=textread('Vtotal.txt');
if FID2>0
C = regexp(fileread('dano_ar.txt'), '(\n|\r)*', 'split');
C = C(\sim cellfun('isempty', C));
D = cellfun(@(c) textscan(c, '%f'), C);
R = [D{:}].';
else
    R=r ar;
end
FID22 = fopen('dano.txt', 'r');
if FID22>0
Co = regexp(fileread('dano.txt'), '(\n|\r)*', 'split');
Co = Co(~cellfun('isempty', Co));
Do = cellfun(@(c) textscan(c, '%f'), Co);
R1 = [Do{:}].';
else
    R1=[0 0 0 0 0 0 0 0 0 0];
end
vol dano=0;
kk=1;
elnovo=[];
combo=[];
%soma diretamente os elemento danificados na superficie
for i=1:size(R,1)
    k=0;
    for j=1:size(Ro,1)
        if R(i, 1) == Ro(j, 1)
            k=1;
        end
    end
    if k==0
    %vol dano=vol dano+R(i,2);
    r ar(yy,:)=R(i,:)
    elnovo(kk, 1) = R(i, 1);
    kk=kk+1;
    yy=yy+1;
    end
end
Ro=[r ar;r dano];
Ro=unique(Ro,'rows');
%Os demais elementos danificados serão analisados
for jj=1:size(R1,1)
    for ii=1:size(Ro,1)
        comp= [Ro(ii,1) R1(jj,1)]
        ns=find(ismember(Ro(ii,3:10),R1(jj,3:10)))
        if size(ns,2)>=4
            k=0;
              for j=1:size(Ro,1)
                     if R1(jj,1)==Ro(j,1)
                         k=1;
                     end
                end
```

```
if k==0
                                 %vol dano=vol dano+R1(jj,2);
                                 r dano(yyy,:)=R1(jj,:)
                                 elnovo(kk,1)=R1(jj,1);
                                 kk=kk+1;
                                 yyy=yyy+1;
                             end
                    end
                end
            end
            elnovo
            elnovo=unique(elnovo,'rows')
            combo=[R;R1];
            for n=1:size(elnovo,1)
               for nn=1:size(combo, 1)
                if elnovo(n,1) == combo(nn,1)
                    vol dano=vol dano+combo(nn,2);
                end
               end
            end
            dano=(100*vol dano/volu matriz)+dano old
            dano old=dano;
                                      2.4f \n',wt,dano);
            fprintf(fid4,' %2.4f
            Ro=[];
            Ro=[r ar;r dano];
            Ro=unique(Ro, 'rows');
            Ro;
            if size(elnovo,1)~=0
            %Elementos mortos
            fid5 =fopen(['kill elementos' '.txt'],'w');
            fprintf(fid5,'FLST,5,%i,2,ORDE,%i
\n', (size(Ro,1)), (size(Ro,1)));
            for zz=1:size(Ro,1)
            fprintf(fid5,'FITEM,5,%i \n',Ro(zz));
            end
            fprintf(fid5,'ESEL,S,,,P51X \n');
            fprintf(fid5,'EKILL, all \n');
            fprintf(fid5,'ALLSEL \n');
            fclose(fid5);
            %Impressao das cores
            fid8 =fopen(['plot_dano_' num2str(tetai) '_' num2str(Zi) '_'
num2str(wt) '.txt'],'w');
            fprintf(fid8, 'FLST, 5, %i, 2, ORDE, %i
\n', size(elnovo, 1), size(elnovo, 1));
            for pp=1:size(elnovo,1)
            fprintf(fid8,'FITEM,5,%i \n',elnovo(pp));
            end
            fprintf(fid8,'ESEL,S,,,P51X \n');
            fprintf(fid8,'/COLOR, Elem, %i, all \n',color(kkk));
            fprintf(fid8, 'ALLSEL \n');
            fclose(fid8);
            end
            kkk=kkk+1;
            di=di+1;
            kkkk=kkkk+1;
            wt=wtt(kkkk);
            if FID2>0
            fclose(FID2);
```

```
end
             %if FID22>0
             %fclose(FID22);
             %end
delete('C:\Users\Friedrich\Documents\MATLAB\Mestrado\Ansys_Matlab\Spalling\
dano.txt')
delete('C:\Users\Friedrich\Documents\MATLAB\Mestrado\Ansys Matlab\Spalling\
dano ar.txt')
            FID dano = fopen('dano.txt', 'r')
              while FID dano<0
8
8
delete('C:\Users\Friedrich\Documents\MATLAB\Mestrado\Ansys Matlab\Spalling\
dano.txt')
2
               end
            else
            kkkk=kkkk+1;
            wt=wtt(kkkk);
            end
        end
       %Ro=[]
        fclose(fid4);
        fclose('all') ;
    end
     fclose('all') ;
    fid6 = fopen(['el_danificados_' num2str(tetai) ' ' num2str(Zi)
'.txt'],'w');
    fprintf(fid6, 'ALLSEL \n');
    fprintf(fid6,'FLST,5,%i,2,ORDE,%i \n',(size(Ro,1)),(size(Ro,1)));
    for zz=1:size(Ro,1)
        fprintf(fid6,'FITEM,5,%i \n',Ro(zz));
    end
    fprintf(fid6,'ESEL,U,,,P51X \n');
    fprintf(fid6,'VSEL,S, , ,
fprintf(fid6,'ESLV,U \n');
                                      1 \n');
    fprintf(fid6,'/COLOR, Elem, 15, all \n');
    fprintf(fid6,'/TRLCY,ELEM,1,ALL,,
                                           \n');
    fprintf(fid6, 'ALLSEL \n');
    fprintf(fid6,'VSEL,S, , ,
fprintf(fid6,'ESLV,S \n');
                                      1 \n');
    fprintf(fid6,'/COLOR, Elem, 12, all \n');
    fprintf(fid6, 'ALLSEL \n');
    fclose(fid6);
end
```

toc

```
0
                                               0
               UNIVERSIDADE FEDERAL DO PAMPA
8
                                               8
8
           PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA-PPEng
0
                                               8
8
                                               8
% MODELAGEM COMPUTACIONAL DO AUMENTO DA TENACIDADE DO CONCRETO
                                               9
REFORÇADO COM FIBRAS UTILIZANDO O ANSYS
                                      2
                                               00
2
0
                  LEANDRO FERREIRA FRIEDRICH
                                               0
0
2
                                               2
                    Alegrete/2015
clear all
clc
close all
્ર ∗
                   DADOS DE ENTRADA
Le=Lf/2-Z;
nL=11; %nos em X
nH=7; %nos em Y
k=1;
Le=10;
tetat=60;
par=350;
df=0.5;
N =40; %Numero de pontos na reta
seg=[1 5 7 11];
seg2=[11];
े *
                   CARREGAMENTO DE ARQUIVOS
warning('off')
C = regexp(fileread('contato 60 0.txt'), '(\n|\r)*', 'split');
C = C(\sim cellfun('isempty', C));
D = cellfun(@(c) textscan(c, '%f'), C);
R = [D\{:\}].';
Co = regexp(fileread('no pressure 60 0.txt'), '(\n|\r)*', 'split');
Co = Co(~cellfun('isempty', Co));
Do = cellfun(@(c) textscan(c, '%f'), Co);
Ro = [Do{:}].';
col=1;
lin=1;
for j=1:size(Ro,1)
  for jj=1:size(R(:,4),1)
     if Ro(j) == R(jj, 1)
        presn(col,lin)=R(jj,4);
```

APÊNDICE C- Procedimento computacional para a distribuição de pressão

```
lin=lin+1;
       end
   end
   if (j-11)*(j-22)*(j-33)*(j-44)*(j-55)*(j-66)*(j-77)==0
       col=col+1;
       lin=1;
   end
end
tetai=[90 60 30 0 30 60 90];
sinal=[1 1 1 0 1 1 1];
for i=1:nH
   rad=tetai(i)*pi/180;
   presn(i,:)=sinal(i)*sin(rad)*presn(i,:);
end
for i=1:nL
   pr(i,1) = mean(presn(:,i));
   prs(i,1)=2*sum(presn(1:3,i));
   pri(i,1)=2*sum(presn(5:7,i));
   pr2(i,1)=pri(i,1)-prs(i,1);
end
%fazer isso abaixo para todas as linhas
ze=pr2(:,1)<0;</pre>
zee=find(ze);
zeem=max(zee);
format long
pr2(1:zeem, 1) = abs(pr2(1:zeem, 1))*-1;
응*
                                PLOT
fileNamed1=['Pres interface ' num2str(tetat) ' ' num2str(10-Le) '
num2str(par) '.txt'];
filefig1= ['Pres_inf_sup_' num2str(tetat) '_' num2str(10-Le) '_'
num2str(par) '.fig'];
filefig2= ['Pres result ' num2str(tetat) ' ' num2str(10-Le) ' '
num2str(par) '.fig'];
filefig3= ['Circ all ' num2str(tetat) ' ' num2str(10-Le) ' ' num2str(par)
'.fig'];
filefig4= ['Circ seg ' num2str(tetat) ' ' num2str(10-Le) ' ' num2str(par)
'.fig'];
****
                          FIGURE 1
w=Le:-Le/10:0;
fib=zeros(nL,1);
c=[w' pr2];
F=num2str(c);
dlmwrite(fileNamed1, F, 'delimiter', '');
tetai=90;
k=1;
x11=Le:-Le/N:0;
y11=interp1(w',prs,x11');
y22=interp1(w',pri,x11');
y33=interp1(w',pr2,x11');
figure (1)
plot(x11,y11,'g','LineWidth',2)
set(gca,'XDir','Reverse')
```

```
hold on
plot(x11,y22,'b','LineWidth',2)
plot(w,fib,'k','LineWidth',2)
legend('Distribuição de pressão superior', 'Distribuição de pressão
inferior', 'Fibra', 'location', 'NorthWest')
xlabel('Comprimento enterrado da fibra L e [mm]')
ylabel('Pressão na interface [MPa]')
saveas(gcf,filefig1)
FIGURE 2
figure(2)
v33=v33;
plot(w,fib,'k','LineWidth',2)
set(gca, 'XDir', 'Reverse')
set(gca, 'YDir', 'Reverse')
hold on
plot(x11, y33, 'g', 'LineWidth', 2)
legend ('Fibra', 'Distribuição de pressão resultante', 'location', 'SouthWest')
xlabel('Comprimento enterrado da fibra L e [mm]')
ylabel('Pressão interface [MPa]')
for j=1:N+1
    if y33(j)>0
        p2 = [x11(j) y33(j)];
                                   % First Point
        p1 = [x11(j) 0];
                                    % Second Point
        dp = p2-p1;
                                    % Difference
        c1=0; c2=0; c3=1;
                                   %blue
    else
       p2 = [x11(j) y33(j)];
                                   % First Point
        p1 = [x11(j) 0];
                                    % Second Point
                                    % Difference
        dp = p2-p1;
        c1=1; c2=0; c3=0;
                                    %red
    end
    quiver(p1(1),p1(2),dp(1),dp(2),0,'color',[c1 c2 c3])
end
axis([0, Le, min(y33) - 0.05, max(y33) + 0.05])
%print('Distribução pressão','-dpng','-r300');
saveas(gcf, filefig2)
*****
                           FIGURE 3
figure(3)
fat=2;
R = df/2; %Radius
tetai=90;
k=1;
nz=Le:-Le/10:0;
plot(0,0,'k')
hold on
plot(0,0,'r')
legend('Cirunferência fibra','Distribuição de pressão
circunferencial', 'Location', 'SouthOutside')
for i=1:size(seg,2)
subplot(2,2,k) %os meus dados começam em 90 e as contas em 0
%figure()
ii=seg(i);
pnor=[presn(:,ii);presn(6:-1:1,ii)];
xCenter = 0;
yCenter = 0;
theta = linspace(pi/2, 5/2*pi, 13); %tetai*pi/180;
radius = df/2;
x = radius * cos(theta) + xCenter;
```

```
y = radius * sin(theta) + yCenter;
plot(x,y,'k');
hold on
for jj=1:13
if pnor(jj)<0
    y1(jj)=y(jj)-pnor(jj);
                                % First Point
    p2 = [x(jj) y1(jj)];
    p1 = [x(jj) y(jj)];
                                  % Second Point
                                % Difference
    dp = p2-p1;
    c1=0; c2=0; c3=1;
                                %blue
else
     y1(jj)=y(jj)-pnor(jj);
     p1 = [x(jj) y(jj)];
                               % First Point
     p2 = [x(jj) y1(jj)];
                              % Second Point
     dp = p2-p1;
                                % Difference
     c1=1; c2=0; c3=0;
                                  %red
end
 quiver(p1(1),p1(2),dp(1),dp(2),0,'color',[c1 c2 c3])
end
plot(x,y1,'r');
f=sprintf('L e= %2.2f mm',nz(seg(i)));
title(f)
axis equal;
k=k+1;
end
saveas(gcf,filefig3)
v1=[];
୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫
                            FIGURE 4
figure(4)
R = df/2; %Radius
tetai=90;
k=1;
nz=Le:-Le/10:0;
plot(0,0,'k')
hold on
plot(0,0,'r')
legend('Cirunferência fibra','Distribuição de pressão
circunferencial','Location','SouthOutside')
for i=seg2:seg2
pnor=1/5*[presn(:,i);presn(6:-1:1,i)];
xCenter = 0;
yCenter = 0;
theta = linspace(pi/2,5/2*pi,13);%tetai*pi/180;
radius = df/2;
x = radius * cos(theta) + xCenter;
y = radius * sin(theta) + yCenter;
plot(x, y, 'k');
hold on
for jj=1:13
if pnor(jj)<0</pre>
    y1(jj)=y(jj)-pnor(jj);
    p2 = [x(jj) y1(jj)];
                                % First Point
    p1 = [x(jj) y(jj)];
                                   % Second Point
    dp = p2-p1;
                                 % Difference
    c1=0; c2=0; c3=1;
                                %blue
else
     y1(jj)=y(jj)-pnor(jj);
                              % First Point
     p1 = [x(jj) y(jj)];
     p2 = [x(jj) y1(jj)];
                             % Second Point
     dp = p2-p1;
                               % Difference
```

```
----
```

128

```
c1=1; c2=0; c3=0;
                                  %red
end
 quiver(p1(1),p1(2),dp(1),dp(2),0,'color',[c1 c2 c3])
end
plot(x,y1,'r');
f=sprintf('L_e= %2.2f mm',nz(seg2));
title(f)
axis equal;
k=k+1;
end
c1=[x' y'];
F=num2str(c1);
dlmwrite('Fibra circ.txt',F,'delimiter','');
c2=[x' y1'];
F=num2str(c2);
dlmwrite('dist_circ_.txt',F,'delimiter','');
saveas(gcf,filefig4)
% %new
%plotar as figuras
%Aumentar a qualidade de impressao das figuras
            % comprimento da janela [pol]
% Altura [pol]
% Tamanho dos eixos
width = 10;
height = 7;
alw = 2;
              % Tamanho da Fonte
fsz = 12;
            % espessura da linha
lw = 2;
msz = 8;
               % marcador
pos = get(gcf, 'Position');
set(gcf, 'Position', [pos(1) pos(2) width*100, height*100]);
set(gca, 'FontSize', fsz, 'LineWidth', alw);
Ylabel('Pressão cincunferencial a fibra -componente Y [MPa]')
print('Distribução circunferencial pressão','-dpng','-r300');
0
delete('C:\Users\Friedrich\Documents\MATLAB\Mestrado\Ansys Matlab/contato.t
xt')
8
delete('C:\Users\Friedrich\Documents\MATLAB\Mestrado\Ansys Matlab/no pressu
re.txt')
%
```

1 Т ! Universidade Federal do Pampa-UNIPAMPA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA-PPENG ! Leandro Friedrich Т Т DISSERTACÃO/2015 1 FINISH /clear /TITLE, pullout Model /PREP7 1 0 ! DADOS DE ENTRADA 8 1 Ef, uf, Em, um, df, Lf, Le, Vf, fi, w, Taomax, FKN, FKT 8 !variaveis: !Ef=Modulo de elasticidade Fibra [MPa] !uf=Poisson Fibra [] !Em=modulo elasticidade matriz [MPa] !uf=poisson matriz [] !df=diametro fibra [mm] !Lf=Comprimento Fibra [mm] !Le=COmprimento enterrado [mm] !Vf=Fração volumetrica de fibras [em %] !teta=angulo da trica em relação ao eixo Y se plano XY [Graus] !w=comprimento da trinca [mm] !Taomax=Cisalhamento maximo para descolagem [MPa] !FKN=Rigidez de contato normal [] !FKT=Rigididez de contato tangencial [] !PROPRIEDADES GEOMETRICAS FIBRA df=0.25 Lf=20 !PROPRIEDADES MECANICAS FIBRA E MATRIZ Em=30e3 um=0.15 Ef=350e3 uf=0.3 fc=36.5 ft=3.7 Eglas=3.3e3 uglas=0.37 !Sig(w) e Gc !angulo de inclinação !Abertura da trinca !Comprimento Z !Rigidez descolagem !Rigidez pullout !contador de casos !PROPRIEDADES MECANICAS INTERFACE, CZM + MODELO FANTIILI E VANILLI (2003) !tao(s) relation sd=0.1 taof=0.1*sqrt(fc)

APÊNDICE D- Modelo em elementos finitos – *script* **APDL**

```
kc=2
taom=3
*if,w,le,0.1,then
Taomax=taom*sqrt(w/sd)
FKN=FKD
FKT=FKD
*endif
*if,w,gt,0.1,then
Taomax=taof+(taom-taof) *exp(kc*(sd-w))
FKN=FKP
FKT=FKP
*endif
smax=3
Gn=5
Gt=5
1
1
                          TIPOS DE ELEMENTOS
1
               SOLID65, SOLID45, MESH200, CONTA174, TARGET170
1
!CONCRETO
et,1,solid65
Keyopt, 1, 7, 1
Keyopt, 1, 3, 2
Keyopt, 1, 8, 1
!FIBRA
et,2,solid45
!MALHA
et,3,mesh200
KEYOPT, 3, 1, 7
KEYOPT, 3, 2, 0
1
                          DEFINIÇÃO MATERIAIS
1
       Linear elasticos, Multilinear elastico, Criterio William e !
1
Warnek
!Concreto
MP, EX, 1, Em
MP, PRXY, 1, um
!Tensões maximas de compressao e tração
!fc=(Em/5000) **2
                !NBR6118/03 ou IS456-2000
!ft=0.7*fc**0.5
TB, concr, 1
tbdata, 1, 0.1, 0.5, ft, fc,
!gere e Timoshenko 1997
TB, KINH, 1, 1, 15
TBPT,,0.00024,7.2
TBPT,, 0.00096,23.69
TBPT,,0.0016,32.41
TBPT,,0.00208,35.69
TBPT,,0.00236,36.5
TBPT,,0.00259,36.5
TBPT,,0.00288,35.6
TBPT,,0.0032,34.25
TBPT,,0.0054,20.49
```

!Fibra MP,EX,2,Ef MP, PRXY, 2, uf !Contato Tb,czm,3,,,CBDE Tbdata, 1, smax, Gn, taomax, Gt, 0.01, 1 MPTEMP,,,,,,,, MPTEMP, 1, 0 MPDATA, MU, 3,, 0.015 !Matriz 2 Plexiglas MP, EX, 4, Eglas MP, PRXY, 4, uglas 1 ! MODELO 3D ! 1 Matrix e fibra cilindricas, fibra concentrica no centro da matrix 2 !define pi Le=Lf/2+Lee hmax=12 lmax=25.4zmax=6 fi=(90-teta)*3.1415/180 base=20 altura1=2*(tan(fi)*(Lf-Le))-0.4 !esse valor determinar o tipo de modelo *if,altura1,GE,hmax,then altura1=hmax *endif BLOCK,0,base,-altura1/2,altura1/2,-zmax/2,zmax/2, VGEN,,1,,,-(Lf-Le),,,,,1 !colocar no plano XY wpro,,,-30.00000 wpro,,,-30.00000 wpro,,,-30.000000 CYL4, , ,df/2 vext,7,,,(Lf),0,0,,,, VGEN,,2,,,-(Lf-Le),,,,,1 VSBV,1,2 !subtrai a fibra da matriz CYL4, , ,df/2 vext, 5, ,, (Lf), 0, 0, ,, , VGEN,,1,,,-(Lf-Le),,,,,1 allsel !Divide o modelo ao meio e aplica simetria WPCSYS, -1, 0 VSBW, all FLST, 2, 2, 6, ORDE, 2 FITEM, 2, 2 FITEM, 2, 6 VDELE, P51X, , ,1 WPCSYS,-1,0 ! Volta ao plano xy pra fazer a inclinação da fibra 1 wpro,0,-90,(teta-90) VSBW,4 vplot 1 VSBW, 5, sepo

```
vplot
vglue,2,4
*if, altura1, GE, hmax, then
!extrude areas completar largura
!Direita
VEXT,22, , ,(lmax-base)/2,0,0,,,
AGEN,2,21, , , , , , , 0
VEXT, 34, , ,(lmax-base)/2,0,0,,,,
vglue,4,6
!ESQUERDA
VEXT,18, , ,-(lmax-base)/2,0,0,,,
AGEN,2,20, , , , , , , 0
VEXT,44, , ,-(lmax-base)/2,0,0,,,,
vglue,6,8
/INPUT, 'Malha tipo 12', 'txt', 'D:\...\', ,0
*endif
*if,altura1,Lt,hmax,then
WPCSYS,-1,0
            ! Volta ao plano xy pra fazer a inclinação da fibra
!extrude areas completar largura
!Direita
VEXT,22, , ,(lmax-base)/2,0,0,,,,
AGEN,2,21, , , , , , , 0
VEXT,34, , ,(lmax-base)/2,0,0,,,,
vglue,4,6
!ESQUERDA
VEXT,18, , ,-(lmax-base)/2,0,0,,,,
AGEN,2,20, , , , , , , 0
VEXT,44, , ,-(lmax-base)/2,0,0,,,,
vglue,6,8
!extrude areas completar altura
VEXT,31, , ,, (hmax-altura1)/2,0,,,,
VEXT,26, , ,,(hmax-altura1)/2,0,,,,
vglue,8,10
VEXT,24, , ,,-(hmax-altura1)/2,0,,,,
VEXT,32, , ,,-(hmax-altura1)/2,0,,,,
vglue,10,12
VEXT,15, , ,,-(hmax-altura1)/2,0,,,,
VEXT,42, , ,,-(hmax-altura1)/2,0,,,,
vglue, 12, 14
VEXT,38, , ,,(hmax-altura1)/2,0,,,,
VEXT,14, , ,, (hmax-altura1)/2,0,,,,
vglue,14,16
fm=(hmax-altura1)/2
/INPUT, 'Malha_tipo_2', 'txt', 'D:\...\', ,0
*endif
MALHA
                                            tipo 1
```

! 1 Mapped mesh usando triangular elementos ! conjunto esquerda FLST, 5, 4, 6, ORDE, 4

! 8

```
FITEM, 5, 1
FITEM, 5, 3
FITEM, 5, 6
FITEM, 5, 9
VSEL, , , , P51X
lesize,53,,,18,,,,1
lesize,20,,,18,,,,1
lesize,50,,,18,,,,1
lesize,17,,,18,,,,,1
!*
lesize,76,,,3,,,,1
lesize,77,,,3,,,,1
lesize,78,,,3,,,,1
lesize,79,,,3,,,,1
lesize, 66, , , 3, , , , 1
lesize, 67,,,3,,,,,1
lesize,75,,,3,,,,1
lesize, 51, , , 6, , , , 1
lesize, 52,,,6,,,,1
lesize, 36, , , 6, , , , 1
lesize, 49,,,6,,,,1
!*
lesize, 62,,,6,,,,1
lesize,64,,,6,,,,1
lesize,21,,,30,,,,1
lesize,16,,,30,,,,1
!*
lesize,63,,,30,,,,1
lesize,54,,,18,,,,,1
lesize,55,,,18,,,,1
lesize,56,,,18,,,,1
lesize, 57,,,18,,,,1
! *
lesize, 48, , 15, , , , 1
lesize,65,,,15,,,,1
lesize, 6, , , 3, , , , 1
lesize, 32,,,3,,,,1
lesize,7,,,3,,,,1
lesize, 34,,,3,,,,1
lesize, 5, , , 5, , , , 1
lesize, 37,,,5,,,,1
!*
lesize,90,,,5,,,,1
lesize, 27, , , 3, , , , 1
lesize, 33, , , 3, , , , 1
lesize, 25, , , 3, , , , 1
lesize,26,,,3,,,,1
!*
lesize, 46, , , 3, , , , , 1
lesize, 47,,, 3,,,,,1
lesize,10,,,15,,,,1
lesize,35,,,15,,,,1
lesize,8,,,15,,,,1
lesize,28,,,15,,,,1
lesize,9,,,15,,,,1
lesize,29,,,15,,,,1
```

```
!Fibra
VATT,
            2,, 2,
                             0
vsweep,1
!Matriz
VATT,
                             0
            1, ,
                   1,
vsweep,3
vsweep,6
vsweep,9
allsel
!Conjunto direita
FLST, 5, 4, 6, ORDE, 4
FITEM, 5, 5
FITEM, 5, 2
FITEM, 5, 7
FITEM, 5, 4
VSEL, , , , P51X
!
lesize,78,,,18,,,,1
lesize,76,,,18,,,,,1
lesize,75,,,18,,,,,1
lesize,77,,,18,,,,1
!*
lesize,7,,,3,,,,1
lesize, 34,,, 3,,,,,1
lesize,67,,,3,,,,1
lesize,6,,,3,,,,1
lesize, 32,,, 3,,,,,1
lesize,65,,,3,,,,1
lesize, 31, , , 3, , , , 1
lesize,1,,,6,,,,1
lesize,72,,,6,,,,1
lesize,73,,,6,,,,1
lesize,69,,,6,,,,1
lesize,70,,,6,,,,1
!*
lesize, 3, , , 6, , , , 1
lesize, 59,,, 30,,,,,1
lesize, 61, , 30, , , , 1
!*
lesize,2,,,30,,,,1
lesize, 12, , , 18, , , , , 1
lesize,68,,,18,,,,,1
lesize,13,,,18,,,,,1
lesize, 64,,,18,,,,,1
!*
lesize,11,,,18,,,,,1
lesize,63,,,18,,,,1
lesize,66,,,3,,,,1
!lesize, 32,,, 3,,,,,1
lesize,30,,,3,,,,1
!lesize, 34,,, 3,,,,,1
lesize,81,,,5,,,,1
lesize, 38, , , 5, , , , , 1
!*
lesize,82,,,5,,,,1
```

lesize,5,,,5,,,,1 lesize, 62,,,3,,,,,1 lesize,14,,,3,,,,1 !* lesize, 15, , , 3, , , , 1 lesize,41,,,3,,,,1 lesize,40,,,3,,,,1 lesize, 39,,,3,,,,1 lesize,19,,,3,,,,1 lesize,22,,,3,,,,1 lesize,23,,,3,,,,1 lesize,24,,,3,,,,1 lesize,71,,,15,,,,1 lesize, 58,,,15,,,,1 lesize, 60,,,15,,,,,1 lesize,74,,,15,,,,1 !Fibra VATT, 2,, 2, 0 vsweep,2 !Matriz 4, , !VATT, 2, 0 1, , VATT, 1, 0 vsweep,5 vsweep,7 vsweep,4 ! 8 1 CONTATO 1 Target170, conta174, MU, taomax 8 !Componentes de nós para o contato FLST, 5, 2, 5, ORDE, 2 FITEM, 5, 13 FITEM, 5, 12 ASEL,S, , ,P51X NSLA,S,1 CM, matrize, NODE CMSEL, A, matrize 1 FLST, 5, 2, 5, ORDE, 2 FITEM, 5, 4 FITEM, 5, 3 ASEL,S, , ,P51X NSLA,S,1 CM, fibrae, NODE CMSEL, A, fibrae allsel eplot !**Contato esquerdo ET,4,170 Et,5,174 Keyopt, 5, 2, 1!1 Keyopt, 5, 4, 1!1 Keyopt, 5, 5, 4 !Keyopt, 5, 6, 4 Keyopt, 5, 9, 1 Keyopt, 5, 10, 2

```
Keyopt, 5, 12, 5
Keyopt, 5, 16, 0
!R,st,raio1,raio2,fkn,ftoln,icont,pinb,pmax,pmin,taomax
R,4,,,fkn,,,,,taomax
RMORE,,,taomax, ,,fkt,
!RMORE, coe,,
1
NSEL, S,,, fibrae
TYPE,4
MAT,3
REAL,4
ESLN,S,0
ESURF
ALLSEL, all
NSEL, S, , , matrize
TYPE,5
MAT,3
ESLN,S,0
ESURF
allsel
!Componentes de nós para o contato
FLST, 5, 2, 5, ORDE, 2
FITEM, 5, 30
FITEM, 5, 29
ASEL,S, , ,P51X
NSLA,S,1
CM, matrizd, NODE
CMSEL, A, matrizd
1
FLST, 5, 2, 5, ORDE, 2
FITEM, 5, 9
FITEM, 5, 7
ASEL,S, , ,P51X
NSLA,S,1
CM, fibrad, NODE
CMSEL, A, fibrad
allsel
eplot
!**Contato esquerdo
ET,4,170
Et,5,174
Keyopt, 5, 2, 1!1
Keyopt, 5, 4, 1!1
Keyopt, 5, 5, 4
!Keyopt, 5, 6, 4
Keyopt, 5, 9, 1
Keyopt, 5, 10, 2
Keyopt, 5, 12, 5
Keyopt, 5, 16, 0
!
!R,st,raio1,raio2,fkn,ftoln,icont,pinb,pmax,pmin,taomax
R,4,,,fkn,,,,,taomax
RMORE,,,taomax, ,,fkt,
!RMORE, coe,,
1
NSEL, S, , , fibrad
TYPE,4
```

MAT,3 REAL,4 ESLN,S,0 ESURF ALLSEL, all NSEL,S,,,matrizd TYPE,5 MAT,3 ESLN,S,0 ESURF allsel CNCHECK, ADJUST wa=w/2 pi=3.14159265359 tetav=teta*pi/180 !ESEL, s, TYPE,, 5 !*get,live el,elem,,count !NSLE,R !NSEL, R, LOC, X, -wa, 1 !ESLN,R,1 !ESLN,R,1 !*get,dead el,elem,,count !ekill,all !allsel !ESEL, s, TYPE,, 5 !NSLE,R !NSEL,R,LOC,X,-le,-(le-wa) !ESLN,R,1 !ESLN,R,1 !*get,dead el2,elem,,count !ekill,all !el cont=live el-dead el2-dead el /INPUT, 'kill elementos', 'txt', 'C:\Users\.... \', ,0 Т 90 ! LOADS 00 ! Deslocamentos 8 응응응 allsel,all !**CARGAS A DIREITA DA, 27, UX, -wa*cos(tetav), DA, 27, UY, wa*sin(tetav), !DA,27,UZ,0, DA, 14, UX, -wa*cos(tetav), DA,14,UY,wa*sin(tetav), !DA, 14, UZ, 0, DA,40,UX,-wa*cos(tetav), DA,40,UY,wa*sin(tetav), !DA,40,UZ,0, DA,53,UX,-wa*cos(tetav), DA, 53, UY, wa*sin(tetav), !DA,53,UZ,0, DA, 15, UX, -wa*cos(tetav), DA, 15, UY, wa*sin(tetav), !DA,15,UZ,0, DA,45,UX,-wa*cos(tetav), DA,45,UY,wa*sin(tetav),

```
!DA, 45, UZ, 0,
! **Cargas a esquerda
DA,41,UX,wa*cos(tetav),
DA,41,UY,-wa*sin(tetav),
!DA,41,UZ,0,
DA,1,UX,wa*cos(tetav),
DA, 1, UY, -wa*sin(tetav),
!DA, 1, UZ, 0,
DA, 10, UX, wa*cos(tetav),
DA, 10, UY, -wa*sin(tetav),
!DA,10,UZ,0,
DA, 22, UX, wa*cos(tetav),
DA,22,UY,-wa*sin(tetav),
!DA,22,UZ,0,
DA, 31, UX, wa*cos(tetav),
DA, 31, UY, -wa*sin(tetav),
!DA, 31, UZ, 0,
DA, 32, UX, wa*cos(tetav),
DA, 32, UY, -wa*sin(tetav),
!DA, 32, UZ, 0,
!
9
                        CONDIÇÕES DE CONTORNO
1
1
                            Simetria
8
888
FLST, 2, 12, 5, ORDE, 12
FITEM, 2, 6
FITEM,2,5
FITEM, 2, 17
FITEM, 2, 16
FITEM, 2, 23
FITEM, 2, 26
FITEM, 2, 34
FITEM, 2, 33
FITEM, 2, 39
FITEM, 2, 43
FITEM, 2, 46
FITEM, 2, 54
DA, P51X, SYMM
FINISH
1
8
!
                              SOLUCÃO
0
/SOL
!
antype,0
CUTCONTROL, PLSLIMIT, 0.2
nropt,unsym
          !iniT
!DELTIM, 0.02, 0.02, 0.02
!DELTIM, 0.001, 0.000000001, 0.001
NLGEOM, off
```

```
EQSLV, PCG, 0.01, 1,
PIVCHECK, 1
PSTRES
!LNSRCH, auto
nsubst,100
ncnv,1
NEQIT, 50
1
SOLVE
FINISH
1
8
!
                              POS-PROCESSO
!
                            Reações, dano matriz
0
/post1
!Convergiu? tempo==1 (sim) |= (nao)
1
reaction=0
*get,tempo,active,0,set,time
*IF, TEMPO, EQ, 1, THEN
FLST, 5, 6, 5, ORDE, 6
FITEM, 5, 27
FITEM, 5, 14
FITEM, 5, 40
FITEM, 5, 53
FITEM, 5, 15
FITEM, 5, 45
ASEL,S, , ,P51X
NSLA,S,1
rfx=0
rfy=0
rfz=0
*get,nmax,node,,num,max
*get,nmin,node,,num,min
!
*get, nnodes, NODE, 0, count
1
nnum=nmin
*DO, index, 1, nnodes, 1
rfx temp=0
rfy_temp=0
rfz_temp=0
*get,rfx_temp,node,nnum,rf,fx
rfx=rfx_temp+rfx
*get,rfy_temp,node,nnum,rf,fy
rfy=rfy_temp+rfy
*get,rfz_temp,node,nnum,rf,fz
rfz=rfz_temp+rfz
*get,nnum,node,nnum,nxth
*enddo
reaction=2*sqrt(rfx**2+rfy**2+rfz**2)
1
!Quantifica o dano na matriz em um estágio inicial da abertura da !trinca
!Calcula a porcentagem da matriz danifica em relação ao total
!Seleciona os elementos a serem analisados, elementos SOLID65
allsel
```

```
ESEL, S, TYPE, , 1 !numero tipo de elemento do concreto
!Como a analise é no centroide pode analisar so o primeiro nó
1
                 CRIANDO ETABLE
I.
!AVPRIN,0, ,
ETABLE, 1, NMISC, 53
ETABLE, , VOLU,
1
!PRETAB,1 !para visualizar o status do elemento, tem que ir general
!posproc-element table-list element table
*get,num el,elem,,count
*get,emax,elem,,num,max
*get,emin,elem,,num,min
dano=0
vtotal=0
enum=emin
k=1
*DO, index, 1, num el, 1
!el=elnext(el)
*get, status, etab, 1, elem, enum
*get,volume e,etab,2,elem,enum
vtotal=vtotal+volume e
!enum=151
*get,yloc,elem,enum,cent,y
*if,yloc,ne,0,then
st=(status-3) * (status-13) * (status-15) * (status-16)
*if,st,ne,0,then
dano=dano+volume e
!seleciona os nos do elemento
*get,n1,elem,enum,NODE,1
*get,locnx1,NODE,n1,loc,x
*get,locnz1,NODE,n1,loc,z
*get,n2,elem,enum,NODE,2
*get,locnx2,NODE,n2,loc,x
*get,locnz2,NODE,n2,loc,z
*get,n3,elem,enum,NODE,3
*get,locnx3,NODE,n3,loc,x
*get,n4,elem,enum,NODE,4
*get,locnx4,NODE,n4,loc,x
*get,n5,elem,enum,NODE,5
*get,locnz5,NODE,n5,loc,z
*get,n6,elem,enum,NODE,6
*get,locnz6,NODE,n6,loc,z
*get,n7,elem,enum,NODE,7
*get,n8,elem,enum,NODE,8
somaz=locnz1+locnz2+locnz5+locnz6
somax=locnx1+locnx2+locnx3+locnx4
*if, somaz, eq, 0, then
*CFOPEN,C:\Users\...\dano_ar,txt,,append
*VWRITE, enum, volume_e, n1, n2, n3, n4, n5, n6, n7, n8
(E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E1
5.8,2X,E15.8)
*CFCLOS
!*endif
*elseif, somax, ge, -1.5, and, somax, le, 1.5, then
*CFOPEN,C:\Users\...\dano ar,txt,,append
*VWRITE, enum, volume e, n1, n2, n3, n4, n5, n6, n7, n8
(E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E1
5.8,2X,E15.8)
```

```
*CFCLOS
*else
*CFOPEN,C:\Users\...\dano,txt,,append
*VWRITE, enum, volume e, n1, n2, n3, n4, n5, n6, n7, n8
 (E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E1
5.8,2X,E15.8)
*CFCLOS
*endif
k=k+1
*endif
*CFOPEN,C:\Users\...\Vtotal,txt,,
*VWRITE,Vtotal
 (E15.8)
*CFCLOS
*endif
*get, enum, elem, enum, nxth
*enddo
dano matriz=(dano/vtotal)*100
! TENSAO NO CENTRO DA FIBRA MEDIA DOS NOS
!no 26 verificar :D
set,last
allsel
PLESOL, S,1, 0,1.0
FLST, 5, 2, 6, ORDE, 2
FITEM, 5, 1
FITEM, 5, 2
VSEL,S, , ,P51X
ESLV,S
ETABLE, 3, s, eqv
tensao=0
*get,num el,elem,,count
 *get,emax,elem,,num,max
*get,emin,elem,,num,min
enum=emin
*DO, index, 1, num el, 1
 *get,tel,etab,3,elem,enum
*if,tel,GT,tensao,then
tensao=tel
*endif
 *get, enum, elem, enum, nxth
 *enddo
 *CFOPEN, C:\Users\..., txt,, append
 *VWRITE, w, reaction, tensao
 (E15.8,2X,E15.8,2X,E15.8)
 *CFCLOS
 !************** DISTRIBUIÇÃO DE PRESSAO NA INTERFACE
k=90
cont = (df/2) * tan (teta * 3.1415/180) + 0.01
 *DO, hh, 1, 7
kk=k*3.1415/180
*DO,nn,11,1,-1
!nn=1
nnn=nn-1
nel=10
rel=(Lf-Le)/nel
allsel
ESEL, S, TYPE, , 5 !ELEMENTO DE CONTATO
NSLE,S
NSEL, r, LOC, Y, ((df/2) *sin(kk))+0.025, ((df/2) *sin(kk))-0.01
NSEL, r, LOC, X, -nnn*rel-cont, -nnn*rel+cont
```

```
*get,nmax,node,,num,max
*get,nmin,node,,num,min
I.
nnum=nmax
!****
*CFOPEN,C:\Users\...\no_pressure_%teta%_%Lee%,txt,,append
*VWRITE, nnum
(E15.8)
*CFCLOS
nnum=
*enddo
k=k-30
*enddo
!547,538,539,540,541,542,543,544,545,546,330
allsel
/OUTPUT, C:\Users...\contato %teta% %Lee%, txt,
!
PRNSOL, CONT
!
/OUT
allsel
!/DEVICE, VECTOR, On
!PLCRACK, 0, 0
!/pbc,rfor,1
1
8
1
                                  MALHA
                                          tipo 2
1
                 Mapped mesh usando triangular elementos
8
! conjunto esquerda
FLST, 5, 8, 6, ORDE, 8
FITEM, 5, 1
FITEM, 5, 3
FITEM, 5, 6
FITEM, 5, 9
FITEM, 5, 12
FITEM, 5, 14
FITEM, 5, 15
FITEM, 5, 17
VSEL, , , , P51X
lm=6
! Parte central
lesize, 51, , , lm, , , , 1
lesize, 52, , , lm, , , , , 1
lesize, 36, , , lm, , , , , 1
lesize,49,,,lm,,,,,1
!*
lesize,50,,,10,,,,1
lesize,17,,,10,,,,1
!*
lesize, 54,,,10,,,,1
lesize,55,,,10,,,,1
lesize, 56, , , 10, , , , , 1
lesize, 57,,,10,,,,1
!*
lesize,21,,,15,,,,1
lesize,16,,,15,,,,1
!*
lesize,53,,,10,,,,1 !parte bem menor
```

```
lesize,20,,,10,,,,,1
Т
lesize,10,,,10,,,,1
lesize,35,,,10,,,,1
lesize,8,,,10,,,,1
lesize,28,,,10,,,,1
lesize,9,,,10,,,,1
lesize,29,,,10,,,,1
1
esize, 6, , , 3, , , , 1
lesize, 32,,,3,,,,1
lesize,7,,,3,,,,1
lesize, 34,,,3,,,,1
lesize, 5, , , 5, , , , 1
lesize, 37,,,5,,,,1
!*
lesize, 27, , , 3, , , , 1
lesize, 33, , , 3, , , , 1
lesize, 25, , , 3, , , , 1
lesize, 26, , , 3, , , , 1
lesize,88,,,3,,,,1
lesize,89,,,3,,,,1
Т
T
!Parte inferior
lesize,140,,,lm,,,,,1
lesize,124,,,lm,,,,,1
lesize,127,,,lm,,,,,1
lesize,45,,,lm,,,,,1
1
lesize,47,,,lm,,,,,1
lesize,111,,,lm,,,,,1
lesize,113,,,lm,,,,,1
lesize,126,,,lm,,,,,1
1
lesize,121,,,fm,,,,,1
lesize,122,,,fm,,,,,1
lesize,123,,,fm,,,,,1
lesize,117,,,fm,,,,,1
lesize,130,,,fm,,,,,1
lesize,131,,,fm,,,,,1
lesize,116,,,10,,,,1 !parte bem menor
lesize,112,,,10,,,,1
!
lesize,133,,,4,,,,1
lesize,132,,,4,,,,,1
lesize,87,,,4,,,,,1
lesize,86,,,4,,,,1
1
lesize,79,,,4,,,,1
lesize,80,,,4,,,,1
lesize,83,,,4,,,,1
1
lesize,84,,,4,,,,1
lesize,85,,,4,,,,,1
lesize,125,,,4,,,,,1
lesize,128,,,4,,,,,1
1
lesize,136,,,fm,,,,,1
lesize,129,,,fm,,,,,1
```

```
lesize,134,,,fm,,,,,1
lesize,135,,,fm,,,,,1
lesize,144,,,fm,,,,,1
lesize,141,,,fm,,,,,1
lesize,44,,,10,,,,1
lesize,48,,,10,,,,1
!*
lesize, 46, , , 15, , , , , 1
1
lesize,97,,,5,,,,1
lesize,98,,,5,,,,1
1
!Fibra
            2, ,
                   2,
                             0
VATT,
vsweep,1
!Matriz
VATT,
            1, ,
                   1,
                             0
vsweep,3
vsweep,6
vsweep,9
vsweep,12
vsweep,14
vsweep,15
vsweep,17
allsel
!Conjunto direita
FLST, 5, 8, 6, ORDE, 8
FITEM, 5, 5
FITEM, 5, 2
FITEM, 5, 7
FITEM, 5, 4
FITEM, 5,8
FITEM, 5, 11
FITEM, 5, 10
FITEM, 5, 13
VSEL, , , , P51X
! Parte central
lesize,69,,,lm,,,,,1
lesize,70,,,lm,,,,,1
lesize,72,,,lm,,,,,1
lesize,73,,,lm,,,,,1
!*
lesize,60,,,10,,,,1
lesize,74,,,10,,,,,1
!*
lesize,75,,,10,,,,1
lesize,76,,,10,,,,1
lesize,77,,,10,,,,1
lesize,78,,,10,,,,1
!*
lesize,59,,,15,,,,1
lesize, 61, , , 15, , , , , 1
!*
lesize,71,,,10,,,,1 !parte bem menor
lesize,58,,,10,,,,1
1
lesize,12,,,10,,,,1
```
```
lesize,68,,,10,,,,,1
lesize,11,,,10,,,,1
lesize,63,,,10,,,,1
lesize,13,,,10,,,,,1
lesize,64,,,10,,,,1
T
lesize, 65,,,3,,,,1
lesize, 32,,, 3,,,,,1
lesize, 6, , , 3, , , , 1
lesize, 67,,,3,,,,,1
lesize,7,,,3,,,,1
lesize, 34,,,3,,,,1
lesize, 5, , , 5, , , , 1
lesize, 38, , , 5, , , , 1
!*
lesize, 31, , , 3, , , , 1
lesize, 66, , , 3, , , , 1
lesize, 30,,,3,,,,1
lesize, 62,,,3,,,,,1
1
!Parte inferior
lesize,114,,,lm,,,,,1
lesize,96,,,lm,,,,,1
lesize,101,,,lm,,,,,1
lesize,1,,,lm,,,,,1
1
lesize, 3, , , lm, , , , , 1
lesize,88,,,lm,,,,,1
lesize,90,,,lm,,,,,1
lesize,100,,,lm,,,,,1
!
lesize,92,,,fm,,,,,1
lesize,93,,,fm,,,,,1
lesize,94,,,fm,,,,1
lesize,95,,,fm,,,,,1
lesize,104,,,fm,,,,,1
lesize,105,,,fm,,,,,1
1
lesize,89,,,10,,,,1 !parte bem menor
lesize,91,,,10,,,,1
!
lesize, 106, , , 4, , , , , 1
lesize, 107, , , 4, , , , , 1
lesize,23,,,4,,,,1
lesize, 24, , , 4, , , , 1
I.
lesize, 39,,,4,,,,1
lesize, 40, , , 4, , , , , 1
lesize, 41, , , 4, , , , , 1
1
lesize,22,,,4,,,,,1
lesize,19,,,4,,,,1
lesize,99,,,4,,,,1
lesize,102,,,4,,,,,1
!
lesize,103,,,fm,,,,,1
lesize,108,,,fm,,,,,1
lesize,109,,,fm,,,,,1
lesize,110,,,fm,,,,,1
lesize,118,,,fm,,,,,1
lesize,115,,,fm,,,,,1
```

```
1
lesize,4,,,10,,,,1
lesize,18,,,10,,,,,1
!*
lesize,2,,,15,,,,,1
1
lesize,82,,,5,,,,1
lesize,81,,,5,,,,1
1
lesize, 15, , , 3, , , , 1
lesize,14,,,3,,,,1
!Fibra
           2,, 2,
                         0
VATT,
vsweep,2
!Matriz
          1,, 1,
                         0
VATT,
vsweep,5
vsweep,7
vsweep,4
vsweep,8
vsweep,11
vsweep,10
vsweep,13
!
00
!
                                 CONTATO
!
                       Target170, conta174, MU, taomax
8
!Componentes de nós para o contato
FLST, 5, 2, 5, ORDE, 2
FITEM, 5, 13
FITEM, 5, 12
ASEL,S, , ,P51X
NSLA,S,1
CM, matrize, NODE
CMSEL, A, matrize
1
FLST, 5, 2, 5, ORDE, 2
FITEM, 5, 4
FITEM, 5, 3
ASEL,S, , ,P51X
NSLA,S,1
CM, fibrae, NODE
CMSEL, A, fibrae
allsel
eplot
!**Contato esquerdo
ET,4,170
Et,5,174
Keyopt, 5, 2, 1!1
Keyopt, 5, 4, 1!1
Keyopt, 5, 5, 4
!Keyopt, 5, 6, 4
Keyopt, 5, 9, 1
Keyopt, 5, 10, 2
Keyopt, 5, 12, 5
Keyopt, 5, 16, 0
!
```

```
!R,st,raio1,raio2,fkn,ftoln,icont,pinb,pmax,pmin,taomax
R,4,,,fkn,,,,,taomax
RMORE,,,taomax, ,,fkt,
!RMORE, coe,,
NSEL, S, , , fibrae
TYPE,4
MAT,3
REAL,4
ESLN,S,0
ESURF
ALLSEL, all
NSEL, S,,, matrize
TYPE,5
MAT,3
ESLN,S,0
ESURF
allsel
FLST, 5, 2, 5, ORDE, 2
FITEM, 5, 29
FITEM, 5, 30
ASEL,S, , ,P51X
NSLA,S,1
CM, matrizd, NODE
CMSEL, A, matrizd
1
FLST, 5, 2, 5, ORDE, 2
FITEM, 5, 7
FITEM, 5, 9
ASEL,S, , ,P51X
NSLA,S,1
CM, fibrad, NODE
CMSEL, A, fibrad
allsel
eplot
!**Contato esquerdo
ET,4,170
Et,5,174
Keyopt, 5, 2, 1!1
Keyopt, 5, 4, 1!1
Keyopt, 5, 5, 4
!Keyopt, 5, 6, 4
Keyopt, 5, 9, 1
Keyopt, 5, 10, 2
Keyopt, 5, 12, 5
Keyopt, 5, 16, 0
1
!R,st,raio1,raio2,fkn,ftoln,icont,pinb,pmax,pmin,taomax
R,4,,,fkn,,,,,taomax
RMORE,,,taomax, ,,fkt,
!RMORE, coe,,
!
NSEL, S, , , fibrad
TYPE,4
MAT,3
REAL,4
ESLN,S,0
ESURF
```

```
ALLSEL, all
NSEL, S,,, matrizd
TYPE,5
MAT,3
ESLN,S,O
ESURF
allsel
CNCHECK, ADJUST
wa=w/2
pi=3.14159265359
tetav=teta*pi/180
/INPUT, 'kill elementos', 'txt', 'C:\Users\...\', ,0
!
9
!
                                 LOADS
!
                              Deslocamentos
8
allsel,all
!**CARGAS A esquerda
DA, 64, UX, -wa*cos(tetav),
DA, 64, UY, wa*sin(tetav),
DA, 76, UX, -wa*cos(tetav),
DA,76,UY,wa*sin(tetav),
DA,80,UX,-wa*cos(tetav),
DA,80,UY,wa*sin(tetav),
DA, 27, UX, -wa*cos(tetav),
DA,27,UY,wa*sin(tetav),
DA, 53, UX, -wa*cos(tetav),
DA, 53, UY, wa*sin(tetav),
DA, 77, UX, -wa*cos(tetav),
DA,77,UY,wa*sin(tetav),
DA, 73, UX, -wa*cos(tetav),
DA,73,UY,wa*sin(tetav),
DA, 89, UX, -wa*cos(tetav),
DA,89,UY,wa*sin(tetav),
! **Cargas a DIREITA
DA, 47, UX, wa*cos(tetav),
DA, 47, UY, -wa*sin(tetav),
DA, 62, UX, wa*cos(tetav),
DA, 62, UY, -wa*sin(tetav),
DA, 58, UX, wa*cos(tetav),
DA, 58, UY, -wa*sin(tetav),
DA, 1, UX, wa*cos(tetav),
DA,1,UY,-wa*sin(tetav),
DA, 41, UX, wa*cos(tetav),
DA, 41, UY, -wa*sin(tetav),
DA, 59, UX, wa*cos(tetav),
DA, 59, UY, -wa*sin(tetav),
DA, 55, UX, wa*cos(tetav),
DA, 55, UY, -wa*sin(tetav),
DA, 71, UX, wa*cos(tetav),
DA,71,UY,-wa*sin(tetav),
```

! 8 1 CONDIÇÕES DE CONTORNO 1 Simetria 0 FLST, 2, 20, 5, ORDE, 20 FITEM, 2, 5 FITEM, 2, 6 FITEM, 2, 16 FITEM, 2, 17 FITEM, 2, 23 FITEM, 2, 26 FITEM, 2, 33 FITEM, 2, 34 FITEM, 2, 39 FITEM, 2, 43 FITEM, 2, 46 FITEM, 2, 51 FITEM, 2, 54 FITEM, 2, 61 FITEM, 2, 63 FITEM, 2, 70 FITEM, 2, 72 FITEM, 2, 79 FITEM, 2, 81 FITEM, 2, 88 DA, P51X, SYMM FINISH 1 SOLUÇÃO % /SOL ! antype,0 CUTCONTROL, PLSLIMIT, 0.2 nropt,unsym !iniT !DELTIM, 0.01, 0.01, 0.01 DELTIM, 0.005, 0.00000001, 0.005 NLGEOM, off EQSLV, PCG, 0.01, 1, PIVCHECK,1 PSTRES !LNSRCH, auto nsubst,100 ncnv,1 NEQIT, 50 ! SOLVE FINISH *else /SOL 8 ! POS-PROCESSO ! Reações, dano matriz 0

%

```
150
```

```
/post1
!Convergiu? tempo==1 (sim) |= (nao)
1
reaction=0
*get,tempo,active,0,set,time
!64,76,80,27,53,77,73,89
*IF, TEMPO, EQ, 1, THEN
FLST, 5, 8, 5, ORDE, 8
FITEM, 5, 64
FITEM, 5, 76
FITEM, 5, 80
FITEM, 5, 27
FITEM, 5, 53
FITEM, 5, 77
FITEM, 5, 73
FITEM, 5, 89
ASEL,S, , ,P51X
NSLA,S,1
rfx=0
rfy=0
rfz=0
*get,nmax,node,,num,max
*get,nmin,node,,num,min
!
*get, nnodes, NODE, 0, count
!
nnum=nmin
*DO, index, 1, nnodes, 1
rfx_temp=0
rfy temp=0
rfz temp=0
*get,rfx temp,node,nnum,rf,fx
rfx=rfx_temp+rfx
*get,rfy_temp,node,nnum,rf,fy
rfy=rfy temp+rfy
*get,rfz temp,node,nnum,rf,fz
rfz=rfz temp+rfz
*get,nnum,node,nnum,nxth
*enddo
reaction=2*sqrt(rfx**2+rfy**2+rfz**2)
!Quantifica o dano na matriz em um estágio inicial da abertura da trinca
!Calcula a porcentagem da matriz danifica em relação ao total
dano=0
vtotal=0
*do, lado, 1, 2, 1
!Seleciona os elementos a serem analisados, elementos SOLID65
allsel
*if,lado,eq,1,then !esquerda
FLST, 5, 7, 6, ORDE, 7
FITEM, 5, 3
FITEM, 5, 6
FITEM, 5, 9
FITEM, 5, 12
FITEM, 5, 14
FITEM, 5, 15
FITEM, 5, 17
VSEL, , , , P51X
*else
```

```
FLST, 5, 3, 6, ORDE, 3
                    !direita
FLST, 5, 7, 6, ORDE, 7
FITEM, 5, 5
FITEM, 5, 7
FITEM, 5, 4
FITEM, 5,8
FITEM, 5, 11
FITEM, 5, 10
FITEM, 5, 13
VSEL, , , , P51X
*endif
ESLV,S
!Como a analise é no centroide pode analisar so o primeiro nó
     CRIANDO ETABLE
1
1
!AVPRIN,0,
ETABLE, 1, NMISC, 53
ETABLE, , VOLU,
1
!PRETAB,1 !para visualizar o status do elemento, tem que ir general
!posproc-element table-list element table
*get,num el,elem,,count
*get,emax,elem,,num,max
*get,emin,elem,,num,min
enum=emin
k=1
*DO, index, 1, num_el, 1
!el=elnext(el)
*get, status, etab, 1, elem, enum
*get,volume_e,etab,2,elem,enum
vtotal=vtotal+volume e
!enum=151
*get,yloc,elem,enum,cent,y
*get, xloc, elem, enum, cent, x
*if,yloc,ne,0,then
st=(status-3) * (status-13) * (status-15) * (status-16)
*if,st,ne,0,then
dano=dano+volume e
!seleciona os nos do elemento
*get,n1,elem,enum,NODE,1
*get,locnx1,NODE,n1,loc,x
*get,locnz1,NODE,n1,loc,z
*get,n2,elem,enum,NODE,2
*get,locnx2,NODE,n2,loc,x
*get,locnz2,NODE,n2,loc,z
*get,n3,elem,enum,NODE,3
*get,locnx3,NODE,n3,loc,x
*get,n4,elem,enum,NODE,4
*get,locnx4,NODE,n4,loc,x
*get, n5, elem, enum, NODE, 5
*get,locnz5,NODE,n5,loc,z
*get,n6,elem,enum,NODE,6
*get,locnz6,NODE,n6,loc,z
*get,n7,elem,enum,NODE,7
*get,n8,elem,enum,NODE,8
somaz=locnz1+locnz2+locnz5+locnz6
somax=locnx1+locnx2+locnx3+locnx4
spa=0
*if,lado,eq,1,then
*if,yloc,le,-0.1,then
```

```
*if, somaz, eq, 0, or, somax, ge, -2, then
spa=1
 *CFOPEN,C:\Users\...\dano_ar,txt,,append
*VWRITE, enum, volume e, n1, n2, n3, n4, n5, n6, n7, n8
 (E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E1
5.8,2X,E15.8)
*CFCLOS
*endif
*endif
*endif
!*else
!*CFOPEN,C:\Users\...\dano,txt,,append
!*VWRITE,enum,volume e,n1,n2,n3,n4,n5,n6,n7,n8
! (E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E
15.8,2X,E15.8)
!*CFCLOS
!*endif
!*endif
*if, lado, eq, 2, then
 *if,yloc,ge,0.1,then
*if,somaz,eq,0,or,somax,ge,2,then
spa=1
*CFOPEN,C:\Users\...\dano_ar,txt,,append
*VWRITE, enum, volume e, n1, n2, n3, n4, n5, n6, n7, n8
 (E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E1
5.8,2X,E15.8)
*CFCLOS
*endif
*endif
*endif
*if,spa,eq,0,then
*CFOPEN,C:\Users\...\dano,txt,,append
 *VWRITE, enum, volume_e, n1, n2, n3, n4, n5, n6, n7, n8
 (E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E15.8,2X,E1
5.8,2X,E15.8)
*CFCLOS
 *endif
!*endif
k=k+1
*endif
 *CFOPEN, C:\Users\...\Vtotal, txt,,
 *VWRITE, Vtotal
 (E15.8)
*CFCLOS
 *endif
 *get,enum,elem,enum,nxth
 *enddo
*if, lado, eq, 1, then
ETABLE,, ERASE, 1
ETABLE,, ERASE, 2
*endif
*enddo
dano matriz=(dano/vtotal)*100
!no 26 verificar :D
set,last
allsel
PLESOL, S,1, 0,1.0
```

```
FLST, 5, 2, 6, ORDE, 2
FITEM, 5, 1
FITEM, 5, 2
VSEL,S, , ,P51X
ESLV,S
ETABLE, tfibra, s, eqv
tensao=0
*get,num_el,elem,,count
*get,emax,elem,,num,max
*get,emin,elem,,num,min
enum=emin
*DO, index, 1, num el, 1
*get,tel,etab,3,elem,enum
*if,tel,GT,tensao,then
tensao=tel
*endif
*get, enum, elem, enum, nxth
*enddo
*CFOPEN,C:\Users\...\Tensao fibra %teta%_%Lee%,txt,,append
*VWRITE, w, reaction, tensao
(E15.8,2X,E15.8,2X,E15.8)
*CFCLOS
!**************** DISTRIBUIÇÃO DE PRESSAO NA INTERFACE
k=90
cont=(df/2)*tan(teta*3.1415/180)+0.01
*DO, hh, 1, 7
kk=k*3.1415/180
*DO,nn,11,1,-1
!nn=1
nnn=nn-1
nel=10
rel=(Lf-Le)/nel
allsel
ESEL, S, TYPE, , 5 !ELEMENTO DE CONTATO
NSLE,S
NSEL,r,LOC,Y,((df/2)*sin(kk))+0.025,((df/2)*sin(kk))-0.01
NSEL,r,LOC,X,-nnn*rel-cont,-nnn*rel+cont
*get,nmax,node,,num,max
*get,nmin,node,,num,min
ļ
nnum=nmax
|****
*CFOPEN,C:\Users\...\no pressure %teta% %Lee%,txt,,append
*VWRITE, nnum
(E15.8)
*CFCLOS
nnum=
*enddo
k=k-30
*enddo
!547,538,539,540,541,542,543,544,545,546,330
allsel
/OUTPUT,C:\Users...\contato_%teta%_%Lee%,txt,
! allsel
!/DEVICE,VECTOR,On
!PLCRACK,0,0
!/pbc,rfor,1
```

APÊNDICE E- Sub-rotina NFORCA

\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	99
Se	00
% UNIVERSIDADE FEDERAL DO PAMPA	9
°€	
% PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA-PPEng	90
°€	
% MODELAGEM COMPUTACIONAL DO AUMENTO DA TENACIDADE DO CONCRETO	90
% REFORÇADO COM FIBRAS UTILIZANDO O ANSYS	9
8	00
% LEANDRO FERREIRA FRIEDRICH	00
8	
% Alegrete/2015	00
\$	200 200
Nforca=zeros(nt,nz,nw);	
% Nforca guarda os modulos do resultante das forcas nos nós de conto	rno
% da parte direta da matriz; cada linha corresponde um certo angulo	teta.
& Der exemple - a primeira lipha (teta-0) contem og meduleg correspon	dondo

% Por exemplo, a primeira linha (teta=0) contem os modulos correspondendo diferentes % comprimentos enterrados; o número de linhas cooresponde quantos angulos % foram calculados (nt); o número de colunas coorespondentes quantos % comprimentos foram calculados (nz); nw representa quantas aberturas foram % calculadas

EXEMPLO :

00	Nforca(:,:,1)=[0.2113	0.1926	0.2117	0.1989
00		0.4492	0.4142	0.4388	0.4110
00		0.6406	0.5782	0.5538	0.5514
00		0.7517	0.6545	1.1540	0.6020
00		0.7371	0.5956	0.6118	0.5628
00		0.5495	0.4996	0.5146	0.4617
00		0.3732	0.3543	0.3528	0.3474];

APÊNDICE E- Sub-rotina Tenacificação.m

```
8
                                                            8
9
                   UNIVERSIDADE FEDERAL DO PAMPA
                                                            9
9
              PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA-PPEng
                                                            8
                                                               0
%
   2
                                                                8
% MODELAGEM COMPUTACIONAL DO AUMENTO DA TENACIDADE DO CONCRETO
                                                            REFORÇADO COM FIBRAS UTILIZANDO O ANSYS
                                                 %
%
                                                            8
                       LEANDRO FERREIRA FRIEDRICH
8
                                                            90
                                                                8
00
00
                          Alegrete/2015
                                                                %
                                                            0/0
9
****
clc;
clear all
global df Af Lf nw nt nz Nforca
df=0.25;
             %Diametro da fibra [mm]
Af=pi*df*df/4; %Area da seção transversal da fibra [mm<sup>2</sup>]
             % Comprimento da fibra [mm]
Lf=20;
vf=0.0005;
                % Porcentagem volumetrica de fibras
Le=10;
              %COmprimento enterrado maximo
nw=Le/0.1;
              % Numero total de aberturas maxima
dw=Le/nw;
             % Incremento de w
nt=12+1;
                % controle dteta
nz=9/1+1;
                 % controle dz
load Nforca%Nforca=dados(nt,nz,nw); % entrega os dados
Nforca(isnan(Nforca))=0;
Nforca(Nforca<0)=0;</pre>
intgw=0;
p=zeros(nw,4);
sc=zeros(nw,1);
for wk=1:nw
               % Laço para a abertura w
    v1=swk(wk); % Chama a função swk.m
   intgw=intgw+v1;
   if wk==1, sa=v1; end
   sc(wk) = v1;
   if wk==nw; sb=v1; end
end
Gc=vf*(intgw-(sa+sb)*0.5)*dw/Af; % usa regra de trapezoide na integral
fprintf('Aumento da tenacidade de Gc=%12.4f J/m<sup>2</sup>\n\n',Gc*1000)
Gcc=1700;
```

```
fprintf('Aumento de Gc=%3.4f porcento \n',Gc*100000/Gcc)
% plotar as figuras
x1=1:nw;
x1=dw*x1;
x1=[0 x1];
sc=[0
    sc];
hl1 = line(x1,sc,'Color','r');
xs=sprintf('w [mm] \n\n N parametros: nw=%d nt=%d nz=%d \n\n Gc=%2.3f J/m<sup>2</sup>
e dGc=%2.3f Per.',nw,nt,nz,Gc*1000,Gc*100000/Gcc);
xlabel(xs);
ylabel('Tensao de ponte [MPa]','Color','k');
ccc=[x1' sc];
dlmwrite('Sig c vs w kevlar fiber vf=0.05.txt', ccc, 'delimiter', ' ',
'precision', '%E')
function y1 = swk(wk)
global df Lf nt
at=0.01;
                    %limite inferior theta em radiano
bt=atan(Lf/df);
                   %limite superior de theta
dteta=(bt-at)/nt; %Incremento de theta
inteta=0;
% Integral Gc para theta:
for ti=1:nt
    teta=ti*dteta;
    v2=gtetai(wk,ti,teta);
    inteta=inteta+v2;
    if ti==1, sa=v2; end
    if ti==nt, sb=v2; end
end
y1=(inteta-(sa+sb)*0.5)*dteta;
function y2=gtetai(wk,ti,teta)
global df Lf nz Nforca
rf=df*0.5;
cz=0.001*df;
                                    %Limite inferior de z
supz=(Lf*cos(teta)-df*sin(teta))/2; %Limite superior de z
dz=(supz-cz)/nz;
                                    %Incremento de z
if supz<cz
    error ('Limite superior de z eh menor que o inferior')
end
L0=rf*tan(teta);
intgh=0;
% Integral Gc para Z:
for zj=1:nz
    z=zj*dz;
    le=0.5*Lf-z/cos(teta)-L0;
    if le<=0
        error('le é negativo')
    end
```

```
v3=Nforca(ti,zj,wk);
par=[ti zj wk v3];
intgh=intgh+v3;
if zj==1, sa=v3; end
if zj==nz, sb=v3; end
end
y2=(intgh-(sa+sb)*0.5)*dz*sin(teta)*2/Lf;
```

ANEXO A- Critério de falha de William e Warneck (1975)

O modelo de falha do material concreto, prevê a falha no material como frágil. Tanto a trinca (fissura) e esmagamento do material são considerados.

O critério de falha do concreto devido ao estado multiaxial de tensões pode ser expresso na forma

$$\frac{F}{f_c} - S \ge 0 \tag{A.1}$$

onde:

- F = é uma função do estado de tensões principais $(\sigma_{xp}, \sigma_{yp}, \sigma_{zp})$
- S = é a superfície de falha expressa em termos das tensões principais e cinco parâmetros de entrada f_t , f_c , f_{cb} , f_1 e f_2 definidos na Tabela A.1
- f_c = resistência de compressão do concreto
- $\sigma_{xp}, \sigma_{yp}, \sigma_{zp}$ = tensões principais nas direções principais

Se a Eq. A.1 não é satisfeita, então não ocorre a trinca ou o esmagamento. Por outro lado o material vai trincar se qualquer tensão principal atuar sob tração, enquanto que o esmagamento ocorre se todas as tensões principais forem de compressão.

Um total de cinco parâmetros (cada qual pode ser dependente da temperatura) são necessários para definir a superfície falha, bem como o estado de tensão no ambiente hidrostático. Estes são representados na Tabela A.1.

Parâmetro	Descrição	Constante
f_t	Resistência última de tração uniaxial	3
f_c	Resistência última de compressão uniaxial	4
f_{cb}	Resistência ultima de compressão biaxial	5
$\sigma_h^{\ a}$	Estado de tensão no ambiente hidrostático	6
f_1	Resistência última de compressão para um estado de compressão biaxial sobreposto sobre o estado de tensão hidrostático σ_h^a	7
f_2	Resistência última de compressão para um estado uniaxial de	8
	compressão sobreposto sobre o estado de tensão hidrostático σ_h	

Tabela A.1 – Parâmetros necessários para definição da superfície de falha

Porém, a falha na superfície pode ser especificada com um mínimo de duas constantes, f_t e f_c . As outras três constantes para William e Warnke (1975) são:

$$f_{cb} = 1, 2f_c$$
 A.2

$$f_1 = 1,45 f_c$$
 A.3

$$f_2 = 1,725 f_c$$
 A.4

Porém, estes valores são válidos somente para estados de tensão onde a condição

$$|\sigma_h| \le \sqrt{3} f_c$$
 A.5

$$(\sigma_h = \text{estado de tensão hidrostática} = (\sigma_{xp}, \sigma_{yp}, \sigma_{zp})/3$$
 A.6

é satisfeita. Esta condição (A.5) é aplicada em situações com uma baixa componente do estado de tensão hidrostático. Todos os cinco parâmetros devem ser especificados quando é esperada uma componente de tensão hidrostática grande. Se a condição A.5 não é satisfeita e descuidos nos valores mostrado nas equações A.2 - A.4 são assumidos, a resistência do material concreto pode ser incorretamente avaliada.

Ambas as função F e a superfície de falha S são expressas em termos das tensões principais denotadas como σ_1 , σ_2 , σ_3 onde:

$$\sigma_1 = m \acute{a} x(\sigma_{xp}, \sigma_{yp}, \sigma_{zp})$$
 A.7

$$\sigma_3 = \min(\sigma_{xp}, \sigma_{yp}, \sigma_{zp})$$
A.8

e $\sigma_1 \ge \sigma_2 \ge \sigma_3$.

A fratura do concreto é classificada em quatro domínios:

- 1. $0 \ge \sigma_1 \ge \sigma_2 \ge \sigma_3$ (compressão compressão compressão)
- 2. $\sigma_1 \ge 0 \ge \sigma_2 \ge \sigma_3$ (tração compressão compressão)
- 3. $\sigma_1 \ge \sigma_2 \ge 0 \ge \sigma_3$ (tração tração compressão)
- 4. $\sigma_1 \ge \sigma_2 \ge \sigma_3 \ge 0$ (tração tração tração)

Em cada domínio, funções independentes descrevem F e a superfície fraturada S. As quatro funções que descrevem à função geral F são denotadas com F_1 , F_2 , F_3 , F_4 enquanto as funções que descrevem S são denotadas como S_1 . S_2 , S_3 , S_4 . As funções S_i (i = 1, 4) tem as propriedades que a superfície dela descrita é contínuo enquanto a os gradientes das superfícies não são contínuas quando quaisquer umas das tensões principais mudam de sinal. Estas funções são discutidas em detalhes abaixo para cada domínio.

1. O Domínio $0 \ge \sigma_1 \ge \sigma_2 \ge \sigma_3$

No regime compressão – compressão – compressão o critério de falha de William e Warnke é implementado. Neste caso, F leva a forma

$$F = F_1 = \sqrt{\left[\left(\sigma_1 - \sigma_2\right)^2 + \left(\sigma_2 - \sigma_3\right)^2 + \left(\sigma_3 - \sigma_1\right)^2\right]} / \sqrt{15}$$
 A.9

e S é definida como

$$S = S_1 = \frac{\{2r_2(r_2^2 - r_2^2)\cos\eta + r_2(2r_1 - r_2)\sqrt{[4(r_2^2 - r_1^2)\cos^2\eta + 5r_1^2 - 4r_1r_2]}\}}{[4(r_2^2 - r_1^2)\cos^2\eta + (r_2 - 2r_1)^2]}$$
A.10

Termos usados para definir S são:

$$\cos\eta = 2\sigma_1 - \sigma_2 - \sigma_3 / \sqrt{[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]} \sqrt{2}$$
 A.11

$$r_1 = a_o + a_1 \xi + a_2 \xi^2$$
 A.12

$$r_2 = b_o + b_1 \xi + b_2 \xi^2$$

$$\xi = \sigma_h / f_c$$
A.13

 σ_h é definido pela Eq. A.6 e os coeficientes indeterminados a_0 , a_1 , a_2 , b_o , b_1 , b_2 são discutidos abaixo.

Esta falha na superfície é mostrada na Figura A.1. O ângulo de semelhança η descrito é relativo a magnitude das tensões principais. Da Eq. A.11, $\eta = 0^{\circ}$ refere-se a qualquer estado de tensão tal que $\sigma_3 = \sigma_2 > \sigma_1$ (ou seja, compressão uniaxial, tração biaxial). Enquanto $\xi = 60^{\circ}$ para qualquer estado de tensão onde $\sigma_3 > \sigma_2 = \sigma_1$ (ou seja, tração uniaxial, compressão biaxial). Todos os outros estados de tensões multiaxiais tem ângulos de semelhança tais como $0^{\circ} \le \eta \le 60^{\circ}$. Quando $\eta = 0^{\circ}$, S_1 (Eq. 10) igual r_1 enquanto que $\eta = 60^{\circ}$, S_1 é igual a r_2 . Entretanto, a função r_1 representa a superfície fraturada de todos os estados de tensões com $\eta = 0^{\circ}$. As funções r_1 , r_2 e o ângulo η são descritos na Figura A.1.

Isto pode ser visto que o cruzamento da seção fraturada tem simetria cíclica sobre cada 120° do setor do plano octaedro devido a extensão do ângulo de semelhança $0^{\circ} \le \eta \le 60^{\circ}$. A função r_1 é determinada por ajuste de a_0 , a_1 , a_2 tal que f_f , f_{cb} , f_1 estão perto de toda superfície de falha. Os valores propostos por estes coeficientes são determinados por solução direta de equações simultâneas:

$$\begin{bmatrix} F_{1} / f_{c}(\sigma_{1} = f_{t}, \sigma_{2} = \sigma_{3} = 0 \\ F_{1} / f_{c}(\sigma_{1} = 0, \sigma_{2} = \sigma_{3} = -f_{cb} \\ F_{1} / f_{c}(\sigma_{1} = -\sigma_{h}^{a}, \sigma_{2} = \sigma_{3} = -\sigma_{h}^{a} - f_{1} \end{bmatrix} = \begin{bmatrix} 1 & \xi_{t} & \xi_{t}^{2} \\ 1 & \xi_{cb} & \xi_{cb}^{2} \\ 1 & \xi_{1} & \xi_{1}^{2} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{bmatrix}$$
A.14

com

$$\xi_t = f_t / 3f_c, \quad \xi_{cb} = -2f_{cb} / 3f_c, \quad \xi_1 = -\sigma_h^a / f_c - 2f_1 / 3f_c$$
A.15

A função r_2 é calculada ajustando b_0 , b_1 , b_2 para satisfazer as condições:

$$\begin{bmatrix} F_1 / f_c(\sigma_1 = \sigma_2 = 0, \sigma_3 = -f_c \\ F_1 / f_c(\sigma_1 = \sigma_2 = -\sigma_h^a, \sigma_3 = -\sigma_h^a - f_2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & -1/3 & 1/9 \\ 1 & \xi^2 & \xi_2^2 \\ 1 & \xi_0 & \xi_0^2 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix}$$
A.16

 ξ_2 é definido por:

$$\xi_2 = -\sigma_h^{\ a} / f_c - f_2 / 3f_c \tag{A.17}$$

e $\,\xi_0\,$ é o ponto positivo da equação

$$r_2(\xi_0) = a_0 + a_1\xi_0 + a_2\xi_0^2 = 0$$
 A.18

onde, a_0 , a_1 , a_2 são avaliados pela equação (A.14).

Então a superfície fraturada deve permanecer convexa, a relação r_1/r_2 é restrita para a extensão

$$5 < r_1 / r_2 < 1.25$$
 A.19

embora o limite superior não é considerado restritivo então $r_1 / r_2 < 1$ para a maioria dos materiais. Também os coeficientes a_0 , a_1 , a_2 , b_o , b_1 , b_2 devem satisfazer as condições William e Warnke (1975):

$$a_0 > 0, \ a_1 \le 0, \ a_2 \le 0$$
 A.20

$$b_0 > 0, \ b_1 \le 0, \ b_2 \le 0$$
 A.21

Então, a superfície fraturada é fechada e prevê uma fratura pela alta pressão hidrostática ($\xi > \xi_2$). Este fechamento da superfície fraturada não tem sido verificada experimentalmente e isto tem sido sugerido que o tipo de cilindro Von Mises o mais valido para fratura na superfície com grande valores de compressão σ_h . Consequentemente, isto é recomendado que valores de f_1 e f_2 são selecionados para um nível de tensão hidrostática (σ_h^a) nos arredores ou sobre a máxima tensão hidrostática esperada encontrada na estrutura.

Eq. A.18 expressa a condição que a falha na superfície tem um ápice para $\xi = \xi_0$. Um perfil de r_1 e r_2 como uma função de ξ é mostrado na Figura A.2.

Figura A.2- O perfil da superfície de falha em função de ξ_a

A parte inferior da curva representa todos os estados de tensões tais que $\eta = 0^{\circ}$, enquanto a curva superior representa os estados de tensões, tais que $\eta = 60^{\circ}$. Se o critério de falha é satisfeito, é assumida a quebra do material.

2. O Domínio $\sigma_1 \ge 0 \ge \sigma_2 \ge \sigma_3$

No regime tração - compressão - compressão, F tem a forma

$$F = F_2 = \sqrt{[(\sigma_2 - \sigma_3)^2 + {\sigma_2}^2 - {\sigma_3}^2]} / \sqrt{15}$$
 A.22

e *S* é definido como

$$S = S_2 = (1 - \frac{\sigma_1}{f_t}) \frac{2p_2(p_2^2 - p_1^2)\cos\eta + p_2(2p_1 - p_2)[4(p_2^2 - p_1^2)\cos\eta + 5p_1^2 - 4p_1 \cdot p_2]^{1/2}}{4(p_2^2 - p_1^2)\cos^2\eta + (p_2 - 2p_1)^2} \quad .23$$

onde $\cos \eta$ é definido pela equação A.11 e

$$p_1 = a_0 + a_1 x + a_2 x^2$$
 A.24

$$p_2 = b_0 + b_1 x + b_2 x^2 \tag{A.25}$$

Os coeficientes a_0 , a_1 , a_2 , b_o , b_1 , b_2 são definidos pela Eq. A.14 e A.16 enquanto

$$x = (\sigma_2 + \sigma_3)/3 \tag{A.26}$$

Se o critério de fratura é satisfeito, ocorre a quebra no plano perpendicular a tensão principal σ_1 .

3. O Domínio $\sigma_1 \ge \sigma_2 \ge 0 \ge \sigma_3$

No regime tração – tração – compressão, F tem a forma

$$F = F_3 = \sigma_i; \quad i = 1,2$$
 A.27

e S é definido como

$$S = S_3 = f_t / f_c [1 + (\sigma_3 / s_2(\sigma_i, 0, \sigma_3))] ; i = 1,2$$
A.28

Se o critério de falha para ambos i = 1,2 é satisfeito, a trinca ocorre no plano perpendicular as tensões principais σ_1 e σ_2 . Se o critério de falha é satisfeito somente para i = 1 a trinca ocorre somente no plano perpendicular a tensão principal σ_1 .

4. O Domínio $\sigma_1 \ge \sigma_2 \ge \sigma_3 \ge 0$

No regime tração – tração – tração, F tem a forma

$$F = F_4 = \sigma_i; \quad i = 1,2 \tag{A.29}$$

e S é definido como

$$S = S_4 = f_t / f_c \tag{A.30}$$

Se o critério de falha é satisfeito nas direções 1, 2 e 3, ocorre a trinca nos planos perpendiculares as tensões principais σ_1 , σ_2 , σ_3 .

Se o critério de falha é satisfeito nas direções 1 e 2, ocorre a trinca no planos perpendiculares as principais tensões $\sigma_1 e \sigma_2$.

Se o critério de falha é satisfeito somente na direção 1, ocorre a trinca no plano perpendicular a tensão principal σ_1 .