UNIVERSIDADE FEDERAL DO PAMPA

DIEISON GABBI FANTINELI

INFLUÊNCIA DO TRATAMENTO CRIOGÊNICO NAS PROPRIEDADES MECÂNICAS E TRIBOLÓGICAS DO AÇO ABNT M2

DIEISON GABBI FANTINELI

INFLUÊNCIA DO TRATAMENTO CRIOGÊNICO NAS PROPRIEDADES MECÂNICAS E TRIBOLÓGICAS DO AÇO ABNT M2

Dissertação apresentada ao Programa de Pós-Graduação *Stricto Sensu* em Engenharia – PPEng da Universidade Federal do Pampa, como requisito parcial para obtenção do Título de Mestre em Engenharia.

Orientador: Prof. Dr. Marco Antônio Durlo Tier.

Alegrete 2015

Ficha catalográfica elaborada automaticamente com os dados fornecidos pelo(a) autor(a) através do Módulo de Biblioteca do Sistema GURI (Gestão Unificada de Recursos Institucionais).

F216i Fantineli, Dieison Gabbi

Influência do Tratamento Criogênico nas Propriedades Mecânicas e Tribológicas do Aço ABNT M2 / Dieison Gabbi Fantineli.

117 p.

Dissertação(Mestrado) -- Universidade Federal do Pampa, MESTRADO EM ENGENHARIAS, 2015.

"Orientação: Marco Antônio Durlo Tier".

1. Tratamento térmico. 2. Criogenia. 3. Aço ABNT M2. I. Título.

DIEISON GABBI FANTINELI

INFLUÊNCIA DO TRATAMENTO CRIOGÊNICO NAS PROPRIEDADES MECÂNICAS E TRIBOLÓGICAS DO AÇO ABNT M2

Dissertação apresentada ao Programa de Pós-Graduação *Stricto Sensu* em Engenharia – PPEng da Universidade Federal do Pampa, como requisito parcial para obtenção do Título de Mestre em Engenharia.

Área de concentração: Tecnologia de Materiais.

Dissertação defendida e aprovada em 18 de junho de 2015.

Banca examinadora:

Prof. Dr. Marco Antônio Durlo Tier

Orientador Unipampa

Prof. Dr. Flávio Kieckow

URI

Prof. Dr. Afonso Reguly

UFRGS

Prof. Dr. Tonilson de Souza Rosendo

Unipampa

Dedico este trabalho à Naiana, Camila e Pedro.

AGRADECIMENTOS

Agradeço à minha esposa Naiana, pelo companheirismo e apoio em todas as horas:

Aos meus pais Elci e Eva, pelo incentivo e ajuda de sempre;

Ao meu sogro Celso e sua esposa Sandra;

Agradeço especialmente ao meu orientador Professor Dr. Marco Antônio Durlo Tier, pela orientação e apoio desde o início desta jornada;

Ao professor Wang Chong, pelo incentivo à inscrição no curso de pósgraduação;

Ao professor Aldoni Wiedenhoft e ao colega Técnico Mecânico Gilberto Alves, pelo auxílio da usinagem das amostras;

Ao professor Mauricio Paz França, pelo auxílio na utilização do microscópio eletrônico de varredura:

À bolsista Diandra Vielmo de Deus, pelo auxílio nos ensaios de microdureza;

Ao Engenheiro Mecânico Cleber Parcianello, pelo auxílio nos ensaios de desgaste;

Ao professor Flávio Kieckow, pelo apoio, e à URI por ter disponibilizado seu laboratório para a realização do ensaio Charpy;

Ao Engenheiro Metalúrgico Jefferson Haag, pela ajuda, e à UFRGS pela confecção do entalhe em "U" por eletroerosão nas amostras utilizadas nos primeiros testes;

Aos meus colegas de mestrado Antônio Petterle e Fabiano Sobroza;

À Unipampa, que me proporcionou a participação e conclusão deste curso de mestrado;

A todos que de forma direta ou indireta me ajudaram nesta caminhada.

"Podemos facilmente perdoar uma criança que tem medo do escuro; a real tragédia da vida é quando os homens têm medo da luz."

RESUMO

O aumento da resistência mecânica dos aços sempre foi objeto de investigação desde os tempos mais remotos. Nos últimos dois séculos, com o aumento da industrialização, a demanda por materiais cada vez mais resistentes se tornou ainda maior. Dentre os materiais metálicos, os aços ferramentas são os mais pesquisados na busca de aumento de dureza, resistência ao desgaste e tenacidade, requisitos essenciais à sua utilização. Nos últimos anos tem sido demonstrado que o tratamento criogênico profundo aplicado aos aços ferramentas provoca, além da transformação da austenita residual em martensita, a precipitação de finos carbetos na matriz metálica, aumentando principalmente a resistência ao desgaste. Esta pesquisa tem como objetivo estudar a influência do tratamento criogênico profundo nas propriedades mecânicas e tribológicas do aço ABNT M2. Foram realizados ensaios de dureza HRC, microdureza HV e HK, impacto Charpy, desgaste abrasivo, microscopia óptica e microscopia eletrônica de varredura em amostras de aço ABNT M2 submetidas ao tratamento térmico convencional (têmpera e revenido) e ao tratamento térmico convencional com tratamento criogênico. O tratamento criogênico foi realizado por nebulização direta com taxa de resfriamento e aquecimento de 0,3° C/min e permanência de 24 horas na temperatura de -190° C. As temperaturas de austenitização empregadas foram de 1170° C, 1200° C e 1230° C. Foram analisadas amostras com aplicação de revenido antes, após e antes/após o tratamento criogênico. Concluiu-se que o tratamento criogênico profundo aplicado antes do revenido em amostras austenitizadas à temperatura de 1200° C aumenta a dureza, a resistência ao desgaste abrasivo e a tenacidade do material tratado.

Palavras-chave: Tratamento térmico, Criogenia, aço ABNT M2.

ABSTRACT

The increased resistance of steels has always been under investigation since the earliest times. In the last two centuries, with the rise of industrialization, the demand for increasingly resistant materials became even greater. Among the metallic materials, tool steels are the most investigated in the search for higher hardness and wear resistance, essential to use requirements. In recent years it has been demonstrated that deep cryogenic treatment applied to tool steels causes not only the transformation of residual austenite into martensite, precipitation of fine carbides in the metal matrix, mainly by increasing wear resistance. This research aimed to study the influence of deep cryogenic treatment on mechanical properties and tribological steel AISI M2. Hardness tests were performed HRC, HV and HK microhardness, Charpy impact, abrasive wear, optical and scanning electron microscopy in ABNT M2 steel samples subjected to conventional heat treatment (quenching and tempering) and conventional heat treatment with cryogenic treatment. The cryogenic treatment was performed by direct nebulization with heating and cooling rate of 0.3° C/min and 24 hours residence in -190° C. The austenitization temperatures used were 1170° C, 1200° C and 1230° C. Samples were analyzed with tempering application before, after and before after the cryogenic treatment. It was concluded that deep cryogenic treatment applied before tempering samples austenitized at a temperature of 1200° C increases the hardness, abrasive wear resistance and toughness of the treated material.

Keywords: Heat treatment, Cryogenics, AISI M2.

LISTA DE FIGURAS

Figura 1 - Posição dos átomos em uma estrutura CCC	22
Figura 2 - Posição dos átomos em uma estrutura CFC	22
Figura 3 - Diagrama Fe - Fe₃C	23
Figura 4 - Estrutura cristalina ortorrômbica da cementita	24
Figura 5 - Prisma triangular com átomo de carbono ao centro	25
Figura 6 - Visão tridimensional da estrutura cristalina da cementita	25
Figura 7 – Ilustração da sequência de formação da perlita	26
Figura 8 – Microestrutura formada pela liga hipoeutetoide durante o resfriamento	o27
Figura 9 - Microestrutura formada pela liga hipereutetoide durante o resfriamente	o27
Figura 10 - Transformação da estrutura CFC para tetragonal	28
Figura 11 - Diagrama de transformação isotérmica para aço eutetoide	29
Figura 12 - Efeito da temperatura de têmpera e revenido	37
Figura 13 - Curvas de revenimento para o aço rápido M2	37
Figura 14 - Exemplo do ciclo de um tratamento criogênico	39
Figura 15 - Exemplo do ciclo de um tratamento térmico	40
Figura 16 - Sistema criogênico por nebulização direta	43
Figura 17 - Sistema criogênico por imersão indireta	44
Figura 18 - Fluxograma do procedimento experimental	49
Figura 19 - Micrografia do aço M2 no estado coalescido, a ataque de nital 3%	50
Figura 20 – Corpo de prova com entalhe "V" conforme NBR NM 281-1	51
Figura 21 - Corpo de prova com entalhe "U" conforme NBR NM 281-1	51
Figura 22 - Conjunto de amostras usinadas e marcadas	52
Figura 23 - Rotas de tratamento térmico utilizadas	54
Figura 24 – Visão geral do Durômetro utilizado na pesquisa	55
Figura 25 – Visão geral do Microdurômetro utilizado na pesquisa	56
Figura 26 - Indentação HV e HK para carga de 500 g	56
Figura 27 - Máquina de Ensaio Charpy RMU Testing	56
Figura 28 - Equipamento para ensaio de desgaste	57
Figura 29 - Ensaio de desgaste	57
Figura 30 - Disco de contato com lixa e suporte com amostra	58
Figura 31 - Equipamento de desgaste montado com a amostra	58
Figura 32 – Visão geral da balança de precisão utilizada na pesquisa	59

Figura 33 - Microscópio Óptico	. 61
Figura 34 - Microscópio eletrônico de varredura	. 61
Figura 35 - Gráfico da Dureza HRC para todas as rotas investigadas	. 63
Figura 36 - Microdureza HV após têmpera e revenido	. 64
Figura 37 - Microdureza HV após os tratamentos térmicos e DCT	. 66
Figura 38 - Microdureza HK após os tratamentos térmicos e DCT	. 67
Figura 39 - Gráfico de Microdureza Vickers para todas as cargas	. 69
Figura 40 - Vista superior da Figura 41	. 69
Figura 41 – Tamanho de grão para têmpera a 1170° C (ampliação 400X)	. 72
Figura 42 - Tamanho de grão para têmpera a 1200° C (ampliação 400X)	. 72
Figura 43 - Tamanho de grão para têmpera a 1230° C (ampliação 400X)	. 72
Figura 44 - Micrografia 800X para amostra 1170/2R	. 73
Figura 45 - Micrografia 800X para amostra 1170/DCT/2R	. 73
Figura 46 - Micrografia 800X para amostra 1200/2R	. 74
Figura 47 - Micrografia 800X para amostra 1200/DCT/2R	. 74
Figura 48 – Micrografia 800X para amostra 1230/2R	. 75
Figura 49 - Micrografia 800X para amostra 1230/DCT/2R	75
Figura 50 - Valores de energia para o ensaio de Impacto Charpy	. 76
Figura 51 - Análise em MEV da amostra 1170/2R (800X)	. 78
Figura 52 - Análise em MEV da amostra 1170/DCT/2R (800X)	. 78
Figura 53 - Análise em MEV da amostra 1200/2R (800X)	. 79
Figura 54 - Análise em MEV da amostra 1200/DCT/2R (800X)	. 79
Figura 55 - Análise em MEV da amostra 1230/2R (800X)	. 80
Figura 56 - Análise em MEV da amostra 1230/DCT/2R (800X)	. 80
Figura 57 - Desgaste abrasivo para as rotas com temperatura de 1170° C	81
Figura 58 - Desgaste abrasivo para as rotas com temperaturas de 1200° C	. 82
Figura 59 - Desgaste abrasivo para as rotas com temperaturas de 1230° C	. 82
Figura 60 - Perda de massa após ensaio de desgaste abrasivo	. 83
Figura 61 – Comparativo de Dureza HRC para a rota TEMP/DCT/2R	. 85
Figura 62 – Comparativo de Dureza HRC para a rota TEMP/2R/DCT	. 86
Figura 63 – Comparativo de Dureza HRC para a rota TEMP/1R/DCT/1R	. 86
Figura 64 – Mecanismos de fratura em MEV para rotas 1170° C (3000X)	. 88
Figura 65 – Mecanismos de fratura em MEV para a rota 1200/DCT/2R (200X)	. 88
Figura 66 – Mecanismos de fratura em MEV para rotas 1200° C (3000X)	. 89

Figura 67 – Mecanismos de fratura em MEV para rotas 1230° C (3000X)	.89
Figura 68 – Gráfico em três dimensões do desgaste abrasivo	.90
Figura 69 – Resultados do desgaste abrasivo	.91

LISTA DE TABELAS

Tabela 1 - Temperaturas de austenitização recomendadas	. 31
Tabela 2 - Classificação dos aços rápidos pela AISI e ABNT	. 33
Tabela 3 - Composição química de alguns aços rápidos tipo M	34
Tabela 4 - Composição química do aço ABNT M2	49
Tabela 5 - Composição química do aço ABNT M2 estudado	50
Tabela 6 - Rotas de tratamento térmico utilizadas	53
Tabela 7 - Dureza HRC para as rotas investigadas	62
Tabela 8 - Desvio padrão	64
Tabela 9 - Microdureza HV após os tratamentos térmicos e DCT	65
Tabela 10 - Microdureza HK após os tratamentos térmicos e DCT	68
Tabela 11 - Análise estatística dos resultados da microdureza HV 0.5	70
Tabela 12 – Comparativo entre os desvios padrões na medição HV 0.5	. 71
Tabela 13 - Impacto Charpy desconsiderando o maior e menor valor de cada rota.	. 77
Tabela 14 - Análise do ensaio de desgaste abrasivo com 300 ciclos	84
Tabela 15 - Comparação do aumento de Dureza TEMP/2R com TEMP/DCT/2R	. 86

LISTA DE ABREVIATURAS

atm – medida de pressão (1 atm = 101,325 KPa)

° C – graus célsius

 $Å - Angström (1 Å = 1 x 10^{-10} m)$

α – Ferro alfa (ferrita)

γ – Ferro gama (austenita)

a.C. – antes de Cristo

Apud – citado por

C – Carbono

Cr - Cromo

Cap. – capítulo

DP - Desvio padrão

Ed. – edição

et al. - e outros

Fe – Ferro

Fe₃C – Carbeto de ferro

h – hora

min. - minutos

n – número

p. – página

vol. – volume

V - Vanádio

LISTA DE SIGLAS

A1 – Linha de mudança de fase do diagrama Fe – Fe₃C (ferrita+perlita em austenita)

ABNT – Associação Brasileira de Normas Técnicas

AISI – American iron and steel institute (Instituto Americano do Ferro e Aço)

ASTM - American Society for Testing and Materials (Sociedade Americana para teste de materiais)

CCC – Cúbico de corpo centrado

CFC - Cúbico de faces centradas

CHT - Conventional heat treatment (tratamento térmico convencional)

CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico

CT - Cryogenic Treatment (tratamento criogênico)

D2 – aço ferramenta tipo d2

D3 – aço ferramenta tipo d3

DCT - Deep cryogenic treatment (tratamento criogênico profundo)

EUA – Estados Unidos da América

FCTMG - Fundação Centro Tecnológico de Minas Gerais

H13 – aço ferramenta tipo h13

HB – Brinell (dureza brinell)

HK – Knoop (dureza knoop)

HRC - Hockwell C (dureza hockwell C)

HV – Vickers (dureza *vickers*)

LAMEF – Laboratório de Metalurgia Física

M2 – aço rápido tipo m2

MEV - Microscópio eletrônico de varredura

MO – Microscopia óptica

NASA - National Aeronautics and Space Administration (agência especial dos EUA)

PPEng – Programa de Pós-Graduação em Engenharia

SCT - Shallow Cryogenic Treatment (tratamento sub-zero)

T1 – aço rápido tipo t1

TCC – Tetragonal de corpo centrado

UFRGS - Universidade Federal do Rio Grande do Sul

UNIPAMPA – Universidade Federal do Pampa

URI - Universidade Regional Integrada

SUMÁRIO

1	INTRODUÇÃO	17
1.1	Objetivos	19
1.2	Estrutura do trabalho	19
2	REVISÃO BIBLIOGRÁFICA	21
2.1	Aço	21
2.1.1	Diagrama Ferro-Carbono	21
2.1.2	Martensita	28
2.2	Aços Ferramenta	30
2.3	Aços Rápidos	31
2.3.1	Elementos de liga presentes nos aços rápidos	32
2.3.2	Classificação dos aços rápidos	33
2.3.3	Aços rápidos série T	33
2.3.4	Aços rápidos série M	34
2.4	Tratamentos Térmicos dos Aços	35
2.4.1	Têmpera e revenido dos aços rápidos	35
2.4.2	Endurecimento secundário	36
2.5	Tratamento Criogênico	38
2.5.1	Processo de criogenia	38
2.5.2	A utilização do nitrogênio	40
2.5.3	O tratamento sub-zero e o tratamento profundo	41
2.5.4	Sistemas utilizados para o tratamento criogênico	41
2.5.5	Parâmetros de processo na criogenia	45
3	MATERIAIS E MÉTODOS	49
3.1	Matéria-Prima	49
3.1.1	Ensaio Charpy preliminar	51
3.1.2	Usinagem e tratamentos térmicos das amostras	52
3.2	Ensaios Mecânicos	55
3.2.1	Ensaio de Dureza e Microdureza	55
3.2.2	Ensaio de Impacto Charpy	56
3.2.3	Ensaio de Desgaste	57
3.3	Análise da Microestrutura e dos Mecanismos de Fratura	60

3.3.1	Microscopia Óptica (MO)	60
3.3.2	Microscopia Eletrônica de Varredura (MEV)	61
4	RESULTADOS	62
4.1	Dureza HRC	62
4.2	Microdureza HV e HK	64
4.3	Análise Microestrutural em Microscopia Óptica	71
4.4	Ensaio de Impacto Charpy	76
4.5	Análise da Fratura Microscopia Eletrônica de Varredura	77
4.6	Ensaio de Desgaste	81
5	DISCUSSÃO DOS RESULTADOS	85
6	CONSIDERAÇÕES FINAIS	92
6.1	Conclusões	92
6.2	Sugestões para trabalhos futuros	92
7	REFERÊNCIAS BIBLIOGRÁFICAS	93

1 INTRODUÇÃO

Os aços rápidos compõem uma gama importantíssima dos aços utilizados na indústria para a fabricação de ferramentas. Dentre estes se destaca o ABNT M2, muito utilizado por possuir uma alta temperabilidade, alta resistência ao desgaste e boa tenacidade. Este fato está associado a uma estrutura martensítica de elevada estabilidade térmica reforçada com carbetos de liga como cromo, molibdênio, tungstênio e vanádio.

A alta temperabilidade dos aços M2 permite que peças de pequenas dimensões sejam temperadas em toda a espessura, sendo, por isso, muito utilizados na fabricação de brocas, machos, cossinetes e ferramentas de usinagem.

Para se obter uma ferramenta com vida útil estendida, somente a escolha do tipo de aço não é suficiente. Também são de extrema importância a escolha do correto tratamento térmico e a seleção adequada dos parâmetros do tratamento.

Pesquisas realizadas nas últimas três décadas indicam que a resistência ao desgaste de ligas metálicas pode ter um aumento substancial com a aplicação de tratamentos criogênicos (PRIETO, 2014).

De acordo com as pesquisas, dois fenômenos metalúrgicos são reportados como principiais razões para a utilização do tratamento criogênico. Primeiramente a eliminação da austenita retida, e em segundo a precipitação de um grande número de finos carbetos (FIROUZDOR, 2008).

Apesar disso, não se tem uma concordância a respeito dos reais benefícios do tratamento criogênico profundo, devido principalmente aos diferentes parâmetros utilizados e à influência que cada tratamento exerce sobre o outro.

Alguns parâmetros possuem benefícios já comprovados, como, por exemplo, a temperatura mínima aplicada. Para temperaturas próximas a -80° C existe uma transformação de boa parte da austenita retida em martensita, e para temperaturas próximas a -196° C, além da transformação de praticamente toda a austenita retida em martensita, o tratamento provoca também a formação de finos carbetos, estes considerados os principais responsáveis pelo aumento da resistência ao desgaste. Da Silva (2006) constatou através da técnica de difração de raios-X que o volume de austenita retido do aço M2 passou de 25% para próximo de 0% após as amostras serem tratadas criogenicamente. Para a grande maioria dos materiais estudados, o tempo de 24 horas à temperatura criogênica é suficiente para se obter resultados

satisfatórios. Em relação à taxa de resfriamento, pode-se dizer que é um parâmetro de extrema importância, e tem relação direta com o processo empregado na aplicação. Taxas de resfriamento muito elevadas acabam por fragilizar demais os materiais. Muitos pesquisadores, como Molinari (2001), consideram que a taxa não deve ultrapassar os 30° C/h.

Um dos parâmetros que ainda é objeto de estudo é o revenido, se este deve ser aplicado antes ou depois do tratamento criogênico. Algumas pesquisas sugerem que o tratamento criogênico realizado logo após a têmpera é mais eficaz que o tratamento criogênico feito após o revenimento (YEN, 1997 apud VALES, 2011). Contudo, Mohan (2001), em sua pesquisa com aços D3 e M2, constatou que amostras submetidas ao revenido antes e depois do tratamento criogênico obtiveram o mesmo nível de significação, quando submetidas ao mesmo tempo de encharque (24 horas) e à mesma temperatura (-180° C). Por outro lado, Molinari (2001) considera que o grande melhoramento nas propriedades é obtido utilizando-se o tratamento criogênico entre a têmpera e o revenido.

Normalmente, pesquisas do estado da arte na área revelam que não é levada em consideração a influência que os parâmetros relativos ao tratamento térmico convencional têm no resultado final da peça tratada por criogenia. O tratamento criogênico sempre é aplicado em sequência aos tratamentos térmicos convencionais e, por isso, deve-se levar em consideração o conjunto de todos os parâmetros envolvidos, sendo esta a proposta da presente pesquisa.

Este trabalho tem como foco investigar a influência dos parâmetros utilizados na têmpera e no revenido nas propriedades mecânicas e tribológicas do aço ABNT M2 quando o tratamento criogênico é aplicado.

Tomando como base as pesquisas realizadas até o momento, serão utilizados os parâmetros do DCT (*deep cryogenic treatment*) que apresentaram os melhores resultados relativos a aumento da resistência ao desgaste e aumento de tenacidade do aço M2: taxa de resfriamento de 0,3° C/min., temperatura de encharque de 24 horas e temperatura de -190° C.

As amostras serão submetidas a três temperaturas diferentes de autenitização: a temperatura normalmente aplicada para têmpera do aço M2 – 1200° C; uma temperatura menor que a padrão – 1170° C; e uma temperatura superior – 1230° C. Também será estudada a influência da aplicação de duplo

revenido logo após a têmpera, duplo revenido após o tratamento criogênico e um revenido aplicado antes e um após o tratamento criogênico.

Para a investigação das propriedades mecânicas das amostras, serão realizados ensaios de dureza Rockwell C (HRC), microdureza Vickers (HV), microdureza Knoop (HK), Impacto Charpy e desgaste abrasivo. A microestrutura das amostras será analisada por microscopia óptica (MO) e os mecanismos de fratura após o ensaio Charpy através da microscopia eletrônica de varredura (MEV).

Espera-se com este trabalho colaborar para o desenvolvimento dos parâmetros ótimos do tratamento térmico e criogênico do aço ABNT M2.

1.1 Objetivos

O objetivo geral deste trabalho é estudar a influência dos parâmetros de tratamento térmico em conjunto com o tratamento criogênico profundo nas propriedades mecânicas e tribológicas do aço ABNT M2.

Objetivos específicos:

- Analisar a influência do revenido realizado antes e após o DCT;
- Avaliar a possibilidade de redução da temperatura de austenitização no tratamento térmico do aço M2, utilizando-se o DCT;
- Avaliar as propriedades tribológicas e a tenacidade do aço M2 em amostras com e sem DCT;
- Avaliar o efeito das técnicas de dureza e carga empregadas nos valores de dureza das amostras.

1.2 Estrutura do trabalho

O presente trabalho está organizado conforme apresentado a seguir:

Capítulo 1 – Introdução: apresenta e justifica a importância do tema, os objetivos do trabalho, a delimitação do problema em estudo e o que as pesquisas apresentam até o momento sobre o tema.

Capítulo 2 – Revisão Bibliográfica: são abordados temas como o diagrama ferro-carbono e curvas TTT, a martensita, os aços ferramentas, tratamentos

térmicos, endurecimento secundário e tratamento criogênico. No tratamento criogênico aplicado aos aços, é explicado o porquê da utilização do nitrogênio, a diferença entre o tratamento criogênico profundo e o tratamento criogênico raso (sub-zero), os diferentes tipos de processos, com suas vantagens e desvantagens, e as principais pesquisas associadas com a melhora da resistência ao desgaste.

Capítulo 3 – Materiais e Métodos: são apresentados a metodologia experimental, os métodos utilizados, os equipamentos, os parâmetros e o objetivo de cada análise.

Capítulo 4 – Resultados: são apresentados os principais resultados obtidos focando-se principalmente nas propriedades mecânicas, tribológicas e microestruturais das amostras tratadas por diferentes rotas de tratamentos térmicos e criogênicos.

Capítulo 5 – Discussão dos Resultados: neste capítulo serão discutidos os resultados procurando-se explicar o comportamento mecânico das amostras.

Capítulo 6 - Considerações Finais: são apresentadas as conclusões e sugestões para futuros trabalhos no sentido de complementar e ampliar a pesquisa do tratamento criogênico.

Por último, são apresentadas as referências bibliográficas citadas no trabalho e os Anexos.

2 REVISÃO BIBLIOGRÁFICA

Neste capítulo são abordados temas como o aço, as diferentes fases formadas na combinação ferro-carbono, os aços rápidos, os tratamentos térmicos, o endurecimento secundário e o tratamento criogênico. Com relação ao tratamento criogênico, são apresentados os sistemas utilizados e as principais pesquisas em relação aos parâmetros do tratamento.

2.1 Aço

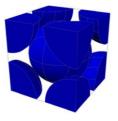
Das ligas metálicas, o aço é a mais importante e mais utilizada. Está presente em quase tudo que nos rodeia: em partes da cadeira em que sentamos, nos óculos que utilizamos, na armação de concreto armado das casas e edifícios, na grande maioria das peças dos automóveis, nos eletrodomésticos, ferramentas cirúrgicas e tantos outros equipamentos.

As ligas ferro-carbono classificadas como aço são as que contêm entre 0,008 e 2,14% de C (CALLISTER, 2011).

Muitas vezes são acrescentados outros elementos na liga, a fim de melhorar certas propriedades específicas, como resistência à corrosão, resistência ao desgaste ou propriedades elétricas e magnéticas. Além disso, o aço pode ser tratado termicamente a fim de produzir uma grande variedade de microestruturas.

Quando a liga é formada basicamente por ferro e carbono, é chamada de aço-carbono; quando são acrescentados outros elementos de liga, o aço é chamado de aço-liga.

2.1.1 Diagrama Ferro-Carbono

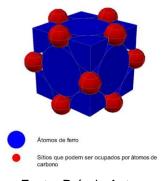

O ferro é um elemento que, como o carbono, oxigênio e outros, pode apresentar várias células unitárias, ou seja, os átomos de ferro podem estar ligados entre si de maneiras diferentes, e a isso chamamos de alotropia.

O ferro puro na temperatura ambiente até 912° C se apresenta cúbico de corpo centrado (CCC), sendo chamado de ferro α (alfa) ou ferrita.

A solubilidade de carbono na ferrita é muito baixa, na temperatura ambiente é quase nula: 0,008%, chegando ao máximo de 0,022% à temperatura de 727° C. Esta baixa solubilidade do carbono no ferro deve-se aos seguintes fatores:

- As diferenças de tamanho e eletronegatividade entre um átomo de ferro e um de carbono não possibilita que o átomo de carbono substitua o de ferro na matriz.
 Assim, ele se aloja nos espaços vazios entre os átomos de ferro. A isto chamamos de solução sólida intersticial.
- Os átomos de carbono possuem raio maior do que os interstícios entre os átomos de ferro na estrutura CCC.

Figura 1 - Posição dos átomos em uma estrutura CCC



Fonte: Próprio Autor

Entre as temperaturas de 912° C e 1394° C, o ferro passa da estrutura cristalina CCC para CFC (cúbico de corpo centrado) e é chamado de ferro γ (gama) ou austenita.

O raio do interstício do octaédrico, que na estrutura CCC era de 0,19Å, chega a 0,53Å para um raio de 0,71Å do carbono. Com isso a solubilidade de carbono na austenita aumenta para um máximo de 2,11% à temperatura de 1148° C. A Figura 2 mostra um desenho esquemático da estrutura cristalina CFC.

Figura 2 - Posição dos átomos em uma estrutura CFC

Fonte: Próprio Autor

Entre 1394° C e 1538° C o ferro sofre nova transformação, passando de CFC para CCC, sendo chamado então de ferro δ (delta). Entre 1538° C e 2875° C está em fase líquida, e acima de 2875° C, vapor.

A combinação de carbono e ferro, em equilíbrio termodinâmico, dá origem a ferrita α e grafita (uma das formas alotrópicas do carbono). Entretanto, na produção industrial a solidificação e o resfriamento são muito rápidos para que o equilíbrio termodinâmico seja alcançado. Ocorre, então, a formação de uma fase metaestável, a cementita (carbeto de ferro, Fe₃C), no lugar da grafita. Embora esta fase seja termodinamicamente metaestável, em termos de aplicações práticas ela é considerada estável, pois, na temperatura ambiente, o coeficiente de difusão do carbono no ferro é muito baixo e a transformação de cementita em grafita é praticamente nula (SILVA, 2010).

A Figura 3 apresenta o diagrama Fe-Fe₃C. Esse diagrama é apresentado até 6,67% de carbono porque esta é a composição da cementita Fe₃C.

Importante salientar que o diagrama considera um aço-carbono sem a presença de elementos residuais, o que na prática não ocorre. Durante os processos de fabricação do aço estão presentes silício, enxofre, fósforo, entre outros, contudo quantidades pequenas pouco afetam o diagrama.

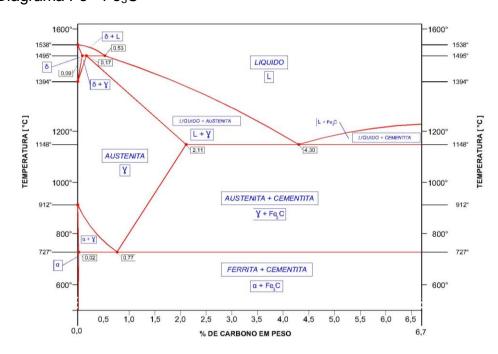


Figura 3 - Diagrama Fe - Fe₃C

Fonte: CALLISTER, Jr; WILLIAM, D; Ciência e engenharia de materiais: uma introdução. 7 ed. Rio de Janeiro: LTC, 2011. Adaptado pelo Autor.

As fases que estão presentes no diagrama são:

Ferrita – Estrutura cristalina CCC. Também chamada de ferro α , é relativamente macia (dureza em torno de 80 HB) e ocorre em temperaturas menores do que 912° C. Características magnéticas ocorrem em temperaturas menores que 768° C. (FCTMG, 2014).

Austenita – Estrutura cristalina CFC, também chamada de ferro γ. Possui maior solubilidade de carbono devido aos sítios intersticiais da estrutura CFC. Existe entre as temperaturas de 727° C e 1495° C, e com solubilidade máxima de carbono no ferro de 2,11% a 1148° C (SILVA, 2010).

Cementita - Fe₃C – Possui estrutura ortorrômbica, com 12 átomos de ferro e quatro átomos de carbono. Sua dureza é bastante alta, por isso também é muito frágil. O aumento da dureza nos aços ocorre pela presença da cementita. No diagrama ferro-carbono para 6,67% de carbono, teremos 100% cementita, por este motivo não se utilizam ligas ferrosas com teores maiores que 4,3%C.

A Figura 4 representa a estrutura cristalina ortorrômbica da cementita, onde $a\neq b\neq c$ e α , β e γ = 90°.

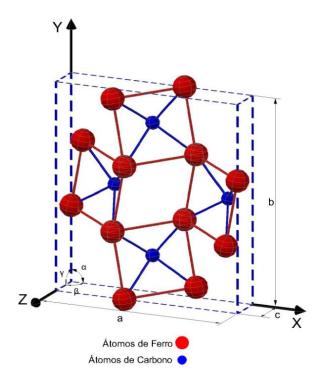
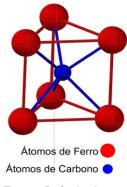
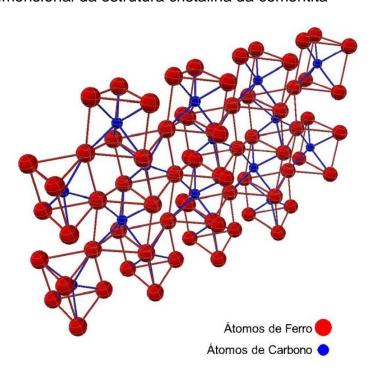



Figura 4 - Estrutura cristalina ortorrômbica da cementita

Fonte: NEMATOLLAHI, G.A. et al. Thermodynamics of carbon solubility in ferrite and vacancy formation in cementite in strained pearlite. Acta Materialia 61 p 1773-1784, 2013. Adaptado pelo Autor.

Os 12 átomos de ferro da cementita estão localizados em dois sítios distintos: os átomos de ferro especiais (4 átomos), e os átomos de ferro gerais (8 átomos). Os átomos mais próximos ao carbono são dois átomos gerais e quatro átomos especiais. Estes seis átomos de ferro formam um prisma triangular; no centro dele se localiza o átomo de Carbono (NEMATOLLAHI, 2013).


Figura 5 - Prisma triangular com átomo de carbono ao centro

Fonte: Próprio Autor

A Figura 6 representa um conjunto de células com estrutura cristalina ortorrômbica em uma visão tridimensional:

Figura 6 - Visão tridimensional da estrutura cristalina da cementita

Fonte: Próprio Autor

Podemos citar também constituintes que não se apresentam no diagrama, pois são formados de duas fases, como a estrutura formada por um aço eutetoide resfriado lentamente. O aço eutetoide possui em torno de 0,77% de carbono e, para uma temperatura acima de 727° C, apresenta estrutura cristalina CFC. À medida que a temperatura vai diminuindo e fica abaixo dos 727° C, a austenita começará a formar simultaneamente duas fases: ferro α e Fe₃C, ou seja, ferrita e cementita. Esta estrutura formada por lamelas alternadas de ferrita e cementita é chamada de perlita. O aço eutetoide resfriado lentamente possui estrutura 100% perlítica. A Figura 7 representa a formação da perlita a partir da austenita, onde a direção da difusão do carbono está indicada pelas setas.

CONTORNO DE GRÃO DA AUSTENITA FERRITA (α) **AUSTENITA** FERRITA (a) **AUSTENITA** (y) (γ) FERRITA (a) CEMENTITA (Fe_sC) DIREÇÃO DO FERRITA (a) CRESCIMENTO DA PERLITA DIFUSÃO DO CARBONO

Figura 7 – Ilustração da sequência de formação da perlita

Fonte: CALLISTER, Jr; WILLIAM, D; Ciência e engenharia de materiais: uma introdução. 7 ed. Rio de Janeiro: LTC, 2011. Adaptado pelo Autor.

Aços com carbono abaixo de 0,77% são chamados de hipoeutetoides, ou seja, possuem carbono abaixo do eutetoide. Neste caso, a estrutura formada será ferrita proeutetoide, pois esta é formada antes da reação eutetoide, e perlita. As Figuras 8 (a) e (b) representam a forma esquemática das microestruturas e a micrografia de uma liga com composição hipoeutetoide.

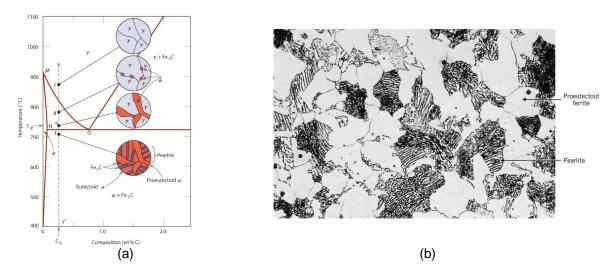
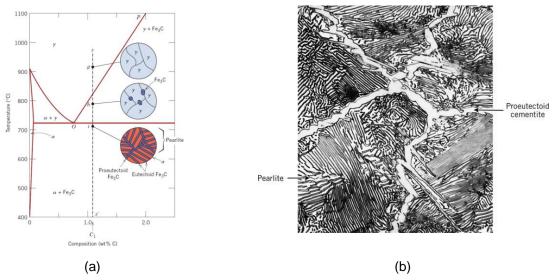



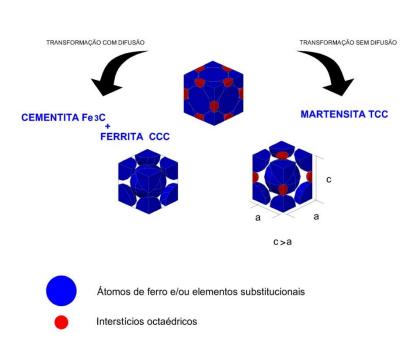
Figura 8 – Microestrutura formada pela liga hipoeutetoide durante o resfriamento

Fonte: CALLISTER, Jr; WILLIAM, D; Materials science and engineering: an introduction. 7 ed. Minnesota: John Wiley & Sons, 2007.

Aços com percentual maior que 0,77% são chamados de hipereutetoides, e a composição final será de cementita pró-eutetoide e perlita. A Figura 9 apresenta de forma esquemática a formação da estrutura de uma liga hipoeutetoide conforme esta é resfriada desde a região austenítica, até abaixo da temperatura eutetoide (a). Na Figura 9 (b) podemos visualizar a microestrutura formada por cementita próeutetoide que envolve as colônias de perlita.

Figura 9 - Microestrutura formada pela liga hipereutetoide durante o resfriamento

Fonte: CALLISTER, Jr; WILLIAM, D; Materials science and engineering: an introduction. 7 ed. Minnesota: John Wiley & Sons, 2007.


Uma das características mais importantes dos aços como materiais de construção mecânica é a possibilidade de desenvolver ótimas combinações de resistência e tenacidade, de acordo com a microestrutura do material. Quando se deseja um material dúctil, a ferrita deve ser a fase dominante. O aumento da quantidade de perlita resulta na elevação da resistência mecânica. Para aumentos sensíveis da resistência mecânica do material, a martensita revenida é a microestrutura recomendada.

2.1.2 Martensita

O rápido resfriamento a partir do campo austenítico (têmpera) promove um rearranjo na estrutura atômica, formando o microconstituinte martensita, que confere ao aço endurecimento e aumento da resistência mecânica, mas também fragilidade (VALES, 2011).

Devido ao rápido resfriamento a difusão não ocorre. Assim, existe um deslocamento entre átomos vizinhos aprisionando átomos de carbono, transformando a célula unitária CFC em TCC (tetragonal de corpo centrado), conforme ilustrado na Figura 10.

Figura 10 - Transformação da estrutura CFC para tetragonal

AUSTENITA CFC

Fonte: Próprio Autor.

A martensita possui uma estrutura monofásica metaestável, associada com uma estrutura repleta de discordâncias devido ao tipo de transformação: por cisalhamento. Portanto, qualquer difusão que ocorra resultará na formação de ferrita e carbetos.

Sendo uma transformação fora do equilíbrio, a formação da martensita não aparece no diagrama Fe – Fe₃C. A representação é apresentada em diagramas de transformação isotérmica chamados também de curvas TTT (transformação-tempotemperatura), conforme mostrado na Figura 11.

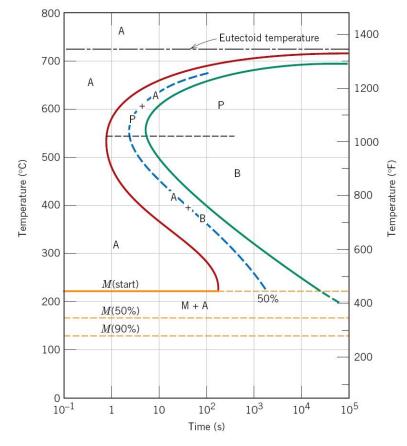


Figura 11 - Diagrama de transformação isotérmica para aço eutetoide

Fonte: CALLISTER, Jr; WILLIAM, D; Materials science and engineering: an introduction. 7 ed. Minnesota: John Wiley & Sons, 2007.

O início da transformação martensítica é representado por uma linha horizontal designada por M *start* (início). Duas outras linhas horizontais e tracejadas, identificadas como M(50%) e M(90%), indicam os percentuais da transformação da austenita em martensita. As temperaturas nas quais essas linhas estão localizadas

variam de acordo com a composição da liga, entretanto, elas são relativamente baixas, pois a difusão do carbono é virtualmente inexistente. A natureza horizontal e linear dessas linhas indica que a transformação martensítica é independente do tempo, sendo uma função exclusivamente da temperatura para a qual a liga é resfriada (CALLISTER, 2011).

O aço, após têmpera, tem como características elevada resistência e elevada dureza, em contrapartida é muito frágil, o que acaba inviabilizando sua utilização em diversas aplicações. Aplica-se o revenido a fim de diminuir a fragilidade, diminuir as tensões internas e se obter uma dureza apropriada.

O revenido consiste em um tratamento térmico de aquecimento do aço martensítico a uma temperatura abaixo da linha crítica A1.

2.2 Aços Ferramenta

Assim chamados, por possuírem as qualidades requeridas para serem utilizados como ferramentas de moldagem, estampagem, conformação, entre outros.

As qualidades necessárias para este tipo de aplicação são:

- Resistência à deformação a quente;
- Resistência ao choque térmico;
- Dureza à temperatura ambiente;
- Dureza a quente;
- Elevada resistência ao desgaste;
- Resistência ao impacto;
- Resistência mecânica:
- Boa temperabilidade.

O que confere a esta categoria de aços as qualidades citadas são sua composição química e o tratamento térmico a que são submetidos.

Os aços ferramentas, diferentemente dos aços para construção mecânica, são classificados não só por sua composição química, mas também por seu emprego e tipo de tratamento térmico.

Entre os elementos de liga responsáveis pelas qualidades dos aços ferramentas, podemos destacar: cromo, molibdênio, tungstênio e vanádio.

2.3 Aços Rápidos

Assim chamados devido à capacidade de resistir à ação do calor, permitindo o emprego de grandes velocidades de corte em operações de usinagem. É a principal classe de aços usados em ferramentas de corte devido à alta dureza no estado temperado/revenido e, principalmente, pela capacidade de operar em condições que elevam excessivamente a temperatura da ferramenta.

A eficiência de uma ferramenta de aço rápido não se altera mesmo quando a temperatura do gume, por efeito do atrito provocado pelo trabalho, atinge 550° C. Nessas temperaturas, esses aços praticamente retêm a dureza, o que lhes permite continuar ainda na operação de usinagem (TIER, 1998). A esta característica chamamos de "dureza a quente".

Além da elevada dureza a quente, que normalmente é superior a 58 HRC a 550° C, podemos citar como características importantes dos aços rápidos a resistência ao desgaste, devido ao alto teor de carbono e aos elementos de liga formadores de carbetos, assim como à estabilidade dimensional e tenacidade.

A composição dos aços rápidos é tal que os torna facilmente endurecíveis por têmpera através da secção inteira, mesmo pelo resfriamento em óleo ou em banho de sais. Nessas condições, a tendência ao empenamento ou ruptura no resfriamento por têmpera é menor, desde que certas precauções, como suporte adequado das peças durante o aquecimento, sejam tomadas (CHIAVERINI, 2008).

A Tabela 1 mostra as diferentes temperaturas de austenitização para as diferentes classes de aço:

Tabela 1 - Temperaturas de austenitização recomendadas

TIPO		TEMPERATURA DE AUSTENITIZAÇÃO [° C]
AÇO RÁPIDO	M2	1190 - 1230
AÇO PARA TRABALHO A QUENTE	H 13	1000 - 1040
AÇO PARA TRABALHO A FRIO	D2	990 - 1030
AÇO CARBONO	1045	845

Fonte: Tabela técnica de aços ferramenta – FAVORIT AÇOS ESPECIAIS http://www.favorit.com.br/sites/all/themes/favorit/tabelas html/acos ferramentas.html Acessado em 01/07/2013.

2.3.1 Elementos de liga presentes nos aços rápidos

Os principais elementos de liga presentes nos aços rápidos são:

Carbono (C) – Elemento fundamental para formação de carbetos. Uma quantidade adicional é requerida também para ser dissolvida na austenita durante austenitização, sendo essencial para o endurecimento martensítico da matriz. Dessa forma, quantidades crescentes de elementos de liga formadores de carbonetos exigem o aumento simultâneo do teor de carbono para evitar o surgimento da ferrita. Seu teor varia nos aços rápidos de 0,65% a 1,60%, ficando em média em 0,95%.

Cromo (Cr) – Responsável pela alta temperabilidade. Reduz a tendência ao crescimento de grão. Formador de carbetos do tipo: Cr_7C_6 (ortorrômbico) e $Cr_{23}C_6$, este último encontrado nos aços rápidos somente se o Mo estiver presente ou se a quantidade de Cr for superior a 7%.

Vanádio (V) – Dos elementos presentes nos aços rápidos, o vanádio é o que possui a maior tendência à formação de carbetos. Aumenta a temperabilidade e melhora o endurecimento secundário. Conforme Silva (2010), devido à sua capacidade de manter os carbonetos sem coalescimento significativo em temperaturas de até 700° C, o vanádio é um importante constituinte para os aços utilizados em altas temperaturas.

Tungstênio (W) e Molibdênio (Mo) – Elementos sempre presentes nos aços rápidos em conjunto, ou em substituição de um pelo outro. Formam diversos tipos de carbetos complexos. Nos aços rápidos, a sequência de precipitação é: $Fe_3C \rightarrow M_2C \rightarrow M_6C$, onde M representa Mo ou W. Pode-se dizer que o M_2C é o responsável em grande parte pela dureza secundária e dureza a quente dos aços rápidos.

Cobalto (Co) – O cobalto não forma carbetos, portanto não produz endurecimento secundário, mas apresenta-se dissolvido na matriz do ferro, aumentando o ponto de fusão da liga. Assim, maiores temperaturas de austenitização podem ser empregadas sem crescimento de grão, resultando em maior quantidade de elementos de liga em solução, com a consequente melhora da dureza a quente. Também age restringindo o crescimento dos carbetos precipitados. Por outro lado, aumenta a tendência a descarbonetação (TIER, 1998).

2.3.2 Classificação dos aços rápidos

Conforme podemos visualizar na Tabela 2, a norma AISI classifica os aços rápidos em seis classes, e os aços das classes 610 e 620 são chamados do tipo "T", aços rápidos ao tungstênio. As demais classes são chamadas do tipo "M", aços rápidos ao molibdênio. Esta nomenclatura (T e M) é também utilizada na norma ABNT NBR NM 116-1.

Tabela 2 - Classificação dos aços rápidos pela AISI e ABNT

AISI	ABNT	TIPO
Classe 610 – ao tungstênio	Т	T1, T2, T3, T7 e T9
Classe 620 – ao tungstênio cobalto	1	T4, T5, T6, T8 e T15
Classe 630 – ao molibdênio		M1, M10, e M7
Classe 640 – ao molibdênio cobalto	М	M30, M33, M34 e M42
Classe 650 – ao tungstênio molibdênio	IVI	M2, M3, M4 e M8
Classe 660 – ao tungstênio molibdênio cobalto		M35, M36, M41 e M44

Fonte: ABNT NBR NM 116-1; FERRARESI (1977). Adaptado pelo Autor.

2.3.3 Aços rápidos série T

Foi o primeiro tipo de aço rápido desenvolvido por Taylor, em 1910, quando este começou a estudar a influência do tungstênio na dureza a quente dos aços. A porcentagem de tungstênio foi sendo testada até se chegar ao popular "18-4-1" (18% W, 4% Cr e 1%V), o atual AISI T1. A grande contribuição do trabalho de Taylor foi também testar diferentes tratamentos térmicos.

O tratamento térmico ideal consistia em aquecer o aço um pouco abaixo da temperatura da linha *solidus* (1250° C - 1290° C), resfriá-lo em um banho de sal líquido abaixo de 620° C, seguindo então o resfriamento à temperatura ambiente para um posterior revenido em uma temperatura abaixo de 600° C. As ferramentas tratadas desse modo eram capazes de usinar aços a velocidades de corte de 30 m/min., o que revolucionou o corte de metais na época. Essa composição foi

largamente utilizada até a segunda guerra mundial, quando foi necessário desenvolver alternativas a esses elementos de liga.

2.3.4 Aços rápidos série M

Como a massa atômica do molibdênio é aproximadamente metade da massa atômica do tungstênio, o mesmo peso de molibdênio e tungstênio resulta em, aproximadamente, duas vezes mais átomos de molibdênio. Assim, 1% em peso de molibdênio pode substituir 1,6% a 2% em peso de tungstênio (SILVA, 2010).

Como desvantagem, temos uma dureza a quente um pouco menor e uma maior tendência a descarbonetação. Nas últimas décadas o uso dos aços rápidos da série M vem crescendo sensivelmente e atualmente representa mais de 95% do aço rápido produzido nos EUA (SILVA, 2010). A Tabela 3 apresenta a composição química de alguns aços rápidos do tipo M segundo a norma ABNT NBR NM 116-1.

Tabela 3 - Composição química de alguns aços rápidos tipo M

ELEMENTO C		Mn		Ρ	S	Si		Cr		V W		Мо		Co				
TIPO	Mín.	Max.	Mín.	Max.	Max.	Max.	Mín.	Max.	Min.	Max.								
M1	0,78	0,88	0,15	0,40	0,03	0,03	0,20	0,50	3,50	4,00	1,00	1,35	1,40	2,10	8,20	9,20	-	-
M2	0,78	0,88	0,15	0,40	0,03	0,03	0,20	0,45	3,75	4,50	1,75	2,20	5,50	6,75	4,50	5,50	-	-
M2 alto C	0,95	1,05	0,15	0,40	0,03	0,03	0,20	0,45	3,75	4,50	1,75	2,20	5,50	6,75	4,50	5,50	-	-
M3 classe 1	1	1,10	0,15	0,40	0,03	0,03	0,20	0,45	3,75	4,50	2,25	2,75	5,00	6,75	4,75	6,50	-	-
M3 classe 2	1,15	1,25	0,15	0,40	0,03	0,03	0,20	0,45	3,75	4,50	2,75	3,25	5,00	6,75	4,75	6,50	-	-
M4	1,25	1,40	0,15	0,40	0,03	0,03	0,20	0,45	3,75	4,75	3,75	4,50	5,25	6,50	4,25	5,50	-	-
M6	0,75	0,85	0,15	0,40	0,03	0,03	0,20	0,45	3,75	4,50	1,30	1,70	3,75	4,75	4,50	5,50	11,00	13,00
M7	0,97	1,05	0,15	0,40	0,03	0,03	0,20	0,55	3,50	4,00	1,75	2,25	1,40	2,10	8,20	9,20	-	-

Fonte: NBR NM 116-1: Aços-rápido – Parte 1: Classificação, designação e composição química. Rio de Janeiro, 2005.

2.4 Tratamentos Térmicos dos Aços

Desde a descoberta do ferro (1500 a 1000 a.C.) a busca por seu melhoramento foi sempre constante. Nos primórdios, a sua utilização era basicamente em utensílios militares. Logo, o domínio da arte da fabricação era de extrema importância, pois a diferença entre a qualidade e resistência da espada de um exército em relação à do seu inimigo poderia significar a vitória ou a derrota no campo de batalha.

Ainda por esta época (900 a.C.) os egípcios descobriram que o aço aquecido e resfriado rapidamente adquiria uma resistência muito superior, surgia então a têmpera.

2.4.1 Têmpera e revenido dos aços rápidos

As propriedades mecânicas dos aços ferramentas, seu desempenho e vida útil são funções da sua microestrutura, que dependem de variáveis como: os elementos de liga presentes, suas concentrações e o tratamento térmico da liga (VALES, 2011).

A temperatura normalmente utilizada para de austenitização do aço M2 é de 1200° C. Em temperaturas abaixo da indicada, não ocorre a dissolução da quantidade de carbetos necessária para o fornecimento de carbono à austenita. Por outro lado, temperaturas muito altas acarretam aumento excessivo do grão austenítico, diminuindo a tenacidade e a resistência à abrasão em função do menor número de carbetos presentes.

À medida que a temperatura vai aumentando, os carbetos vão se dissolvendo cada um à sua temperatura, fornecendo carbono para a formação da austenita.

Os carbetos formados por elementos de liga, na sua maioria, são mais estáveis que o carbeto de ferro (cementita - Fe₃C). Por essa razão, aços liga possuem, em geral, temperaturas de austenitização superiores aos aços carbono. Ao se atingir a temperatura indicada, os carbetos são dissolvidos fornecendo carbono para formação da austenita.

Após a têmpera, como em qualquer outro aço, aplica-se o revenido, normalmente duplo revenido. O primeiro, para alívio de tensões da martensita e para

a transformação da austenita retida em martensita. O segundo, para o alívio de tensões da martensita formada no primeiro revenido.

2.4.2 Endurecimento secundário

É assim chamado porque ocorre um aumento de dureza durante o revenimento. O material é endurecido pela têmpera (o endurecimento primário), e, ao ser submetido ao revenido para o alívio de tensões, apresenta uma dureza maior, denominada de endurecimento secundário.

O endurecimento secundário depende de vários fatores, como: composição química do aço, temperatura de austenitização, temperatura de revenido e o tempo de revenido.

Há algum tempo acreditava-se que a retenção da austenita e a sua subsequente transformação durante o revenido eram a única causa do "endurecimento secundário" ou "dureza secundária". De fato, uma grande proporção de austenita pode causar um endurecimento do aço por ocasião do revenido (CHIAVERINI, 2008).

Contudo, hoje se sabe que, além da transformação da austenita retida, a precipitação de finos cabetos de liga tem influência no endurecimento secundário. Elementos como molibdênio, tungstênio, titânio e vanádio são formadores de carbetos e favorecem o endurecimento secundário, assim como aços com altos teores de cromo.

Para aços com percentuais de 4 a 6% em peso de molibdênio e tungstênio, como no caso do aço M2, os carbonetos responsáveis pelo endurecimento secundário são: Mo_2C e W_2C .

Depois de a dureza passar por um pico, o coalescimento dos carbetos metálicos leva novamente a uma perda de dureza no aço (SILVA, 2010).

A Figura 12 mostra o efeito da temperatura de austenitização e da temperatura de revenido na dureza do aço ABNT M2. Observa-se que o aumento da temperatura de austenitização provoca o aumento da dureza. Já a Figura 13 mostra a influência da temperatura e do tempo de revenimento na dureza do aço ABNT M2 temperado a 1200° C.

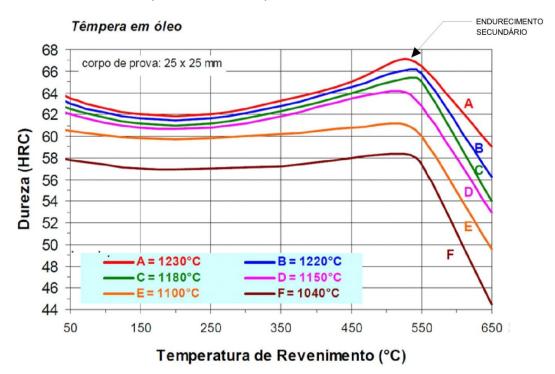


Figura 12 - Efeito da temperatura de têmpera e revenido

Fonte: AÇOS VILLARES S.A. Cartilha técnica de aços rápidos. Disponível<http://www.villaresmetals.com.br/portuguese/files/FT_11_VWM2.pdf. Acessado em 10/03/2013.

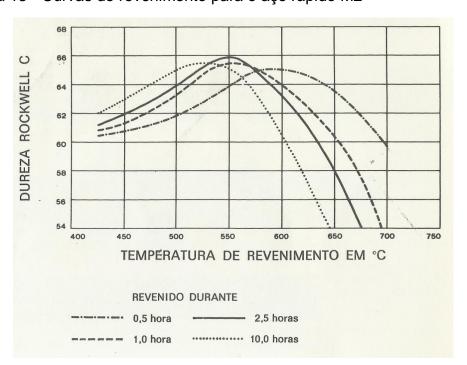


Figura 13 - Curvas de revenimento para o aço rápido M2

Fonte: AÇOS VILLARES S.A. AÇOS PARA FERRAMENTAS: Aços rápidos. [19--].

2.5 Tratamento Criogênico

Nas últimas décadas, alguns fenômenos com materiais submetidos a baixa temperatura começaram a chamar a atenção dos pesquisadores. Os relojoeiros suíços, famosos pela qualidade de suas criações, submetiam os delicados elementos mecânicos às baixas temperaturas dos Alpes durante longos períodos de tempo para melhorar a qualidade das peças (WURZBACH, 2005 apud VALES, 2011). Os engenheiros da NASA começaram a notar que as peças metálicas das aeronaves, ao retornarem do espaço, um ambiente que apresenta temperaturas muito baixas, voltavam mais resistentes do que antes de terem voado (SILVA, F.J., 1999 apud GOBBI, 2009).

Hoje, se sabe que os principais fatores destes melhoramentos são a transformação da austenita retida em martensita e a precipitação de finos carbetos. Apesar disso, os mecanismos por trás deste melhoramento, os parâmetros que se deve utilizar para cada material e a influência dos parâmetros utilizados nos tratamentos térmicos anteriores e posteriores ao tratamento criogênico ainda são objeto de pesquisa.

2.5.1 Processo de criogenia

O tratamento criogênico pode ser definido como o resfriamento de um material a temperaturas bastante baixas, da ordem de -80° C à -196° C, a permanência deste material a esta temperatura por certo período de tempo, e a elevação da sua temperatura até atingir a temperatura ambiente.

A imersão direta em nitrogênio líquido já foi muito utilizada. Tem como vantagem, além da simplicidade dos equipamentos, a ausência total de umidade e o real alcance da temperatura de -196° C em virtude de os materiais entrarem em contato direto com o nitrogênio. O problema desta técnica é que a taxa de resfriamento é muito alta, o que resulta em choque térmico e fragilização dos materiais.

Com o intuito de evitar os choques térmicos, foram desenvolvidos outros sistemas onde os materiais passam por um pré-resfriamento, antes de entrarem em contato com o nitrogênio líquido.

A Figura 14 exemplifica um ciclo de um tratamento em que tanto a temperatura de resfriamento, quanto a temperatura de aquecimento são controladas.

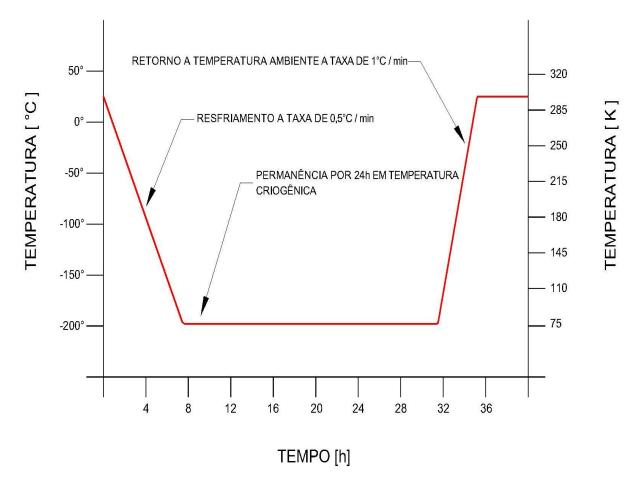


Figura 14 - Exemplo do ciclo de um tratamento criogênico

Fonte: Próprio Autor.

Molinari (2001) considera a taxa de resfriamento um dos fatores mais críticos, e sugere que esta deve ser entre 20 e 30° C/h.

O tratamento criogênico não substitui a têmpera, o revenido e nenhum outro tratamento térmico convencional, também chamados de CHT (*conventional heat treatment*), mas é um complemento aos demais tratamentos. Também se utilizam ciclos de revenimento antes e/ou após o tratamento criogênico, e estes ciclos podem ser simples ou múltiplos.

A Figura 15 mostra um exemplo de um material submetido a têmpera, triplo revenimento, tratamento criogênico, e novamente revenido.

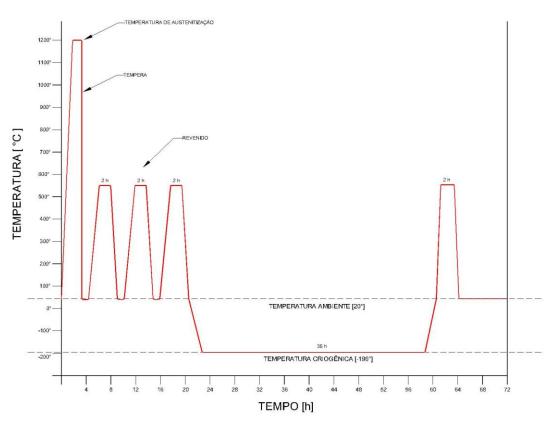


Figura 15 - Exemplo do ciclo de um tratamento térmico

Fonte: Próprio Autor.

2.5.2 A utilização do nitrogênio

A razão pela qual se utiliza o nitrogênio como meio de resfriamento é por ser um gás inodoro, insípido e incolor, e em sua forma líquida atingir -195,8 $^{\circ}$ C. Além disso, o nitrogênio (N_2) é o quinto elemento mais abundante do universo e forma cerca de 78 $^{\circ}$ do ar atmosférico. O processo mais utilizado para sua obtenção é pela destilação do ar líquido.

Outros elementos atingem também, em sua forma líquida, temperaturas bastante baixas, mas possuem desvantagens como preço, ou por serem altamente inflamáveis, oxidantes ou tóxicos (metano -161,5° C, oxigênio -183,0° C, Hélio -269,0° C).

Stratton (2009), em sua pesquisa da influência do tratamento criogênico no aço 20MnCr5 cementado, ao utilizar nitrogênio líquido (-195,8° C) e hélio líquido (-269° C) constatou que não se obtém nenhum benefício extra ao se utilizar este último.

2.5.3 O tratamento sub-zero e o tratamento profundo

O tratamento criogênico CT (Cryogenic Treatment) é dividido em dois tipos, conforme a temperatura mínima alcançada:

Sub-zero ou tratamento criogênico raso – SCT (**Shallow Cryogenic Treatment**): o material é colocado diretamente a temperatura de -80° C durante certo tempo e, após, é exposto à temperatura ambiente. Este tipo de tratamento era muito utilizado antes da década de 60, em virtude da dificuldade de se obter temperaturas menores e equipamentos com controle preciso de temperatura. Pesquisas feitas até agora demonstram que este tipo de tratamento já é suficiente para a transformação de boa parte da austenita retida em martensita.

Tratamento Criogênico profundo – DCT (**Deep Cryogenic Treatment**): o material é lentamente resfriado até atingir temperatura de 77K (-196° C) ou muito próximo a esta, permanece nesta temperatura por certo tempo e então é aquecido lentamente até a temperatura ambiente.

Segundo Huang (2003), o tratamento criogênico profundo não somente facilita a formação de carbetos, mas também promove uma distribuição mais homogênea destes, o que pode ser a causa do aumento da resistência ao desgaste.

Atualmente as pesquisas referentes a tratamentos criogênico com aços estão sendo realizadas na faixa dos -180° C a -196° C.

Neste trabalho, quando nos referirmos a tratamento criogênico, estaremos nos referindo ao tratamento criogênico profundo (DCT).

2.5.4 Sistemas utilizados para o tratamento criogênico

Logo que se começou a investigação do tratamento criogênico nos aços, a única técnica utilizada era a de imersão direta. Assim, a grande maioria das peças acabava por quebrar logo nas primeiras horas de utilização. Contudo, as que não quebravam apresentavam uma resistência ao desgaste muito superior às que não haviam passado pelo tratamento criogênico.

Em 1966, Ed Busch funda nos Estados Unidos a empresa Cryo-Tech, a primeira empresa a fazer tratamentos criogênicos comercialmente no mundo. A


partir daí começa a preocupação no controle da temperatura de resfriamento. Anos mais tarde um engenheiro aeronáutico chamado Pete Paulin funda a empresa 300 Below e compra a Cryo-Tech. A 300 Below cria, então, o primeiro processador criogênico a utilizar um ciclo térmico auxiliado por computador. A partir daí as taxas de resfriamento e retorno à temperatura ambiente são rigorosamente controladas.

Hoje o tratamento criogênico, embora ainda não conhecido por grande parte da indústria, é um serviço oferecido inclusive no Brasil.

Conforme Baldissera (2008) os três mais importantes sistemas para tratamento criogênico são:

- Imersão gradual direta As peças são mergulhadas diretamente no nitrogênio líquido, ficando por certo período de tempo e, então, retiradas. Este é o processo mais simples, mas que geralmente causa um choque muito grande nas peças, por outro lado, se consegue atingir na peça a temperatura do nitrogênio líquido, -196° C.
- Com trocador de calor O nitrogênio não entra em contato direto com a peça, ele passa através de um ou mais trocadores de calor. Um ventilador insufla o ar frio, que passa através do trocador para dentro da câmara. Não se consegue com este sistema atingir na peça a temperatura de -196° C, pois a peça não está em contato direto com o nitrogênio líquido. Em compensação, se consegue um controle preciso de temperatura.
- Nebulização direta O nitrogênio é nebulizado diretamente sobre as peças dentro da câmara. Geralmente um ventilador auxilia para a distribuição homogênea de temperatura, o que, mesmo assim, é difícil se a câmara estiver bastante carregada. Neste tipo, como no caso do trocador de calor, não se consegue chegar à temperatura de -196° C, mas muito próximo. A Figura 16 ilustra o processo.

Figura 16 - Sistema criogênico por nebulização direta

Fonte: Próprio Autor.

Além dos três processos citados por Baldissera (2008), podemos considerar também:

 Imersão indireta – As peças são colocadas dentro de uma câmara e mergulhadas lentamente em nitrogênio líquido através de um sistema motorizado. A câmara é projetada e construída com materiais especiais, a fim de que se obtenha o gradiente de temperatura desejado. A Figura 17 mostra uma vista em corte do sistema.

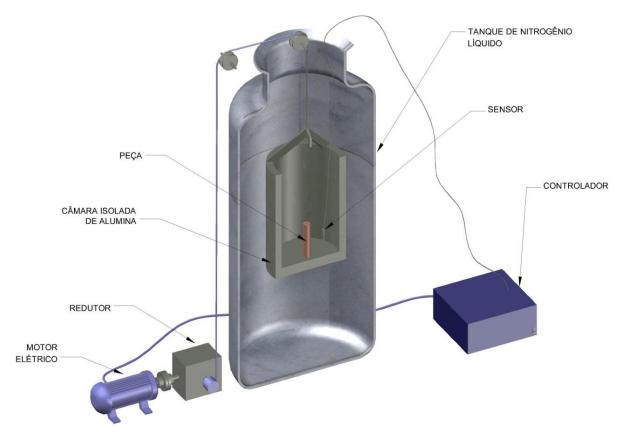


Figura 17 - Sistema criogênico por imersão indireta

Fonte: Próprio Autor.

Com o sistema de imersão indireta, se consegue temperaturas muito próximas de -196° C nas amostras, além de taxas pequenas de resfriamento e retorno à temperatura ambiente, o que evita o choque térmico.

Firouzdor V. (2008) utilizou este sistema na pesquisa do DCT em brocas de aço M2, utilizando taxas de 0,5° C/min., tanto para o resfriamento quanto para o retorno à temperatura ambiente.

• Sistema Híbrido – Este sistema combina nebulização direta com imersão gradual. Primeiramente, as peças são resfriadas por nebulização até a temperatura de -157° C, após atingirem esta temperatura são mergulhadas no nitrogênio líquido. O sistema é chamado de Vari-Cold e foi desenvolvido pela empresa canadense Cryotron (BALDISSERA, 2008). Este sistema evita o choque térmico caso as peças fossem mergulhadas diretamente sem o resfriamento anterior, e permite atingir temperaturas de -196° C.

2.5.5 Parâmetros de processo na criogenia

Conforme Baldissera (2008) cada novo material precisa ser tratado e testado a diferentes níveis de temperatura, de modo a detectar os melhores parâmetros do tratamento. Na maioria dos casos, duas ou três temperaturas (-80° C, -130° C e - 185° C) já são suficientes para se obter uma rápida indicação onde ocorrem as principais mudanças estruturais. O tempo de permanência acima de 36 horas não traz mudanças significativas; na maioria dos casos, 24 horas são suficientes para se obter resultados satisfatórios.

Özbek (2014), em sua investigação dos efeitos do tratamento criogênico com diferentes tempos de encharque (12, 24, 36,48 e 60 horas), em insertos de metal duro para usinagem, constatou que em 24 horas se obtém a melhor resistência ao desgaste, como também os maiores valores de microdureza (HV0.2). Além disso, Özbek (2014) observou que a microdureza cresce com o aumento do tempo de encharque até 24 horas, a partir daí começaram a decrescer.

Molinari (2001), em concordância ao que diz Baldissera (2008) com relação ao tempo de encharque, afirma que tempos superiores a 35 horas não produzem mudanças significativas, e que os melhores resultados são obtidos utilizando-se o DCT entre a têmpera e o revenido, apesar de que melhoras significativas podem ser obtidas pelo tratamento DCT após a têmpera e revenido. Esta última solução é mais flexível que a primeira e pode estender a utilização do DCT para muitas aplicações práticas.

De fato, se considerarmos a situação no Brasil, a grande maioria das empresas que prestam serviços de tratamentos térmicos convencionais não oferece o DCT, ficando este a cargo de empresas especializadas que, por sua vez, não oferecem serviços de tratamentos térmicos convencionais.

Oppenkowsky (2010), em sua pesquisa sobre a aplicação do tratamento criogênico no aço AISI D2, analisou o efeito da temperatura de austenitização, taxa de resfriamento, tempo de permanência a baixa temperatura, taxa de retorno à temperatura ambiente e temperatura de revenido. Concluiu que os fatores que mais influenciaram nas propriedades do aço tratado foram as temperaturas de austenitização e de revenido. Em contraste, os parâmetros relativos ao tratamento criogênico tiveram um baixo nível de significação. Além disso, foi mencionado que,

para tempos de permanência à temperatura criogênica em até 24 horas, existe uma relação quase linear entre este tempo e a resistência ao desgaste.

Firouzdor (2008), em sua pesquisa com brocas de aço M2 temperadas e revenidas, constatou que as brocas que passaram pelo tratamento criogênico com tempo de encharque de 24 horas tiveram um aumento de vida útil de 77%, e as que foram submetidas ao mesmo tratamento criogênico com revenido posterior tiveram um aumento de 126% na sua vida útil, se comparada às brocas não submetidas ao DCT.

Com relação à dureza, amostras com tratamento convencional apresentaram 61 HRC, amostras com DCT 63 HRC e amostras com DCT mais posterior revenido 62 HRC (FIROUZDOR, 2008). Podemos observar que a dureza HRC tem um aumento muito pequeno se comparado ao aumento da resistência.

Da Silva (2006), em sua pesquisa com o aço M2, concluiu que a dureza (HRC) e a microdureza (HV0.1) de amostras tratadas criogenicamente não sofrem efeitos significativos. Este comportamento também foi observado por Molinari (2001). A grande diferença foi a homogeneidade da superfície das amostras tratadas. Enquanto que nas amostras que não foram submetidas ao DCT o desvio padrão foi de 64 HV, nas amostras tratadas o desvio caiu para 22 HV.

Embora tenha sido reportado que a aplicação do DCT no aço M2 não traga um grande aumento na dureza, a vida útil de uma ferramenta de aço M2 tratada criogenicamente é consideravelmente maior. Em pesquisa realizada por Da Silva (2006) com brocas de aço M2, o aumento de vida útil chegou a 343% na comparação com brocas que passaram apenas pelo CHT, considerando-se o número total de furos que uma broca era capaz de fazer até sua falha catastrófica (quebra).

Mohan (2001) comparou diversos parâmetros do DCT em três tipos de aços ferramentas, M2, D3 e T1. Em geral, as ferramentas tratadas a temperaturas mais baixas (-180° C) e por tempo maior (24 horas) apresentaram os melhores resultados.

Na busca da maior resistência ao desgaste para o aço inox martensítico com 18% de Cr, Darwin (2008) analisou a influência de quatro fatores: taxa de resfriamento, temperatura de encharque, tempo de encharque e temperatura de revenido. O fator de maior significação no aumento da resistência ao desgaste foi a temperatura de encharque, com 72% de contribuição. Das três temperaturas

pesquisadas -120, -150 e -184° C, esta última foi a que apresentou os melhores resultados. Os outros fatores: tempo de encharque 24%, taxa de resfriamento 10% e temperatura de revenido 2%.

No trabalho desenvolvido por Koneshloo (2011), peças de aço AISI H13 foram tratadas criogenicamente através de sistema de imersão indireta por 8 horas à temperatura de -196° C. Através da análise com microscopia eletrônica de varredura (MEV), observou-se uma grande precipitação de finos carbetos, e também uma distribuição mais homogênea dos mesmos.

Huang (2003), em sua pesquisa sobre a microestrutura do aço M2 tratado criogenicamente, comprovou, através da difração elétrica e Raios-X, a distribuição e composição dos carbetos precipitados, formados basicamente por Fe_4M_2C , onde M = W, Mo, Cr e V. É interessante mencionar que o tamanho dos carbetos é muito parecido na faixa de $0.3\mu m$ a $2\mu m$, mas a distribuição destes carbetos é mais homogênea nas amostras tratadas do que nas não tratadas criogenicamente.

Para Huang (2003), nas amostras não tratadas criogenicamente, a distribuição dos carbetos não é homogênea. Eles estão localizados em certas regiões, e seus tamanhos variam de região para região.

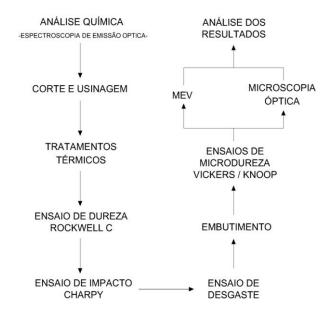
Embora tenham sido feitas muitas pesquisas nas últimas décadas, ainda não se tem um entendimento claro do mecanismo pelo qual o tratamento criogênico melhora o desempenho dos aços ferramentas. De qualquer forma, a maioria das pesquisas reporta que o tratamento criogênico promove a completa transformação da austenita retida em martensita, o que melhora a resistência ao desgaste. Outros afirmam que o tratamento criogênico facilita a formação de finos carbetos na martensita, o que colaboraria também para o aumentando da resistência ao desgaste (HUANG et al., 2003).

Da Silva (2006), em sua pesquisa com aço M2, constatou, através da difração de Raios-X, que amostras não tratadas por criogenia apresentaram um volume de aproximadamente 25% de austenita retida, enquanto que nas amostras tratadas o volume ficou próximo de 0%.

Alguns pesquisadores são céticos com relação ao tratamento criogênico. Este fato se deve a nenhuma mudança aparente nos materiais tratados e também pela imprevisibilidade dos resultados. Contudo, a indústria aeroespacial, automotiva e de produtos eletrônicos nos EUA, China e outros países desenvolvidos tem adotado o tratamento criogênico como processo regular em suas linhas de produções para o

melhoramento da resistência ao desgaste e estabilidade dimensional de componentes (MOHAN LAL, D., 2001).

O objetivo do tratamento criogênico aplicado para os aços é o aumento da dureza, da tenacidade e da resistência ao desgaste. É importante mencionar que, ao se aumentar a dureza de um aço através dos tratamentos térmicos convencionais, tem-se uma diminuição da tenacidade. As pesquisas realizadas até o momento indicam que aços tratados criogenicamente podem ter uma melhora nestas duas importantes propriedades ao mesmo tempo.


Considerando que o tratamento criogênico não substitui os demais tratamentos térmicos, mas é um complemento, é importante investigar o conjunto total de fatores envolvidos. Um fator pode ter uma influência direta em uma propriedade específica, mas devem-se verificar também os efeitos da interação de dois ou mais fatores. Esta é uma situação de extrema importância, e que muitas vezes não é considerada nas pesquisas, o que acaba gerando contradições.

Assim, a proposta do presente trabalho é investigar o efeito do tratamento criogênico no aço ABNT M2 em conjunto com os parâmetros de têmpera e revenido. Para tal, utilizou-se para aplicação do DCT um sistema com controle da taxa de resfriamento e aquecimento. Foi investigada a influência conjunta da temperatura de austenitização, do revenido e do DCT nas propriedades mecânicas e tribológicas do aço ABNT M2.

3 MATERIAIS E MÉTODOS

A Figura 18 apresenta o fluxograma do procedimento experimental adotado para o desenvolvimento deste trabalho.

Figura 18 - Fluxograma do procedimento experimental

Fonte: Próprio Autor.

3.1 Matéria-Prima

O material utilizado na presente pesquisa foi o aço rápido ABNT M2. A composição química prevista conforme a norma está listada na Tabela 4.

Tabela 4 - Composição química do aço ABNT M2

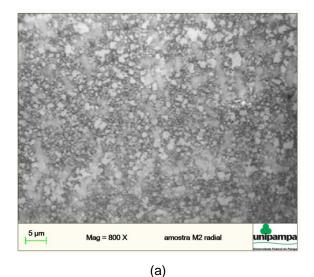
	ELEMENTO	(С	(Cr	•	V	V	V	N	lo 💮	
_		Mín.	Max.									
	M2	0,78	0,88	3,75	4,50	1,75	2,20	5,50	6,75	4,50	5,50	

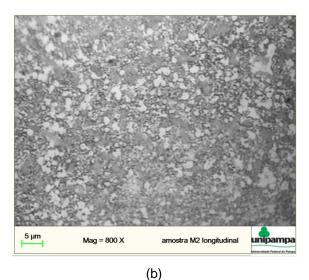
Fonte: NBR NM 116-1: Aços-rápido – Parte 1: Classificação, designação e composição química. Rio de Janeiro, 2005.

A composição química de oito amostras foi identificada no Laboratório de Pós-Graduação da Unipampa através de espectroscopia de emissão óptica. A Tabela 5 apresenta a média dos principais elementos. A tabela completa das oito amostras pode ser observada no Anexo A.

Tabela 5 - Composição química do aço ABNT M2 estudado

 ELEMENTO	С	Cr	V	W	Мо
 % EM PESO	0,87	3,75	2,05	7,65	4,71

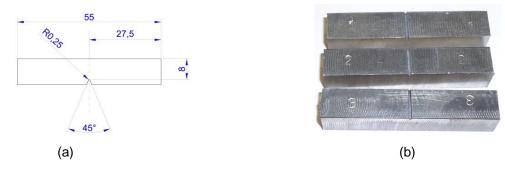

Fonte: Próprio Autor.


É possível afirmar que o material estudado se trata de aço M2. Nas amostras estão presentes todos os elementos citados pela norma em teores dentro da faixa recomendada, com exceção do tungstênio, que ficou um pouco acima do valor especificado.

A bitola das barras utilizadas para fabricação das amostras foi de 5/8" (15,875 mm) com perfil redondo.

A Figura 19 apresenta a microestrutura do aço M2 coalescido (como recebido), em (a) a amostra foi cortada no sentido transversal, e em (b), no sentido longitudinal.

Figura 19 - Micrografia do aço M2 no estado coalescido, a ataque de nital 3%


3.1.1 Ensaio Charpy preliminar

As barras foram cortadas em comprimento de 55 mm e posteriormente fresadas e retificadas em perfil quadrado de 10 mm pela empresa Imecal, da cidade de Canoas/RS.

Uma vez que os aços temperados possuem baixa tenacidade na presença de concentradores de tensões, optou-se por se fazer pré-testes do ensaio *charpy* com amostras temperadas e revenidas utilizando-se entalhe em "V" e entalhe em "U". Nestes dois ensaios, as amostras foram austenitizadas à temperatura de 1200° C, temperadas em óleo e aplicado triplo revenido à temperatura de 550° C por 2 horas.

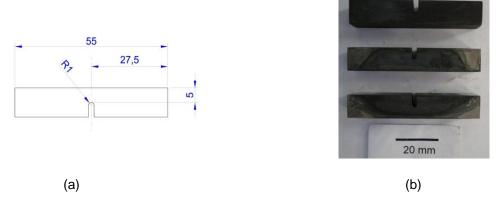

As Figuras 20 (a) e 21 (a) mostram as dimensões dos corpos de prova Charpy com entalhe em "V" e em "U", respectivamente. As Figuras 20 (b) e 21 (b) apresentam as amostras utilizadas no pré-teste com o entalhe.

Figura 20 – Corpo de prova com entalhe "V" conforme NBR NM 281-1

Fonte: Próprio Autor

Figura 21 - Corpo de prova com entalhe "U" conforme NBR NM 281-1

O ensaio com entalhe em "V" foi realizado no Laboratório de Materiais da Universidade Regional Integrada (URI) e a média dos resultados foi de 1,5J.

No segundo teste, realizado no Laboratório de Metalurgia Física da UFRGS (LAMEF-UFRGS), as amostras temperadas e revenidas foram submetidas ao processo de eletroerosão para realização do entalhe em "U".

Neste segundo teste a média dos resultados ficou em 2J. A planilha completa com os resultados do ensaio Charpy com entalhe em "U" pode ser vista no Anexo B.

Uma vez que, nos dois casos, a média de tenacidade foi muito pequena, praticamente a escala mínima de leitura do equipamento, optou-se por realizar o ensaio Charpy sem entalhe.

3.1.2 Usinagem e tratamentos térmicos das amostras

Logo após a usinagem das amostras nas dimensões do corpo de prova Charpy (10x10x55mm), as mesmas foram marcadas para identificação da seguinte maneira:

- Numeração de 1 a 12 conforme a rota de tratamento térmico a que foi submetida;
- Usadas letras A, B, C e D (4 amostras para cada rota), totalizando 48 amostras.

A Figura 22 apresenta as amostras usinadas e marcadas.

Figura 22 - Conjunto de amostras usinadas e marcadas

A têmpera foi realizada na empresa Nomiram, de Porto Alegre/RS, especializada no tratamento térmico de aços rápidos.

O revenido foi realizado no forno marca INTI, modelo QR 100-3, do laboratório de Tratamentos Térmicos da Unipampa. Este forno possui controle eletrônico de temperatura e capacidade de aquecimento de até 1300° C.

O tratamento criogênico foi realizado pela empresa Kryos, da cidade de Brasília/DF.

Os parâmetros utilizados foram:

- Temperatura de austenitização: 1170° C, 1200° C e 1230° C;
- Resfriamento: em banho de sais à temperatura de 500° C;
- Revenido: Duplo a 550° C por 120 minutos cada;
- Sistema utilizado para criogenia: Nebulização direta;
- Taxa de resfriamento a temperatura criogênica 0,3° C/min.;
- Temperatura criogênica: -190° C;
- Tempo de encharque à temperatura criogênica: 24 horas.
- Taxa de retorno à temperatura ambiente 0,3° C/min.;

As rotas de tratamento térmico e as respectivas identificações das amostras estão representadas na Tabela 6.

Tabela 6 - Rotas de tratamento térmico utilizadas

AMOSTRA N°	ROTAS DE TRATAMENTOS TÉRMICOS	TEMPERATURA DE AUSTENITIZAÇÃO [°C]	TRATAMENTO CRIOGÊNICO PROFUNDO (DCT)	DUPLO REVENIDO APÓS TÊMPERA	DUPLO REVENIDO APÓS DCT	REVENIDO ANTES E APÓS DCT	
1	1170/2R	1170	NÃO	SIM	NÃO	NÃO	
2	1170/2R/DCT	1170	SIM	SIM	NÃO	NÃO	
3	1170/1R/DCT/1R	1170	SIM	NÃO	NÃO	SIM	
4	1170/DCT/2R	1170	SIM	NÃO	SIM	NÃO	
5	1200/2R	1200	NÃO	SIM	NÃO	NÃO	
6	1200/2R/DCT	1200	SIM	SIM	NÃO	NÃO	
7	1200/1R/DCT/1R	1200	SIM	NÃO	NÃO	SIM	
8	1200/DCT/2R	1200	SIM	NÃO	SIM	NÃO	
9	1230/2R	1230	NÃO	SIM	NÃO	NÃO	
10	1230/2R/DCT	1230	SIM	SIM	NÃO	NÃO	
11	1230/1R/DCT/1R	1230	SIM	NÃO	NÃO	SIM	
12	1230/DCT/2R	1230	SIM	NÃO	SIM	NÃO	

Para a fácil identificação da rota de tratamento térmico, utilizou-se como nomenclatura primeiramente a temperatura de austenitização, a sigla "DCT" em referência ao tratamento criogênico profundo, e a letra "R" indicando o revenido, ou "2R", o duplo revenido. Pela sequência após a temperatura, é possível identificar se o revenido foi realizado antes, após, ou antes e após o DCT, como também se a amostra foi submetida ao DCT ou não.

A Figura 23 apresenta as rotas de tratamento térmico empregadas, onde TEMP se refere a 1170° C, 1200° C ou 1230° C.

Rota TEMP/2R/DCT Rota TEMP/2R TEMPERATURA DE AUSTENITIZAÇÃO TEMP TEMPERATURA DE AUSTENITIZAÇÃO TEMP° TÊMPERA 1000° TÊMPERA 1000° 800° REVENIDO TEMPERATURA [°C] REVENIDO TEMPERATURA [°C] 600° 600° 400° 200° TEMPERATURA AMBIENTE 120° C TEMPERATURA AMBIENTE (20° C) -190° TEMPERATURA CRIOGÊNICA (-190°) 36 TEMPO [h] Rota TEMP/DCT/2R Rota TEMP/1R/DCT/1R TEMPERATURA DE AUSTENITIZAÇÃO TEMPERATURA DE AUSTENITIZAÇÃO TEMP° TÊMPERA 1000° 800° REVENIDO TEMPERATURA [°C] REVENIDO TEMPERATURA [°C] REVENIDO 600° 400° 200° TEMPERATURA AMBIENTE (20° C 08 -190° CRIOGÊNICA [-190°] 28 36 TEMPO [h] TEMPO [h]

Figura 23 - Rotas de tratamento térmico utilizadas

3.2 Ensaios Mecânicos

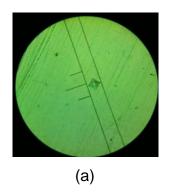
Os ensaios mecânicos realizados foram: dureza HRC, microdureza HV, microdureza HK, ensaio de impacto Charpy e ensaio de desgaste abrasivo. Foram realizadas análises estatísticas através do desvio padrão e do coeficiente de variação para todos os ensaios mecânicos.

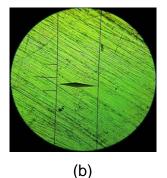
3.2.1 Ensaio de Dureza e Microdureza

As medições de dureza foram realizadas após a têmpera, a fim de se verificar se esta havia sido bem-sucedida, como, também, revenido, e após todo os ciclos de criogenia, quando efetuados. Em cada ensaio de dureza foram realizadas três medições por amostra, totalizando 12 ensaios para cada rota (3 medições x 4 amostras). A escala empregada foi Rockwell C (HRC), que utiliza carga de 150 kg e indentador com ponta de diamante de 120°. O equipamento utilizado foi o durômetro marca Instrutherm, modelo DB – 300, do laboratório de Metalografia da Unipampa. A Figura 24 mostra o equipamento.

Figura 24 – Visão geral do Durômetro utilizado na pesquisa

Fonte: Próprio Autor.


Os ensaios de microdureza foram realizados em micrômetro marca Buehler, modelo micromet 6010, do laboratório de Pós-Graduação da Unipampa. Utilizaramse as escalas Vickers (HV) e Knoop (HK) com cargas de 500 g, 200 g, 100 g e 50 g. A Figura 25 mostra o equipamento e as Figuras 26 mostram a indentação HV em (a) e HK em (b).


Figura 25 – Visão geral do Microdurômetro utilizado na pesquisa

Fonte: Próprio Autor.

Figura 26 - Indentação HV e HK para carga de 500 g

Fonte: Próprio Autor.

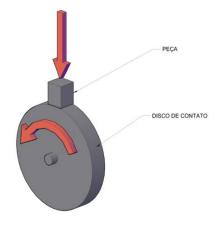
3.2.2 Ensaio de Impacto Charpy

O ensaio de impacto foi realizado no Laboratório de Materiais da URI Campus Santo Ângelo. O equipamento utilizado foi RMU Testing Equipment, com martelo de 150J, mostrado na Figura 27.


Figura 27 - Máquina de Ensaio Charpy RMU Testing

3.2.3 Ensaio de Desgaste

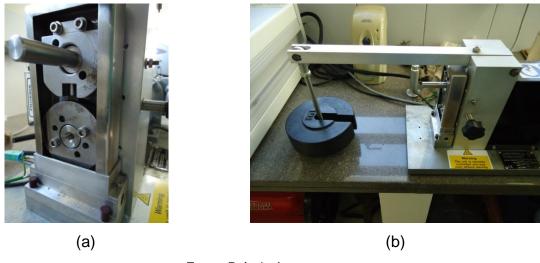
Após o ensaio de impacto Charpy, as amostras foram cortadas no comprimento de 12,7 mm e submetidas ao ensaio de desgaste abrasivo. O equipamento utilizado para este teste foi da marca PHOENIX TRIBOLOGY, modelo TE 53 SLIM, do Laboratório de Tribologia da Unipampa. As Figuras 28 (a) e (b) mostram o equipamento empregado.


Figura 28 - Equipamento para ensaio de desgaste

Fonte: Próprio Autor.

A configuração do ensaio foi do tipo "bloco sobre o anel" (*Block on ring*), com a amostra sendo friccionada contra um cilindro em movimento. A Figura 29 ilustra o processo.

Figura 29 - Ensaio de desgaste



Como a dureza do disco de desgaste (60 HRC) é menor que a dureza das amostras ensaiadas, não se conseguiu, mesmo após uma série de 1000 ciclos e com cargas de até 15 kg (máximo do equipamento), um desgaste suficiente para o comparativo entre as amostras. Optou-se então pelo recobrimento do disco de contato com uma lixa. Após tentativas com lixas de várias granulometrias com objetivo de se obter um desgaste suficiente mensurável, utilizou-se a lixa de granulometria 120. A Figura 30 mostra o disco de contato com a lixa de granulometria 120 já colada em (a) e o suporte com a amostra já inserida em (b). As Figuras 31 (a) e (b) mostram o equipamento montado com a amostra.

Figura 30 - Disco de contato com lixa e suporte com amostra

Figura 31 - Equipamento de desgaste montado com a amostra

Os parâmetros utilizados no ensaio foram os seguintes: disco de diâmetro 60 mm com a face de contato coberta com lixa granulometria 120, carga de 5 kgf que, com o sistema de multiplicação do próprio equipamento, aplicou 287N de carga sobre a amostra, velocidade de 50 RPM (0,15m/s) e número de ciclos de 25, 50, 100, 200 e 300.

Para cada amostra ensaiada, o equipamento era desmontado, limpo e colocada uma nova lixa na superfície do disco.

As amostras foram limpas e pesadas em balança analítica da marca Shimadzu, modelo AY220 (Figura 32), com resolução de 0,001 g antes e após cada ensaio.

O desgaste foi quantificado pela perda de massa percentual em relação à massa inicial, conforme a equação [1]:

$$Perda\ de\ Massa = \frac{mi - mo}{mi}\ x\ 100$$
 [1]

Onde:

mi = massa inicial

mo = massa da amostra após o ensaio específico

Figura 32 – Visão geral da balança de precisão utilizada na pesquisa

3.3 Análise da Microestrutura e dos Mecanismos de Fratura

Na análise microestrutural foram investigados a distribuição dos carbetos presentes, como também o tamanho de grão das amostras. Para tanto, foram utilizadas a microscopia óptica e a microscopia eletrônica de varredura.

3.3.1 Microscopia Óptica (MO)

Depois do ensaio de impacto Charpy, as amostras foram cortadas para o teste de desgaste abrasivo e analisadas através da microscopia óptica.

Um segmento das amostras foi embutido em baquelite, lixado com lixas de granulometria: 120, 220, 400, 600, 800, 1200 e 2000 grãos/pol² e polido em pasta diamantada 9µm e 3µm. O ataque químico foi feito com reagente nital 3% por 60 segundos. A limpeza feita com álcool etílico e a secagem, com ar quente forçado.

Para a medição do tamanho de grão foi utilizado o sistema ASTM, que utiliza a equação [2]:

$$N = 2^{(n-1)} [2]$$

Onde:

N= Número de grãos por polegada quadrada medido com 100X de aumento n = Tamanho de grão ASTM

A análise de microscopia óptica foi realizada no microscópio marca DIAG TECH, modelo XJM104, equipado com câmera e sistema para captura de imagens. A Figura 33 mostra o equipamento.

Figura 33 - Microscópio Óptico

Fonte: Próprio Autor.

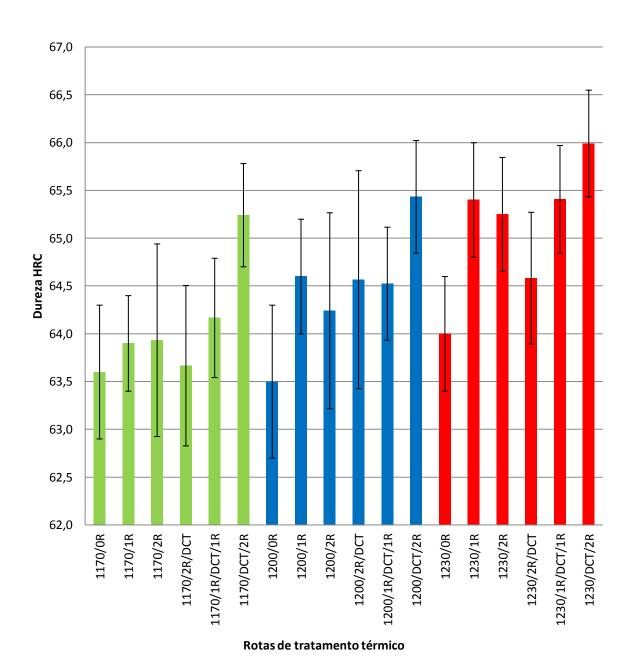
3.3.2 Microscopia Eletrônica de Varredura (MEV)

Após ensaio de impacto Charpy, foram investigados os mecanismos de fratura utilizando-se o microscópio marca Zeis, modelo EVO MA10, do laboratório de microscopia eletrônica da Unipampa, conforme apresentado na Figura 34.

Figura 34 - Microscópio eletrônico de varredura

4 RESULTADOS

Neste capítulo são apresentados os resultados de dureza, microdureza, ensaio Charpy, ensaio de desgaste, análise em MO e MEV, realizadas de acordo com o procedimento experimental descrito no Capítulo 3.


4.1 Dureza HRC

A Tabela 7 e a Figura 35 apresentam os valores de dureza HRC para todas as rotas de tratamentos térmicos e criogênicos investigadas.

Tabela 7 - Dureza HRC para as rotas investigadas

		MÉDIA	DP
	1170/0R	63,6	0,7
	1170/1R	63,9	0,5
	1170/2R	63,9	1,0
	1170/2R/DCT	63,7	0,8
	1170/1R/DCT/1R	64,2	0,6
>>>	1170/DCT/2R	65,2	0,5
	1200/0R	63,5	0,8
	1200/1R	64,6	0,6
	1200/2R	64,2	1,0
	1200/2R/DCT	64,6	1,1
	1200/1R/DCT/1R	64,5	0,6
>>>	1200/DCT/2R	65,4	0,6
	1230/0R	64,0	0,6
	1230/1R	65,4	0,6
	1230/2R	65,3	0,6
	1230/2R/DCT	64,6	0,7
	1230/1R/DCT/1R	65,4	0,6
>>>	1230/DCT/2R	66,0	0,6

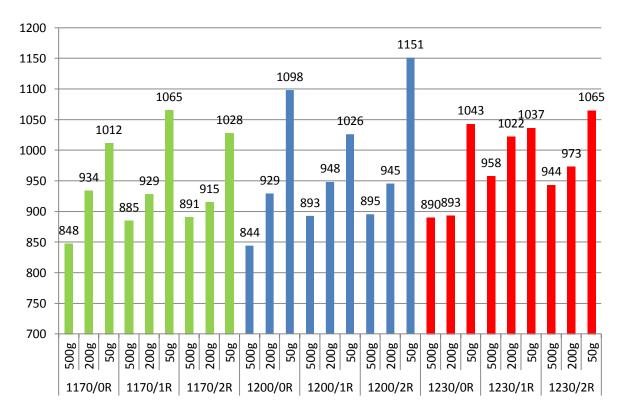
Figura 35 - Gráfico da Dureza HRC para todas as rotas investigadas

Fonte: Próprio Autor

Observa-se que as rotas TEMP/DCT/2R apresentam os maiores valores de dureza HRC para as três temperaturas de austenitização avaliadas. Também se observa os menores valores de desvio padrão, o que sugere uma microestrutura mais homogênea. Os valores de todas as medições realizadas podem ser visualizados nos Anexos C e D.

4.2 Microdureza HV e HK

A Tabela 8 apresenta as médias dos valores de desvio padrão das medições de microdureza HV e HK. O desvio padrão foi bastante alto, tanto mais alto quanto menor a carga. Assim, as medições com cargas de 25g foram eliminadas das análises.


Tabela 8 - Desvio padrão

	500 g	200 g	100 g	50 g	25 g
VICKERS	32	43	50	80	106
KNOOP	64	73	100	139	185

Fonte: Próprio Autor

A Figura 36 apresenta os valores de microdureza HV após a têmpera, após um revenido e após duplo revenido das amostras.

Figura 36 - Microdureza HV após têmpera e revenido

Observa-se na Figura 36 que com a diminuição da carga temos aumento da microdureza HV em todas as rotas avaliadas, em especial para a carga de 50 g.

A Tabela 9 apresenta os resultados de microdureza HV para as diferentes rotas de tratamentos térmicos e criogênicos para as cargas de 500 g, 200 g, 100 g e 50 g.

Tabela 9 - Microdureza HV após os tratamentos térmicos e DCT

	500 g		20	200 g		100 g		0 g
ROTA	М	DP	М	DP	М	DP	М	DP
1170/2R	834	34	838	38	872	54	884	55
1170/2R/DCT	831	39	861	38	883	46	922	58
1170/1R/DCT/1R	840	40	865	44	876	54	917	80
1170/DCT/2R	858	30	877	48	900	53	929	87
1200/2R	859	35	903	47	898	42	966	70
1200/2R/DCT	885	41	898	38	902	54	955	81
1200/1R/DCT/1R	863	36	873	51	887	60	932	92
1200/DCT/2R	881	30	902	32	876	42	969	85
1230/2R	899	33	912	56	901	51	990	79
1230/2R/DCT	872	17	894	34	911	39	944	60
1230/1R/DCT/1R	874	27	893	41	896	61	952	97
1230/DCT/2R	880	26	880	45	907	46	940	110

Fonte: Próprio Autor; M = média, DP = desvio padrão.

As tabelas completas com todas as medições realizadas podem ser visualizadas nos Anexos F, G e H.

Como observado nas medições após têmpera e após têmpera e revenido, houve um aumento da microdureza com a diminuição da carga. Também se constata uma tendência ao aumento de microdureza com a aplicação do DCT para as amostras austenitizadas a 1170° C e 1200° C.

As Figuras 37 e 38 apresentam graficamente os resultados das microdurezas HV e HK, respectivamente, para as diferentes rotas de tratamento térmico e DCT avaliadas.

1170/1R/DCT/1R 1200/1R/DCT/1R 1230/1R/DCT/1R 1230/DCT/2R 1170/2R/DCT 1170/DCT/2R 1200/DCT/2R 1230/2R/DCT 1200/2R/DCT 1230/2R 1170/2R 1200/2R 1000 Microdureza HV 0.5 8₽9 874 872 900 840 8**3**4 831 800 700 600 1000 912 898 9₽2 Microdureza HV 0.2 894 893 880 900 838 800 700 600 1000 896 8¥7 898 Microdureza HV 0.1 8₹6 876 900 800 700 600 990 1000 944 940 932 929 9₹2 917 Microdureza HV 0.05 900 800 700 600 1200/2R 1230/2R 1200/1R/DCT/1R 1230/DCT/2R 1170/2R 1170/1R/DCT/1R 1230/1R/DCT/1R 1170/DCT/2R 1200/2R/DCT 1200/DCT/2R 1230/2R/DCT 1170/2R/DCT Fonte: Próprio Autor

Figura 37 - Microdureza HV após os tratamentos térmicos e DCT

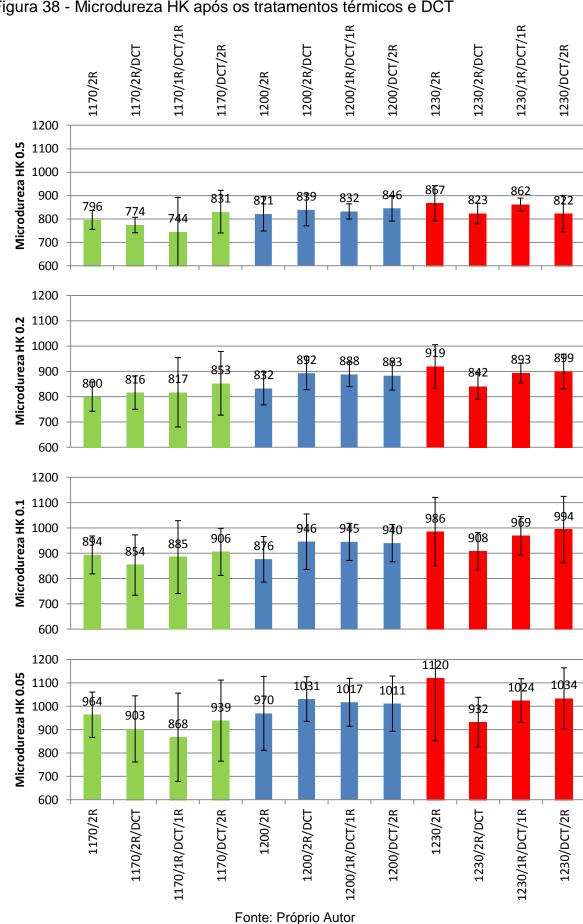


Figura 38 - Microdureza HK após os tratamentos térmicos e DCT

Observa-se que a microdureza HK também tende a aumentar com a aplicação do DCT para as rotas austenitizadas a 1170° C e 1200° C. A Tabela 10 apresenta os resultados.

Tabela 10 - Microdureza HK após os tratamentos térmicos e DCT

DOTA	500g		20	200g		100g		50g	
ROTA	М	DP	М	DP	M	DP	M	DP	
1170/2R	796	40	800	58	894	75	964	97	
1170/2R/DCT	774	33	816	66	854	119	903	141	
1170/1R/DCT/1R	744	148	817	137	885	144	868	188	
1170/DCT/2R	831	91	853	126	906	93	939	173	
1200/2R	821	73	832	65	876	90	970	158	
1200/2R/DCT	839	68	892	65	946	110	1031	95	
1200/1R/DCT/1R	832	32	888	49	945	73	1017	102	
1200/DCT/2R	846	55	883	57	940	74	1011	118	
1230/2R	867	76	919	86	986	135	1120	268	
1230/2R/DCT	823	44	842	53	908	74	932	107	
1230/1R/DCT/1R	862	27	893	39	969	76	1024	94	
1230/DCT/2R	822	78	899	68	994	131	1034	130	

Fonte: Próprio Autor

Os valores de todas as medições realizadas para a microdureza HK podem ser visualizados no Anexo I.

A Figura 39 apresenta, em forma de gráfico tridimensional, as microdurezas HV para as diferentes rotas analisadas, como também para as diferentes cargas aplicadas.

A Figura 40 apresenta uma vista superior do gráfico da Figura 39.

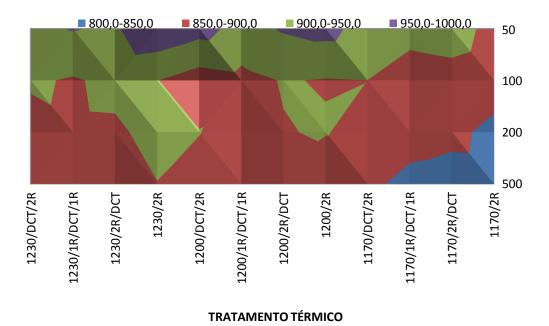

1000,0 950,0 **MICRODUREZA VICKERS** 900,0 850,0 800,0 1170/2R 1170/2R/DCT 1170/1R/DCT/1R 1170/DCT/2R 50 1200/2R 1200/2R/DCT 100 1200/1R/DCT/1R 1200/DCT/2R 200 1230/2R/DCT 1230/1R/DCT/1R 500 1230/DCT/2R

Figura 39 - Gráfico de Microdureza Vickers para todas as cargas

Fonte: Próprio Autor

TRATAMENTO TÉRMICO

Figura 40 - Vista superior da Figura 41

Podemos ver na Figura 39 que os menores valores (entre 800 e 850 HV) aparecem para a temperatura de austenitização de 1170° C com carga de 500 g, e que as maiores durezas se concentram entre as temperaturas de austenitização de 1200° C e 1230° C com carga de 50 g. Contudo, exatamente nesta faixa, observamse também, os maiores desvios padrões: de 55 até 110 para o ciclo 1230/DCT/2R.

A Tabela 11 apresenta os resultados para a situação de menor desvio padrão: Medição HV com carga de 500 g.

Embora a análise gráfica nos indique um aumento da microdureza nas amostras submetidas ao DCT e austenitizadas a 1170° C e 1200° C, a análise estatística nos revela que o coeficiente de variação das 20 medições feitas para cada rota ficou muito acima da porcentagem de aumento ou diminuição de microdureza.

% DE ALIMENTO

Tabela 11 - Análise estatística dos resultados da microdureza HV 0.5

	ROTAS DE TRATAMENTO	MÉDIA DUREZA VICKERS 0.5	DESVIO PADRÃO	COEFICIENTE DE VARIAÇÃO [%]	% DE AUMENTO DA MICRODUREZA VICKERS EM RELAÇÃO À AMOSTRA TEMP/2R
_	1170/2R	833,5	33,8	4,1	0,0
	1170/2R/DCT	831,0	38,8	4,7	-0,3
	1170/1R/DCT/1R	839,6	39,9	4,8	0,7
	1170/DCT/2R	857,9	30,3	3,5	2,9
	1200/2R	859,4	34,6	4,0	0,0
	1200/2R/DCT	885,3	40,6	4,6	3,0
	1200/1R/DCT/1R	862,6	36,1	4,2	0,4
	1200/DCT/2R	880,9	29,6	3,4	2,5
	1230/2R	899,3	33,1	3,7	0,0
	1230/2R/DCT	871,9	17,2	2,0	-3,0
	1230/1R/DCT/1R	874,3	27,4	3,1	-2,8
	1230/DCT/2R	879,7	26,5	3,0	-2,2

A Tabela 12 apresenta a porcentagem de diminuição do desvio padrão de microdureza HV com carga de 500 g para amostras TEMP/DCT/2R em relação às amostras TEMP/2R.

Tabela 12 – Comparativo entre os desvios padrões na medição HV 0.5

CICLO DE TRATAMENTO TÉRMICO	DESVIO PADRÃO	DIMINUIÇÃO
1170/2R	33,8	10 %
1170/DCT/2R	30,3	10 /6
1200/2R	34,6	15 %
1200/DCT/2R	29,6	13 /6
1230/2R	33,1	20 %
1230/DCT/2R	26,5	20 /6

Fonte: Próprio Autor

Os resultados da Tabela 12 sugerem uma maior homogeneidade da microestrutura após a aplicação do DCT.

4.3 Análise Microestrutural em Microscopia Óptica

As Figuras 41, 42 e 43 apresentam as micrografias realizadas logo após a têmpera nas três temperaturas de austenitização analisadas neste trabalho: 1170° C, 1200° C e 1230° C.

Observa-se o aumento de tamanho de grão com o aumento da temperatura de austenitização: para a temperatura de austenitização de 1170° C a média de tamanho de grão foi de 7,69 μ m (n=11/12); para a temperatura de 1200° C a média foi de 9,37 μ m (n=10/11); e para a temperatura de 1230° C a média foi de 11,11 μ m (n=10).

As Figuras 44 a 49 apresentam o comparativo da microestrutura das amostras com e sem o DCT. Para as temperaturas de 1170° C e 1200° C observase que o tratamento DCT aplicado antes do revenido resulta em uma homogenização dos carbetos.

Figura 41 – Tamanho de grão para têmpera a 1170° C (ampliação 400X)

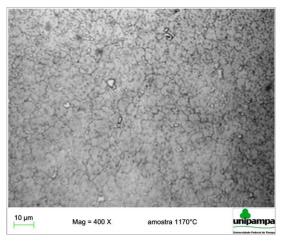
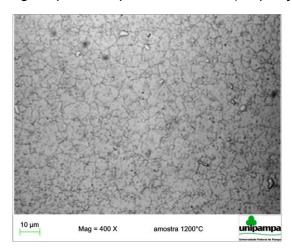



Figura 42 - Tamanho de grão para têmpera a 1200° C (ampliação 400X)

Fonte: Próprio Autor

Figura 43 - Tamanho de grão para têmpera a 1230° C (ampliação 400X)

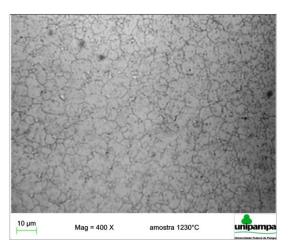


Figura 44 - Micrografia 800X para amostra 1170/2R

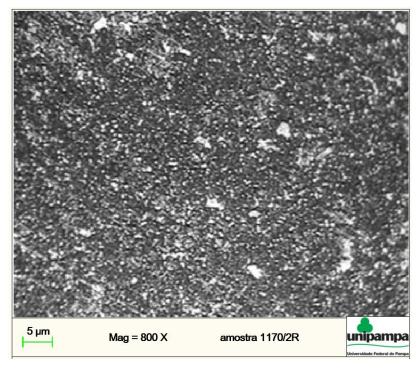


Figura 45 - Micrografia 800X para amostra 1170/DCT/2R

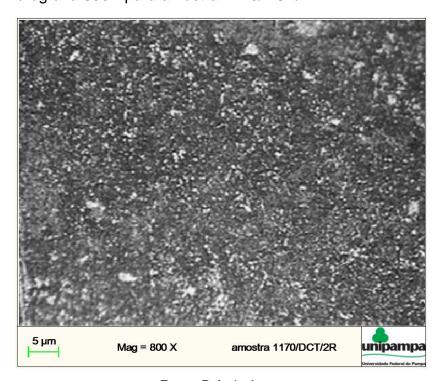


Figura 46 - Micrografia 800X para amostra 1200/2R

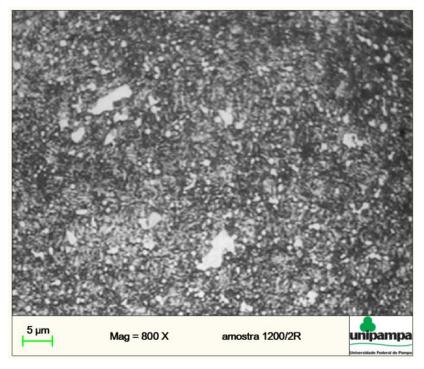


Figura 47 - Micrografia 800X para amostra 1200/DCT/2R

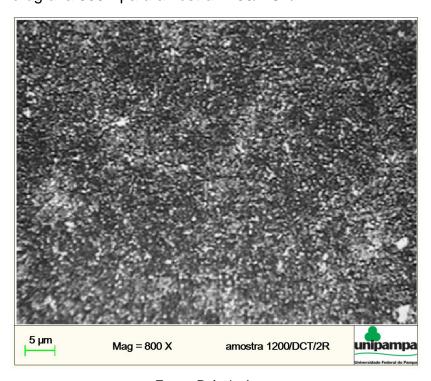


Figura 48 – Micrografia 800X para amostra 1230/2R

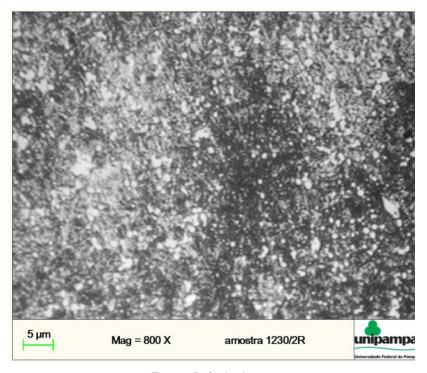
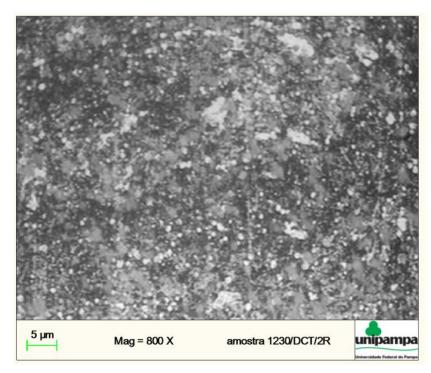



Figura 49 - Micrografia 800X para amostra 1230/DCT/2R

4.4 **Ensaio de Impacto Charpy**

Com relação ao ensaio Charpy, observou-se que algumas amostras apresentaram um valor de energia absorvida muito baixo em relação às demais pertencentes à mesma rota, como, por exemplo, uma amostra da rota 1170/2R. Enquanto que a média dos resultados ficou em 14,4J, o primeiro ensaio teve um resultado de apenas 5J. Fato semelhante ocorreu para as rotas 1170/1R/DCT/1R e 1230/2R/DCT. Para uma melhor análise dos resultados optou-se pela exclusão do menor e do maior valor de cada rota.

Os resultados do ensaio de impacto Charpy são apresentados na Figura 50 e na Tabela 13, desconsiderando o menor valor e o maior valor para cada rota.

O Anexo J apresenta a tabela com todas as medições efetuadas.

25,0 20,0

Figura 50 - Valores de energia para o ensaio de Impacto Charpy

15,0 Energia (J) 10,0 5,0 0,0 1230/2R 1200/2R 1230/DCT/2R 1170/2R/DCT 1170/1R/DCT/1R 1170/DCT/2R 1200/2R/DCT 1200/1R/DCT/1R 1200/DCT/2R 1230/2R/DCT 1230/1R/DCT/1R

Tabela 13 - Impacto Charpy desconsiderando o maior e menor valor de cada rota

TRATAMENTO TÉRMICO	MÉDIA ARITMÉTICA	DESVIO PADRÃO	COEFICIENTE DE VARIAÇÃO	AUMENTO EM RELAÇÃO AS AMOTRAS TEMP/2R
1170/2R	13,0	2,1	16%	-
1170/2R/DCT	17,5	0,7	4%	35%
1170/1R/DCT/1R	20,3	1,8	9%	56%
1170/DCT/2R	17,3	1,1	6%	33%
1200/2R	14,3	1,8	12%	-
1200/2R/DCT	14,0	2,1	15%	-2%
1200/1R/DCT/1R	17,5	0,7	4%	23%
1200/DCT/2R	18,8	0,4	2%	32%
1230/2R	18,5	2,1	11%	-
1230/2R/DCT	15,8	0,4	2%	-15%
1230/1R/DCT/1R	15,0	0,7	5%	-19%
1230/DCT/2R	14,5	0,0	0%	-22%

A análise do conjunto de resultados nos revela que a aplicação do DCT aumenta a tenacidade das amostras austenitizadas a 1170° C e 1200° C, e diminui a tenacidade quando a temperatura de austenitização é de 1230° C.

4.5 Análise da Fratura Microscopia Eletrônica de Varredura

As Figuras 51 a 56 apresentam as análises em MEV na região da fratura provocada pelo ensaio Charpy.

Figura 51 - Análise em MEV da amostra 1170/2R (800X)

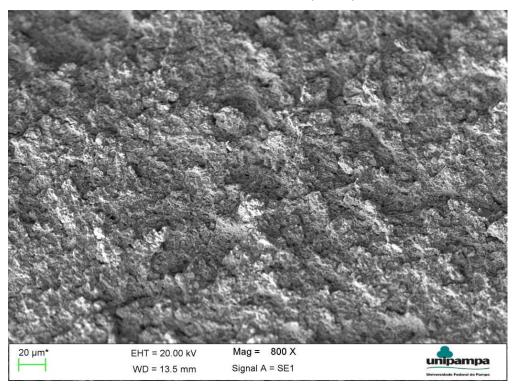
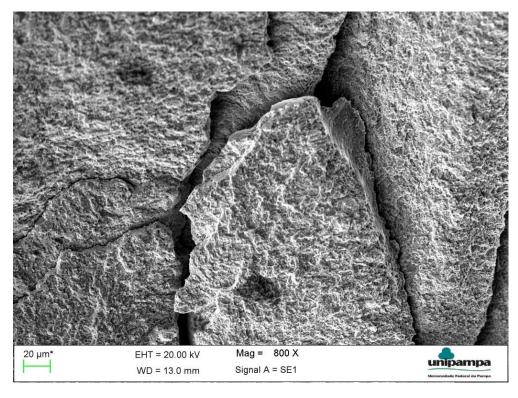



Figura 52 - Análise em MEV da amostra 1170/DCT/2R (800X)

20 μm* EHT = 20.00 kV Mag = 800 X
WD = 19.0 mm Signal A = SE1

Figura 53 - Análise em MEV da amostra 1200/2R (800X)

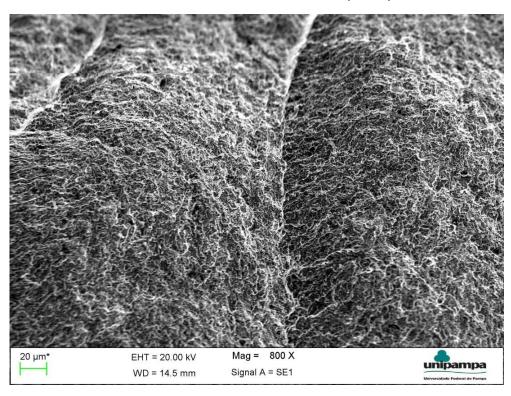


Figura 54 - Análise em MEV da amostra 1200/DCT/2R (800X)

Figura 55 - Análise em MEV da amostra 1230/2R (800X)

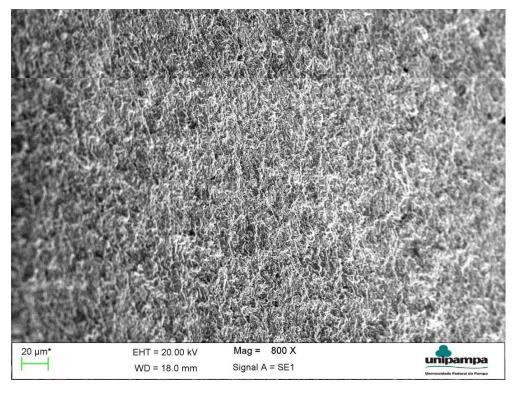
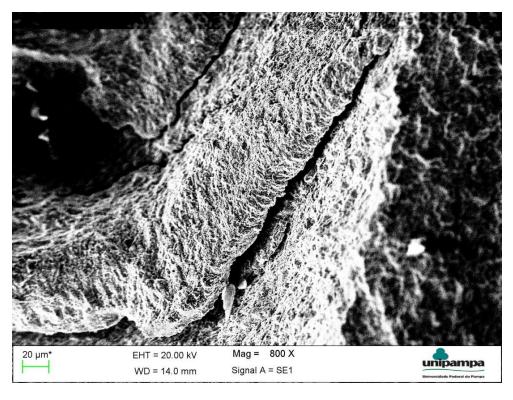



Figura 56 - Análise em MEV da amostra 1230/DCT/2R (800X)

Observa-se a formação de trincas secundárias nas amostras 1170/DCT/2R e 1230/DCT/2R, o que não foi observado para a amostra 1200/DCT/2R.

4.6 Ensaio de Desgaste

Os resultados do ensaio de desgaste abrasivo para 25, 50, 100, 200 e 300 ciclos são apresentados nas Figuras 57 a 60. A tabela com os resultados pode ser visualizada no Anexo K.

Figura 57 - Desgaste abrasivo para as rotas com temperatura de 1170° C

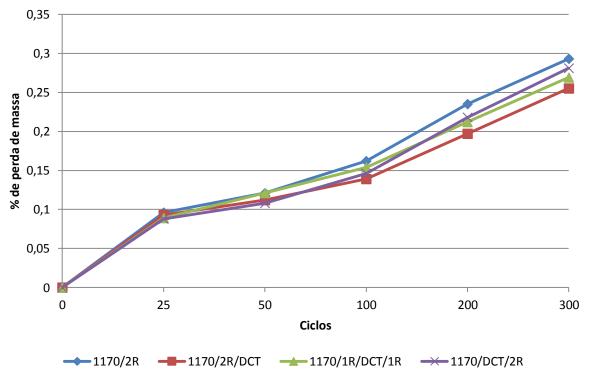


Figura 58 - Desgaste abrasivo para as rotas com temperaturas de 1200° C

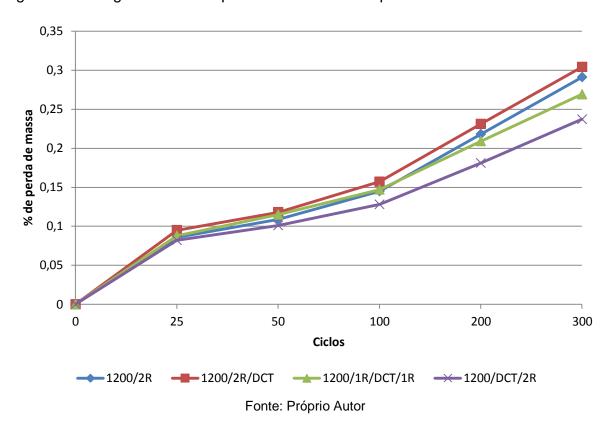
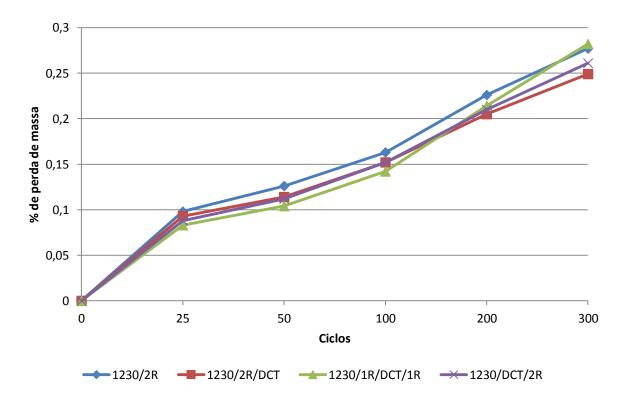



Figura 59 - Desgaste abrasivo para as rotas com temperaturas de 1230° C

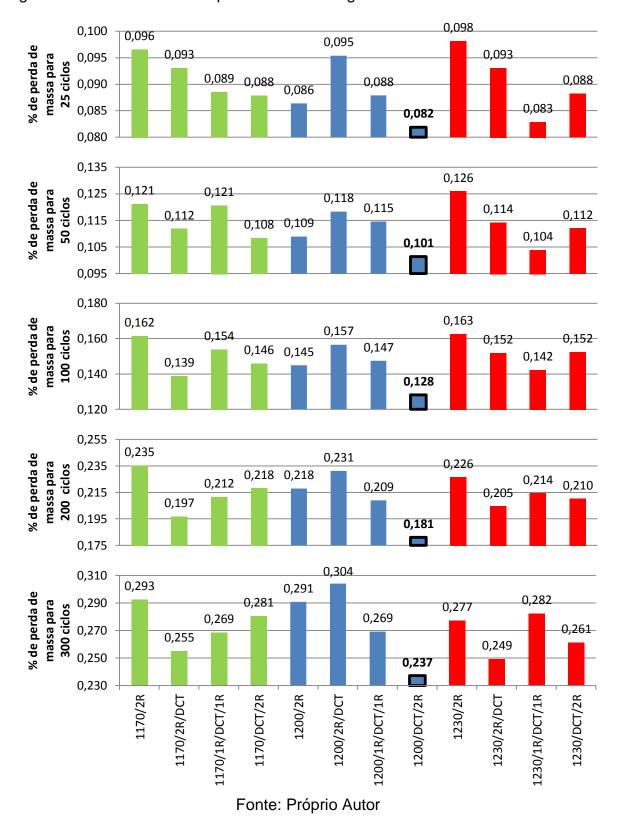


Figura 60 - Perda de massa após ensaio de desgaste abrasivo

Observa-se que a rota 1200/DCT/2R apresenta menor perda de massa, independente do número de ciclos do ensaio de desgaste.

Através da análise estatística dos resultados, pode-se constatar que, para os ciclos 25, 50, 100 e 200, o coeficiente de variação é maior ou igual ao aumento da resistência ao desgaste para todas as rotas.

Já, no ensaio realizado com 300 ciclos, a rota 1200/DCT/2R tem um acréscimo de 18% na resistência ao desgaste em comparação com a rota 1200/2R, enquanto que o coeficiente de variação entre a medição das amostras submetidas à mesma rota foi de 13%. Esta rota 1200/DCT/2R apresentou em todos os ciclos os menores valores de perda de massa, inclusive para o ensaio com 300 ciclos, onde o resultado foi de 0,237%.

A Tabela 14 apresenta os resultados da análise.

Tabela 14 - Análise do ensaio de desgaste abrasivo com 300 ciclos

TRATAMENTO TÉRMICO	MÉDIA DE % DE PERDA DE MASSA	DESVIO PADRÃO	COEFICIENTE DE VARIAÇÃO	% COMPARAÇÃO TEMP/2R x DCT	TEMP/2R - DCT
1170/2R	0,293	0,033	-	100%	0%
1170/2R/DCT	0,255	0,022	9%	87%	13%
1170/1R/DCT/1R	0,269	0,050	18%	92%	8%
1170/DCT/2R	0,281	0,038	14%	96%	4%
1200/2R	0,291	0,018	-	100%	0%
1200/2R/DCT	0,304	0,022	7%	105%	-5%
1200/1R/DCT/1R	0,269	0,039	14%	93%	7%
1200/DCT/2R	0,237	0,030	13%	82%	18%
1230/2R	0,277	0,041	-	100%	0%
1230/2R/DCT	0,249	0,056	22%	90%	10%
1230/1R/DCT/1R	0,282	0,029	10%	102%	-2%
1230/DCT/2R	0,261	0,045	17%	94%	6%

5 DISCUSSÃO DOS RESULTADOS

As medições de dureza realizadas após a têmpera mostram que esta foi bemsucedida, ficando os valores médios acima dos 63 HRC. Comparações entre amostras temperadas, temperadas + um revenido e temperadas + dois revenidos confirmam a importância de temperaturas de austenitização próximas de 1200° C. Conforme a Tabela 7, para temperaturas de 1170° C o endurecimento secundário praticamente não acontece.

Embora não seja observado o endurecimento secundário para a temperatura de austenitização de 1170° C, o mesmo é parcialmente compensado quando se aplica o DCT entre a têmpera e o revenido. Conforme a Figura 61, o maior aumento de dureza com aplicação do DCT ocorreu para as amostras austenitizadas a 1170° C: 1,3 HRC para 1170° C, 1,2 HRC para 1200° C e 0,7 HRC para 1230° C.

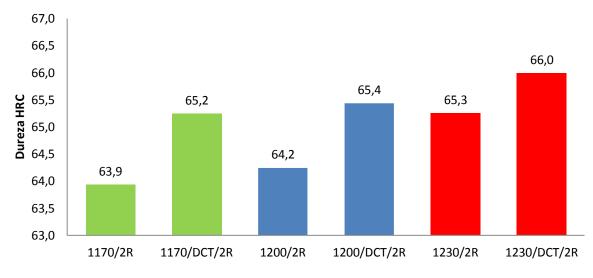


Figura 61 – Comparativo de Dureza HRC para a rota TEMP/DCT/2R

Fonte: Próprio Autor

Para as três temperaturas de austenitização analisadas, os maiores valores de dureza e menores valores de desvio padrão foram atingidos quando se aplicou o DCT entre a têmpera e o revenido.

Quando o DCT foi aplicado após o revenido, não se observou aumento de dureza significativo após o tratamento criogênico, conforme as Figuras 62 e 63.

Figura 62 – Comparativo de Dureza HRC para a rota TEMP/2R/DCT

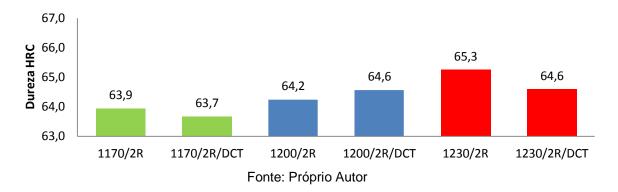
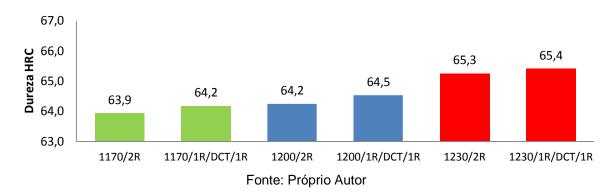



Figura 63 – Comparativo de Dureza HRC para a rota TEMP/1R/DCT/1R

A análise estatística das medições demonstra que o DCT aplicado antes do revenido resulta em aumento de dureza HRC. Conforme a Tabela 15, observa-se o incremento de dureza maior que o coeficiente de variação.

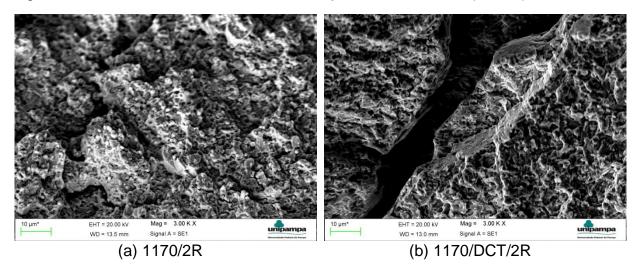
Tabela 15 - Comparação do aumento de Dureza TEMP/2R com TEMP/DCT/2R

CICLO DE TRATAMENTO	MÉDIA ARITMÉTICA DE DUREZA [HRC]	DESVIO PADRÃO	COEFICIENTE DE VARIAÇÃO	% DE AUMENTO DE DUREZA
1170/2R	63,9	1,0	1,58 %	2,05
1170/DCT/2R	65,2	0,5	0,83 %	2,05
1200/2R	64,2	1,0	1,60 %	1,85
1200/DCT/2R	65,4	0,6	0,90 %	1,00
1230/2R	65,3	0,6	0,91 %	1,14
1230/DCT/2R	66,0	0,6	0,85 %	1,14

Na análise dos resultados de microdureza, o que chamou a atenção foi que o desvio padrão do ensaio HK foi muito superior ao do ensaio HV. Conforme podemos observar na Tabela 8, a média de desvio padrão das medições HK é praticamente o dobro das de HV. No início da pesquisa esperava-se justamente o contrário, em virtude da indentação alongada do ensaio HK, o que tenderia a diminuir o erro visual de medição.

Acredita-se que pela indentação HK ser mais alongada, a probabilidade de se medir regiões com diferenças de microdureza seja maior, o que pode ser a provável causa do maior desvio padrão.

Embora se perceba uma tendência para o aumento da microdureza após o DCT, os elevados valores de desvio padrão não permitem chegar a esta conclusão. Contudo, a redução do desvio padrão após a aplicação do DCT indica que houve uma maior homogenização da microestrutura.


Esta situação também foi relatada em outras pesquisas. Conforme Huang (2003), o tratamento criogênico não somente facilita a formação de carbetos, mas também faz com que estes tenham uma distribuição mais homogênea. Koneshlou (2011), relata que a aplicação do tratamento criogênico profundo resulta na precipitação e homogenização de carbetos bastante finos na microestrutura.

Podemos observar através das Figuras 44 a 47 uma estrutura um pouco mais homogênea para as amostras submetidas ao DCT e austenitizadas a temperaturas de1170° C e 1200° C, mas a grande parte dos carbetos precipitados são muito pequenos para serem observados através da MO.

Com relação ao ensaio de Impacto Charpy, os resultados nos indicam que para praticamente todas as rotas com temperaturas de austenitização de 1170° C ou 1200° C (com exceção da rota 1200/2R/DCT) a aplicação do DCT aumenta a tenacidade, destacando-se as rotas 1170/1R/DCT/1R com 56% de aumento e a rota 1200/DCT/2R com 32% de aumento, em comparação à rota 1200/2R. Conforme Huang (2003) a provável causa do aumento de tenacidade se deve ao fato da precipitação de carbetos durante a aplicação do DCT reduzir a quantidade de carbono na matriz metálica, o que acarreta aumento de tenacidade da matriz.

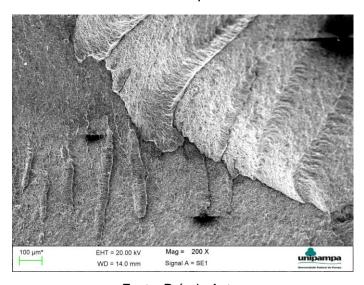
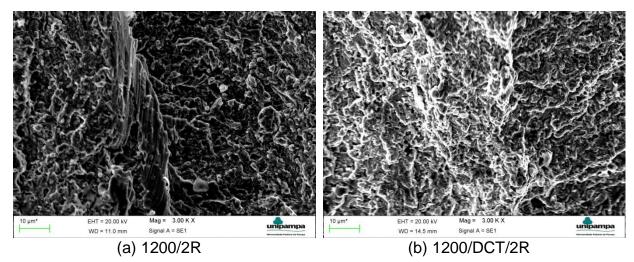

Ao analisar as fraturas através da microscopia eletrônica de varredura, observou-se a formação de trincas espessas em amostras austenitizadas a 1170° C após o DCT, conforme a Figura 64. Na amostra 1170/DCT/2R observaram-se trincas de até 10 µm de largura.

Figura 64 – Mecanismos de fratura em MEV para rotas 1170° C (3000X)

Para a temperatura de austenitização de 1200° C foram observadas pequenas fissuras na superfície (Figura 65), mas de tamanho muito inferior em comparação com as observadas nas amostras a 1170° C e 1230° C.


Figura 65 – Mecanismos de fratura em MEV para a rota 1200/DCT/2R (200X)

Fonte: Próprio Autor

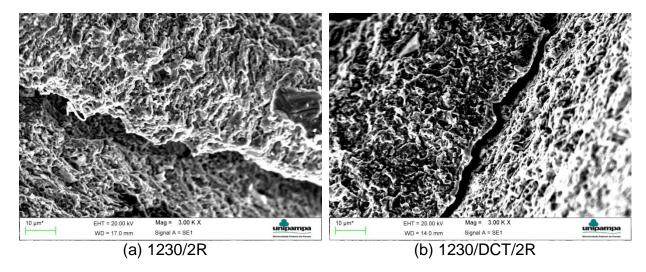

Podemos observar na Figura 66 a superfície homogênea das amostras autenitizadas a 1200° C.

Figura 66 – Mecanismos de fratura em MEV para rotas 1200° C (3000X)

A Figura 67 apresenta em (a) a amostra da rota 1230/2R e em (b) a amostra 1230/DCT/2R. Também se observa trincas, mas com uma largura menor, variando de 3 a 5 μ m.

Figura 67 – Mecanismos de fratura em MEV para rotas 1230° C (3000X)

Fonte: Próprio Autor

Com relação ao desgaste abrasivo (conforme Figura 68), para cada temperatura de austenitização existiu um 'vale', onde se observaram os menores valores de desgaste. Para a temperatura de 1170° C as rotas 1170/DCT/2R e

1170/2R/DCT apresentaram os melhores resultados. Para a temperatura de 1200° C ficou bem evidente o menor desgaste na rota 1200/DCT/2R, e, para a temperatura de 1230° C, os menores desgastes nas rotas 1230/1R/DCT/1R para os primeiros ciclos (25, 50 e 100), e 1230/2R/DCT para os últimos ciclos (200 e 300).

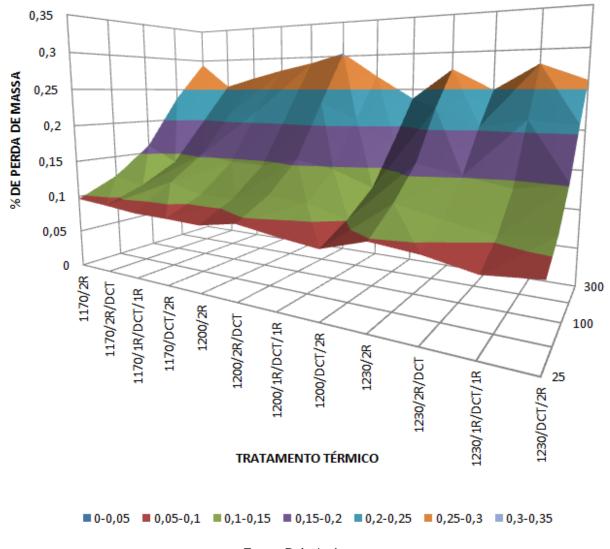
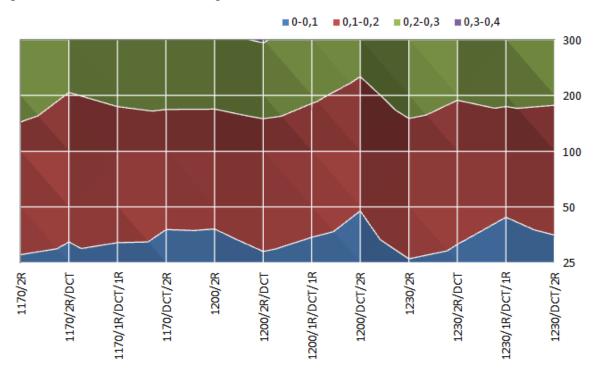



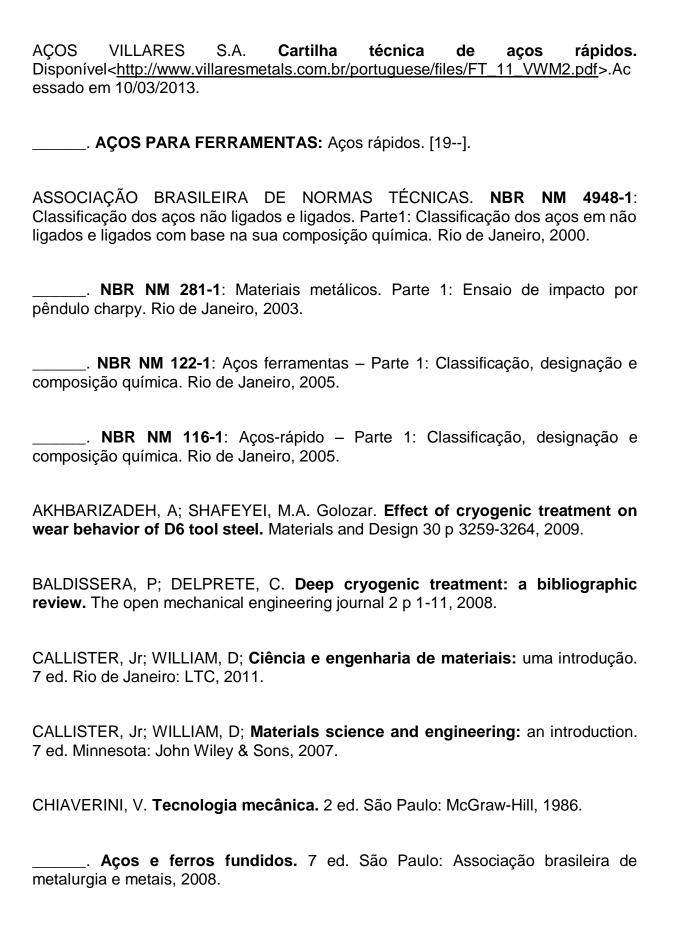
Figura 68 – Gráfico em três dimensões do desgaste abrasivo

Fonte: Próprio Autor

A Figura 69 apresenta os mesmos resultados, mas de uma forma panorâmica. Nesta figura fica fácil a visualização de que o DCT, de forma geral, aumenta a resistência ao desgaste, especialmente quando o é realizado antes do revenido.

Figura 69 – Resultados do desgaste abrasivo

6 CONSIDERAÇÕES FINAIS


6.1 Conclusões

- O DCT aplicado entre a têmpera e o revenido aumenta a dureza para as três temperaturas de austenitização avaliadas (rotas TEMP/DCT/2R);
- O DCT promove uma homogeneização dos carbetos na matriz metálica, diminuindo o desvio padrão nos ensaios de microdureza;
- O DCT aumenta a tenacidade do aço M2 quando a temperatura de austenitização for de 1170° C ou 1200° C (com exceção da rota 1200/2R/DCT);
- A tenacidade do aço M2 sofre um aumento significativo (56%) quando austenitizado a 1170° C e o DCT aplicado entre revenidos (rota 1170/1R/DCT/1R);
- A utilização de temperaturas de austenitização de 1170° C ou 1230° C, com ou sem a aplicação do DCT, não colabora com a melhoria da resistência ao desgaste;
- A aplicação do DCT com posterior revenido em amostras austenitizadas a 1200° C (rota 1200/DCT/2R) aumenta a dureza, apresenta os maiores valores de resistência ao desgaste e tenacidade de todas as rotas de tratamento térmico avaliadas e promove um refinamento e uma melhor distribuição dos carbetos na matriz metálica:
- Para as rotas de tratamentos térmicos investigadas, recomenda-se a austenitização a 1200° C seguida do tratamento DCT e, por último, o duplo revenido.

6.2 Sugestões para trabalhos futuros

- Realizar ensaios práticos com ferramentas de aço M2 (brocas, machos, bits) submetidas ao DCT.
- Realizar ensaios mecânicos de tração e três pontos para averiguar se o tratamento criogênico melhora estas propriedades.
- Realizar ensaios com diferentes temperaturas de austenitização, mais próximas de 1200° C, como 1190° C e 1210° C.

7 REFERÊNCIAS BIBLIOGRÁFICAS

	Tratamento	térmico	das	ligas	metálicas.	1	ed.	São	Paulo:	Associação
brasileira	a de metalurgi	ia e metai	is, 20	008.						

DARWIN, J.D; MOHAN LAL, D; NAGARAJAN, G. Optimization of cryogenic treatment to maximize the wear resistence of 18% Cr martensitic stainless steel by Taguchi method. Journal of Materials Processing Technology 195 p 241-247, 2008.

DA SILVA, Flávio et al. **Performance of cryogenically treated HSS tools.** Wear 261 p 674-685, 2006.

DAS, Debdulal et al. **Sub-zer treatments of AISI D2 steel: Part1. Microstructure and hardness.** Materials science and engineering A 527 p 2182-2193, 2010.

_____. Influence of sub-zero treatments on fracture toughness of AISI D2 steel. Materials science and engineering A 528 p 589-603, 2010.

_____. Structure-property correlation of sub-zero treated AISI D2 steel. Materials science and engineering A 541 p 45-60, 2012.

DHOKEY, N.B. et al. Influence of Cryoprocessing on Mechanism of Carbide Development in Cobalt-Bearing High-Speed Steel (M35). Metallurgical and Materials Transactions A, vol 45 A, p 1508-1516, 2014.

DIEKMAN, F. **Cold and Cryogenic Treatment of Steel.** ASM Handbook, Steel Heat Treating Fundamentals and Processes, Vol 4 A p382-386, 2013.

FARHANI, Foad et al. **Study of effects of deep cryotreatment on mechanical properties of 1.2542 tool steel.** Materials and design 42 p 279-288, 2012.

FAVORIT AÇOS ESPECIAIS LTDA. **Tabela técnica de aços ferramentas.** Disponível em: http://www.favorit.com.br/sites/all/themes/favorit/tabelas_html/acos_ferramentas.html>. Acesso em: 01/07/2013.

FERRARESI, Dino. **Usinagem dos metais:** Fundamentos da usinagem dos metais. Vol 1. São Paulo: Edgard Blücher, 1977.

FIROUZDOR, V; NEJATI, E; KHOMAMIZADEH, F. **Effect of deep cryogenic treatment on wear resistence and tool life of M2 HSS drill.** Journal of materials processing technology 206 p 467-472, 2008.

FRANCO, A. H. Estudo da influência da criogenia na resistência ao desgaste abrasivo do aço ASTM 743 tipo CA6NM: Avaliação da resistência ao desgaste. Dissertação de mestrado em ciências mecânicas. Universidade de Brasília, 2009.

FCTMG - FUNDAÇÃO CENTRO TECNOLOGICO DE MINAS GERAIS. **Ciência dos materiais multimídia.** Disponível em: < http://www.cienciadosmateriais.org>

GAVRILJUK, V.G. ET al. Low-temperature martensitic transformation in tool steel in relation to their deep cryogenic treatment. Acta materialia 61 p 1705-1715, 2013.

_____.Carbide Precipitation During Tempering of a Tool Steel Subjected to Deep Cryogenic Treatment. Metallurgical and Materials Transactions A, p 2453-2465, 2014.

GILL, Simranpreet Singh et al. **Metallurgical principles of cryogenically treated tool steel - a review on the current state of science.** International journal of advanced manufacturing technology 54 p 59-82, 2011.

GOBBI, Silvio José. **Influência do tratamento criogênico na resistência ao desgaste do aço para trabalho a frio AISI D2.** Dissertação de mestrado em ciências mecânicas. Universidade de Brasília. Brasília, 2009.

HU, F. et al. Refinement of Retained Austenite in Super-bainitic Steel by a Deep Cryogenic Treatment. ISIJ International, vol 54, p222-226, 2014.

HUANG, J.Y. et al. **Microstructure of cryogenic treated M2 tool steel.** Materials science and engineering A 339 p 241-244, 2003.

JELENKOWSKI, J; CISKI, A; BABUL, T. **Effect of deep cryogenic treatment on substructure of HS6-5-2 high speed steel.** Journal of Achievement in Materials and Manufacturing Engineering 43 p 80-87, 2010.

KONESHLOU, Mahdi; ASL, Kaveh Meshinchi; KHOMAMIZADEH, Farzad. **Effect of Cryogenic Treatment on Microstruture, Mechanical and Wear Behaviors of AISI H13 Hot Work Tool Steel.** Cryogenics 51 p 55-61, 2011.

MOHAN LAL, D; RENGANARAYANAN, S; KALANIDHI, A. Cryogenic treatment to augment wear resistance of tool and die steel. Cryogenics 41 p 149-155, 2001.

MOLINARI, A. et al. Effect of deep cryogenic treatment on the mechanical properties of tool steel. Journal of materials processing technology 118 p 350-355, 2001.

MOREIRA, J.C. et al. **Influência do tratamento criogênico na usinabilidade do aço rolamento ABNT 52100 temperado.** Revista matéria 14 p 932-946, 2009.

NEMATOLLAHI, G.A. et al. Thermodynamics of carbon solubility in ferrite and vacancy formation in cementite in strained pearlite. Acta Materialia 61 p 1773-1784, 2013.

OPPENKOWSKI, A; WEBER, S; THEISEN, W. Evaluation of factors influencing deep cryogenic treatment that affect the properties of tool steels. Journal of materials processing technology 210 p 1949-1955, 2010.

ÖZBEK, N. A et al. Investigation of the effects of cryogenic treatment applied at different holding times to cemented carbide inserts on tool wear. International Journal of Machine Tools and Manufacture 86 p 34-43, 2014.

PRIETO, G; PEREZ IPIÑA, J; TUCKART, W.R. Cryogenic treatments on AISI 420 stainless steel: Microstructure and mechanical properties. Materials and engineering A 605 p 236-243, 2014.

PAULIN, Pete. **Cold cuts.** Cutting tool engineering august 92 p 61-66, 1992.

PENHA, Renata Neves et al. **Efeito do tratamento criogênico na taxa de desgaste e nas propriedades mecânicas do aço ferramenta H13.** 6° Congresso Brasileiro de engenharia de fabricação. Caxias do sul, 2011.

RAGHU RAM, N et al. Parametric Analysis on the Effect of Cryogenic Treatment on the Work Piece Material of EDM Process. International Journal of Engineering Reserch and Technology, vol 3, p1087-1094, 2014.

RAUTER, Raul Oscar. **Aços ferramentas: seleção, tratamentos térmico, pesquisa de defeitos.** Rio de Janeiro: LTC, 1974.

SANDHI, D. M. et al. **A Comparative Study of the Effect of Thermal Treatment on the Mechanical behavior of Tool Steels.** International Journal of Current Engineering and Technology, vol 4, p 1643-1648.

SENDOORAN, S; RAJA, P. **Metallurgical investigation on cryogenic treated HSS tool.** International journal of advanced manufacturing technology vol 3 n 5 p 3992-3996, 2011.

SENTHILKUMAR, D et al. Influence of shallow and deep cryogenic treatment on the residual state of stress 4140 steel. Journal of materials processing technology 211 p 396-401, 2011.

SILVA, André Luiz da costa e; MEI, Paulo Roberto. **Aços e ligas especiais.** 3 ed. São Paulo: Blucher, 2010.

SILVA, F. J. Influência do tratamento criogênico no desempenho de ferramentas de aço rápido. Dissertação de mestrado. Universidade Federal de Uberlândia. Uberlândia, 1999.

STRATTON, P; GRAF, M. The effect of deep cold induced nano-carbides on the wear of case hardened components. Cryogenics 49 p 346-349, 2009.

THORNTON, R; SLATTER, T; LEWIS, R. Effects of deep cryogenic treatment on the wear development of H13A tungsten carbide inserts when machining AlSI 1045 steel. Prod. Eng. Res. Devel. 8 p 355-364, 2014.

TIER, M. A. D. **Avaliação da resistência ao desgaste do aço AISI M2 nitretado a Plasma.** Tese de doutorado em Engenharia Metalúrgica e Materiais. UFRGS - Universidade Federal do Rio Grande do Sul, 1998.

TYSHCHENKO, A. I. et al. Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel. Materials science and engineering A 527 p 7027-7039, 2010.

VAHDAT, S. E; NATEGH, S; MIRDAMADI, S. Effect of Microstructure Parameters on Tensile Toughness of Tool Steel after Deep Cryogenic Treatment.

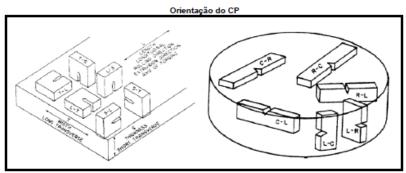
International Journal of Precision Engineering and Manufacturing, Vol 15, N° 3, P 497-502, 2014.

VALES, Sandra dos Santos. **Estudo da influência do tratamento criogênico no aço AISI H13.** Dissertação de mestrado em Escola de Engenharia de São Carlos. Universidade de São Paulo, 2011.

_____. Efeito do tratamento criogênico na resistência ao desgaste do aço H13. 6° Congresso Brasileiro de engenharia de fabricação. Caxias do sul, 2011.

WURZBACH, R. N; DE FELICE, W. Improving component wear performance throught cryogenic treatment. Disponível em: http://cryoplus.com>

YEN, P.L; KAMODY, D.J. Formation of fine eta carbides in special cryogenic and tempering process – key to improved properties of alloy steel. Industrial Heating, V 44, n.1, p 40-44, 1997.


ANEXO A – Análise química da amostra de aço M2

Analise da Amostra. 03/04/2014 16:21:10 Programa FERRAMENTA. Numero da Amostra1: M2 concentracao. N: c Fe 2731 a C 1931 a Mn 2933 a Cr 2758 a Ni 2316 1 31.5090 0.8936 0.2722 3.7141 0.1170 2 31,6082 0.8585 0.2729 3.7236 0.1182 3 31.0055 0.8779 0.2767 3.7811 0.1181 4 30.2801 0.8989 0.2781 3.7461 0.1194 5 29.9382 0.8899 0.2799 3.7693 0.1183 6 29.1404 0.8762 0.2764 3.7556 0.1170 7 30.5611 0.8761 0.2817 3.7521 0.1208 8 29.9678 0.8613 0.2846 3.7685 0.1179 Media 30.5013 0.8791 0.2778 3.7513 0.1184 Desvio (%) 2.7712 1.6515 1.5165 0.6135 1.0531 (continuação) a W 2204 N a Si 2516 a Mo 2816 a V 3111 a Ti 3373 1 0.5701 7.6804 4.7057 2.0310 0.0063 2 0.5436 7.6439 4.6846 2.0262 0.0060 3 0.5571 7.6455 4.7106 2.0571 0.0059 4 0.5554 7.6794 4.7103 2,0532 0.0064 5 0.5419 7.6976 4.7199 2.0734 0.0060 6 0.5603 7.6595 4.7583 2.0853 0.0054 7 0.5683 7.7178 4.6949 2.0501 0.0062 8 0.5646 7.5190 4.7199 2.0678 0.0066 Media 0.5577 7.6554 4.7130 2.0555 0.0061 Desvio (%) 1.8857 0.7920 0.4642 0.9824 6.0355 (continuacao) Nº a Nb 3094 c Fe 1793 a P 1783 a S 1807 a Sn 1900 1 0.3623 2.7272 0.0347 0.0069 0.0083 2 0.3583 2.9886 0.0420 0.0051 0.0085 3 0.3637 2.7691 0.0426 0.0062 0.0086 4 0.3661 2.7364 0.0237 0.0110 0.0084 5 0.3687 2.7533 0.0340 0.0068 0.0084 6 0.3645 2.6203 0.0371 0.0091 0.0084 7 0.3649 2.5164 0.0453 0.0095 0.0087 8 0.3661 2.5392 0.0448 0.0066 0.0086 Media 0.3643 2.7063 0.0380 0.0077 0.0085 Desvio (%) 0.8500 5.5620 19.0447 26.1162 1.5167 (continuação) Nº a B 1826 c Fe 4046 a Al 3962 a Cu 3274 1 0.0014 54.0299 0.1196 0.0716 2 0.0014 56.1461 0.1152 0.0679 3 0.0014 54.3152 0.1175 0.0715 4 0.1202 0.0014 52.0879 0.0710 5 0.0014 52.1445 0.1199 0.0731 6 0.0014 51.0318 0.1159 0.0731 7 0.0013 53.3358 0.1201 0.0730 8 0.0013 53.8585 0.1202 0.0756 Media 0.0014 53.3687 0.1186 0.0721 Desvio (%) 3.5884 2.9954 1.7521 3.0610

ANEXO B – Relatório do ensaio Charpy para amostra com entalhe em "U"

LAMEF NOTING OF CALEGOR		LABORATÓRIO DE METALURGIA FÍSICA - LAMEF FORMULÁRIO DE ENSAIO Ensaio de Impacto											
	Т	Da emperatura de	Protocolo/SI Material ta do ensaio	21/08/2014				Legenda Células para Células com GDL: Graus NA: Não apli CP: Corpo d	formulas de liberdade cável				
CP	Tipo de CP	Orientação do CP	Rompeu?	Raio do entalhe [mm]	Profundidade do entalhe [mm]	Angulo [°]	Largura (W) [mm]	Espessura (T) [mm]	Energia absorvida [J]	Operador	Revisor		
1	С		Sim	1,003	5,010		9,80	9,99	2,00	Vagner			
2	С		Sim	1,015	4,900		10,07	10,01	2,00	Vagner			
3	С		Sim	1,001	5,400		9,84	9,98	2,00	Vagner			
						Média	9.90	9,99	2.00				
						Desvio	0,15	0,02	0,00 1,25				
								Incerteza	1,25				
	Tolerâncias	do Entalh-											
	Oleraficias	Profundidade											

	Tolerâncias	do Entalhe	
	Raio [mm]	Profundidade do entalhe [mm]	Angulo [º]
Mínimo	0,225	1,975	44
Nominal	0,25	2	45
Máximo	0,275	2,025	46

	Incerteza de Medição da Energia Absorvida - EQ. 262													
nº amostras	3													
Fonte	Valor nominal	Incerteza	Divisor	Coef sensibilidade	Contribulção Incerteza	GDL	u4/GDL	Incert comb	0,6233445					
Incert herdada [J]	2,000	0,470	2,000	1,00	0,23500	1E+99	3,0498E-102	GDL efetivo	***************************************					
Resolução [J]	2	1,0000	1,73205	1,00	0,57735	1E+99	1,1111E-100	Coef. abrang.	2,0000000					
Desvio [J]	NA	0,0000	1,73205	1,00	0,00000	2	0	Incert expand.	1,2466889					

Elaborado por: Daniel A. K. Fabricio	Aprovado por: Jefferson Haag	Emissão: 14/05/2012
--------------------------------------	------------------------------	---------------------

ANEXO C - Dureza das amostras após a têmpera

		Α			В			С			D		MÉDIA	DP	Т
1	64,0	63,4	63,7	64,0	63,6	63,7	63,4	64,6	63,5	62,5	62,8	64,3			
2	63,3	62,5	62,9	62,4	63,8	64,3	61,9	61,3	63,4	64,1	63,8	63,0	62.6	0.7	11700€
3	64,0	63,7	63,4	62,6	63,7	63,4	64,1	64,0	63,7	64,1	63,2	64,5	03,0	0,7	1170°C
4	64,3	63,3	63,7	65,2	64,2	64,2	64,5	64,0	64,0	63,4	63,2	63,8			
5	64,3	64,3	64,0	63,3	63,5	63,4	63,1	63,1	63,5	62,8	64,0	63,7			
6	62,5	62,2	63,3	63,4	63,7	63,7	64,0	63,7	64,5	64,4	63,9	63,6	62.5	Λ Q	1200°€
7	63,1	63,2	63,4	65,0	64,0	64,3	62,8	63,7	64,0	63,1	61,6	64,2	63,5	0,0	1200 C
8	64,2	64,4	64,2	62,0	61,3	61,7	63,7	63,7	63,4	63,5	63,0	63,4			
9	64,2	63,6	63,0	63,9	63,8	64,1	63,9	63,7	64,0	64,7	64,8	64,6			
10	63,6	63,0	64,0	64,3	63,4	64,0	64,7	64,3	64,7	63,8	62,4	62,8	64,0	0.6	12200€
11	64,4	64,4	64,7	64,4	64,0	64,6	63,4	64,0	64,1	64,1	64,3	64,1	04,0	0,0	1230 C
12	62,8	63,4	63,5	63,6	63,6	64,1	64,4	64,4	65,0	64,3	64,3	64,3			

ANEXO D - Dureza das amostras após todo o ciclo de tratamento térmico

		Α			В			С			D		MÉDIA ARITMÉTICA	DESVIO PADRÃO
1170/0R						ANE	хос						63,6	0,7
1170/1R	63,9	63,2	64,3	64,1	63,4	64,3	63,6	63,3	64,3	64,3	63,8	64,6	63,9	0,5
1170/2R	63,7	64,1	64,9	65,4	64,7	65,0	63,6	62,2	63,3	63,8	62,3	64,2	63,9	1,0
1170/2R/DCT	62,4	62,4	63,9	64,9	64,2	64,6	63,4	63,4	64,4	62,7	63,6	64,1	63,7	0,8
1170/1R/DCT/1R	63,4	63,7	63,2	64,6	64,9	64,9	64,2	63,4	64,5	64,9	64,3	64,0	64,2	0,6
1170/DCT/2R	65,6	65,4	64,6	65,2	64,9	64,9	65,5	66,1	65,7	65,5	65,4	64,1	65,2	0,5
1200/0R						ANE	хос						63,5	0,8
1200/1R	64,3	64,3 65,2 64,3 65,4 65,2 65,3 64,6 63,6 64,3 64,5 6							64,6	64,1	64,6	0,6		
1200/2R	62,0	63,8	65,1	62,5	65,0	65,4	64,6	64,6	64,8	64,4	64,5	64,2	64,2	1,0
1200/2R/DCT	63,4	63,4	62,7	65,4	64,3	65,2	64,7	63,2	65,3	65,2	66,0	66,0	64,6	1,1
1200/1R/DCT/1R	64,6	64,0	64,0	64,7	65,2	65,6	64,2	64,9	64,8	63,4	64,6	64,3	64,5	0,6
1200/DCT/2R	65,0	66,9	64,7	65,6	65,1	65,5	65,6	64,9	65,7	65,8	64,9	65,5	65,4	0,6
1230/0R						ANE	хос						64,0	0,6
1230/1R	65,5	66,1	65,9	66,0	66,1	65,8	66,0	64,9	65,0	64,6	64,5	64,7	65,4	0,6
1230/2R	65,8	64,6	65,5	64,7	64,2	65,4	65,2	65,1	66,5	65,1	65,4	65,5	65,3	0,6
1230/2R/DCT	63,8	63,7	64,5	65,2	65,0	65,8	64,0	64,0	64,0	64,6	65,2	65,2	64,6	0,7
1230/1R/DCT/1R	66,1	65,4	65,6	65,6	65,7	66,5	65,1	64,6	65,2	65,2	64,5	65,4	65,4	0,6
1230/DCT/2R	65,8	66,1	66,1	65,8	65,0	66,0	66,6	65,2	66,2	65,6	66,8	66,7	66,0	0,6

ANEXO E – Resumo da Microdureza HV após têmpera e revenido

	REVENIDO		0R			1R			2R	
	CARGA	500 g	200 g	50 g	500 g	200 g	50 g	500 g	200 g	50 g
1170° C	MÉDIA	848	934	1012	885	929	1065	891	915	1028
1170 C	DP	31	56	92	41	30	62	56	39	59
1200° C	MÉDIA	844	929	1098	893	948	1026	895	945	1151
1200 C	DP	15	48	82	13	46	69	27	28	54
1230° C	MÉDIA	890	893	1043	958	1022	1037	944	973	1065
1230 C	DP	19	61	87	27	33	52	33	33	92

ANEXO F – Microdureza HV após têmpera

T		117	70°C			120	00°C			123	30°C	
	500g	200g	50g	25g	500g	200g	50g	25g	500g	200g	50g	25g
1	829,2	1041,6	970,4	934	850,1	896,5	964,4	879,6	867,4	873,1	1079	910,7
2	893,1	974,9	974,4	975,2	834,6	929,5	1010,3	831,9	904,9	820,9	1027,4	900,5
3	862,9	982,9	983,4	844,3	859,7	954,2	1113,5	903	906	861	958,6	913,2
4	792,7	943,2	1174,5	1001,1	831,6	1031,2	1209,7	990,9	878,9	835,8	1156,2	909,4
5	873,2	899,1	1212,4	1053,1	835,4	894,3	1179,8	889,3	873,2	829,9	1038,3	959,8
6	867,4	951,8	946	769,9	859,7	835,8	1059,5	1034,3	890,9	856	1140,9	1016
7	862,4	956,1	895,6	911,9	824,5	943,6	1116	990,9	863,4	923,5	874	968,1
8	795,5	884,2	1017,7	917,1	828,9	950,3	1173,2	1031,2	901,8	953,7	1122,1	986,6
9	872,7	855,2	979,4	718,1	855,6	902,7	963,5	966,7	920,4	1008,2	1041,6	954,3
10	844,5	961	1033,9	888,7	845,8	946,5	1124,6	982,3	866,6	971,9	947	1017,5
11	836,4	904,9	985,4	989,5	872,7	964,4	1114,8	837,5	890,7	918,9	1001,9	859,3
12	840,4	855,6	966,4	915,8	831,2	903,1	1148,5	951,6	911,4	866,4	1127,1	1109,2
média	847,5	934,2	1011,6	909,9	844,2	929,3	1098,2	940,8	889,6	893,3	1042,8	958,7
desv pad	30,8	55,7	91,8	95,9	15,3	48,3	82,0	70,6	19,5	60,8	87,3	67,7

ANEXO G – Microdureza HV após têmpera e revenido

T e TRAT		117	70/2R			117	70/1R	
CARGA	500g	200g	50g	25g	500g	200g	50g	25g
MEDIÇÃO 01	881,6	856,0	1124,6	1114,4	947,9	922,6	1072,0	986,6
MEDIÇÃO 02	988,0	932,8	1022,0	1072,4	874,3	913,0	1008,2	943,4
MEDIÇÃO 03	846,8	926,3	996,7	1147,9	857,4	942,7	1117,2	931,4
MEDIÇÃO 04	870,6	900,9	968,4	965,3	899,8	893,4	996,7	999,7
MEDIÇÃO 05	867,4	959,1	1027,4	1160,7	845,3	970,9	1133,3	1057,9
MÉDIA	890,9	915,0	1027,8	1092,1	884,9	928,5	1065,5	983,8
DESV PAD	55,7	39,0	58,9	78,7	40,7	29,6	61,9	50,3
T . TDAT		400	00/00			400	00/4D	
T e TRAT	500 ··		00/2R	05-	F00		00/1R	05
CARGA	500g	200g	50g	25g	500g	200g	50g	25g
MEDIÇÃO 01	887,9	946,5	1149,8	946,1	893,1	979,4	983,4	1179,3
MEDIÇÃO 02	864,5	953,7	1237,8	1146,1	882,2	949,4	1052,7	1001,1
MEDIÇÃO 03	878,4	986,5	1134,6	1097,3	900,1	869,3	930,0	998,2
MEDIÇÃO 04	931,8	912,1	1089,5	919,7	877,8	981,4	1061,7	1149,7
MEDIÇÃO 05	913,4	928,6	1143,4	970,9	909,7	961,5	1102,6	1131,8
MÉDIA	895,2	945,5	1151,0	1016,0	892,6	948,2	1026,1	1092,0
DESV PAD	27,2	28,1	54,0	99,7	13,0	46,0	68,7	86,0
T e TRAT		123	30/2R			123	30/1R	
CARGA	500g	200g	50g	25g	500g	200g	50g	25g
MEDIÇÃO 01	930,0	1018,2	1001,9	1080,6	985,1	1065,7	1029,5	893,0
MEDIÇÃO 02	900,7	995,7	1127,1	1053,1	988,9	1036,1	1048,2	932,7
MEDIÇÃO 03	950,4	938,0	1156,2	1023,6	940,7	983,5	1056,1	1070,8
MEDIÇÃO 04	991,8	965,9	938,4	1080,6	932,4	995,2	953,7	813,3
MEDIÇÃO 05	945,2	948,4	1101,4	1235,4	942,5	1030,1	1095,5	979,4
MÉDIA	943,6	973,2	1065,0	1094,7	957,9	1022,1	1036,6	937,8
DESV PAD	33,2	33,3	91,5	82,1	26,9	33,1	52,2	96,1

ANEXO H – Valores de Microdureza HV após tratamento térmico e DCT

MICRODUREZA HV FINAL COM CARGA DE 500 g

				Α					В					С					D			М	DP
1170/2R	1	793, 4	783, 8	828, 7	796, 2	754, 1	830, 4	828, 2	843	857, 1	845	852, 5	841,	835, 9	842, 5	854, 3	904,	807,	859, 5	876 ,2	837, 4	833, 5	33, 8
1170/2R/DC T	2	847, 6	873, 8	815, 9	817, 9	801, 6	843, 5	870, 8	861, 3	848, 8	817, 6	826, 7	876, 5	710, 6	844, 2	793, 9	846	854, 8	836, 4	853 ,2	779, 2	831, 0	38, 8
1170/1R/DC T/1R	3	843	839, 7	890, 1	825	831, 9	870, 6	883	883, 5	848, 1	844, 5	835, 4	826, 7	808, 7	836, 7	702, 5	884, 1	831, 9	837, 9	817 ,4	850, 6	839, 6	39, 9
1170/DCT/2 R	4	820, 1	839, 7	845, 5	837, 7	825, 2	907, 7	881, 3	860, 8	863, 4	887, 6	845	931, 2	859, 2	899, 6	865, 3	826, 4	819, 3	849, 9	848 ,6	845, 3	857, 9	30, 3
1200/2R	5	846	849, 9	895, 1	890, 4	851, 2	868, 2	874, 3	863, 7	865, 3	914	851, 4	859	817, 4	866, 3	758, 4	866, 9	806, 3	872, 7	871 ,9	899, 6	859, 4	34, 6
1200/2R/DC T	6	829, 2	855	848, 1	958, 6	856, 9	884, 3	903, 8	935	920, 1	899, 6	864, 2	862, 6	920, 4	876, 5	980	839, 7	857, 9	848, 1	879 ,2	886, 5	885, 3	40, 6
1200/1R/DC T/1R	7	874, 3	861, 6	809, 7	873, 5	868, 2	765, 8	905, 8	873, 2	889	936, 2	865, 8	861, 5	874, 3	890, 4	879, 2	871, 9	822	849, 4	835 ,1	845	862, 6	36, 1
1200/DCT/2 R	8	900, 7	875, 1	891, 8	910, 3	887, 1	897	909, 7	905, 2	851, 2	887, 6	929, 4	891, 5	809, 9	894, 5	871, 4	857, 1	871, 4	871, 6	817 ,9	887, 6	880, 9	29, 6
1230/2R	9	945, 5	958, 6	908, 6	949, 5	873, 5	890, 4	878, 4	921, 5	865, 8	906, 6	916, 9	874, 1	909, 7	941, 9	916, 3	859, 2	867, 6	845, 3	886	870, 3	899, 3	33, 1
1230/2R/DC T	1	835, 6	850, 1	875, 9	881, 9	885, 7	897, 6	879, 4	874, 9	844, 8	860, 8	898, 7	858, 2	881, 9	864, 7	891, 5	855, 6	881, 3	874, 9	881 ,1	862, 9	871, 9	17, 2
	1	868, 7	876, 7	907, 5	895, 9	877, 3	880	896, 8	898, 4	874, 1	897	890, 7	870, 3	883, 2	907, 2	899	839, 4	832, 4	826, 4	840 ,2	824, 2	874, 3	27, 4
	1 2	890, 1	887, 9	865	866, 3	912, 9	867, 6	853	849, 4	858, 7	865, 3	921, 5	915, 7	863, 9	896, 5	900, 4	848, 6	865, 5	839, 2	920 ,7	906, 6	879, 7	26, 5

MICRODUREZA HV FINAL COM CARGA DE 200 g

				Α					В					С					D			М	DP
1170/2R	1	800, 8	867, 6	780	768	827, 9	931, 9	822, 1	845	863, 9	848,	824, 8	831, 1	839, 4	845	911, 2	837	813, 3	850, 3	835 ,8	808, 7	837, 6	38, 2
1170/2R/DC T	2	807, 6	802	848, 3	834, 2	800, 5	946	850, 3	876, 5	890, 8	899, 1	848, 3	885, 1	842, 6	857, 2	881, 7	866	925, 8	834, 6	850 ,3	882, 1	861, 5	38, 2
1170/1R/DC T/1R	3	879, 5	826	870, 2	836, 2	910, 3	901, 3	891, 2	861	934, 7	888, 1	925, 6	825, 2	955, 2	845, 8	802, 7	802	821, 7	829, 5	865 ,1	838, 6	865, 5	44, 4
1170/DCT/2 R	4	800, 8	845	850, 3	827, 5	875, 7	925, 8	930, 5	943, 6	985, 9	905, 3	892, 9	861, 4	879, 1	842, 6	875, 7	814	876, 1	923	824 ,4	868, 1	877, 4	47, 5
1200/2R	5	843	853, 6	834, 2	881, 2	865, 6	858, 5	963, 2	885, 1	924	962	934, 2	927, 2	1015 ,6	916, 2	949, 4	924, 4	876, 1	867, 2	896	887, 3	903, 2	46, 9
1200/2R/DC T	6	861, 4	899, 1	952, 8	948, 4	931, 4	937, 5	871, 9	918	912, 5	954, 7	882, 5	899, 1	907, 6	918, 5	913, 9	856, 4	846, 2	842, 2	838 ,2	870, 2	898, 1	37, 7
1200/1R/DC T/1R	7	836, 6	764, 2	925, 8	862, 2	804, 6	929, 5	913	957, 1	925, 8	888, 1	942, 7	888, 1	848, 7	862, 2	897, 8	847, 8	854, 4	826, 4	878 ,2	815, 2	873, 4	50, 6
1200/DCT/2 R	8	844, 6	934, 7	883	865, 1	939, 8	933, 3	870, 2	888, 1	903, 6	928, 1	882, 1	922, 1	966, 9	929, 1	929, 1	894, 3	859, 3	878, 2	889 ,5	889, 5	901, 5	32, 1
1230/2R	9	888, 6	928, 1	798, 8	888, 1	997, 7	904,	983, 4	905, 8	977, 9	880, 4	872, 3	995, 7	914, 4	1014	924	852, 3	876, 1	884, 7	863	886, 8	911, 9	56, 1

MICRODUREZA HV FINAL COM CARGA DE 100 g

				Α					В					С					D			М	DP
1170/2R	1						746, 1	780, 9	857	862, 3	837	885	880, 8	915, 1	852, 4	888, 7	886, 9	963, 9	913, 2	897 ,4	915, 1	872, 1	54, 3
1170/2R/DC T	2	807, 9	941, 4	937, 4	842, 6	831, 9	898, 7	834, 2	901, 8	904, 3	906, 8	850, 6	814, 9	825, 8	878, 4	861, 1	933, 4	891, 2	931, 4	946 ,1	916, 4	882, 8	45, 7
1170/1R/DC T/1R	3	929, 5	828	854, 1	837, 5	934, 7	884, 4	840, 9	797, 9	789, 6	784, 5	873, 5	899, 3	894, 3	919	908, 7	908, 7	921	901, 2	988 ,7	829, 1	876, 2	54, 4
1170/DCT/2 R	4						818, 2	891, 2	880, 8	849, 5	888, 1	886, 3	913, 9	828	864	878, 4	988	963, 9	917, 1	988	942, 1	899, 8	52, 6
1200/2R	5						867	954, 3	889, 3	814, 4	865, 8	890	922, 3	877, 2	850, 6	898, 7	921	913, 2	893, 7	920 ,3	988, 7	897, 8	42, 3
1200/2R/DC T	6	901, 8	899, 9	967, 4	886, 3	912, 6	932, 1	837	849, 5	963, 2	892, 4	855, 8	816, 5	883, 8	916, 4	826, 9	896, 2	1001 ,9	858, 2	983	964, 6	902, 3	53, 5
1200/1R/DC T/1R	7	911, 9	880, 2	903, 7	934, 7	864	820, 3	838, 7	862, 3	843, 2	917, 1	858, 7	869, 4	815, 5	875, 3	849, 5	895, 5	922, 9	895, 5	881 ,4	1101 ,9	887, 1	60, 4
1200/DCT/2 R	8						838, 7	844, 3	882	901, 2	857, 6	881, 4	795, 3	830, 3	894, 9	957	881, 4	879	904, 3	853 ,5	941, 4	876, 2	41, 9
1230/2R	9						838, 1	899, 9	913, 2	924, 9	867	795, 3	875, 3	898	893	865, 8	917, 1	952, 2	966	913 ,9	1001 ,1	901, 4	50, 9
1230/2R/DC T	1	890, 6	947, 5	951, 6	939, 4	883, 2	951, 6	875, 3	858, 2	879, 6	877, 8	823, 6	935, 4	944, 1	865, 2	934, 7	928, 1	954, 3	908, 7	937 ,4	934, 1	911, 0	38, 5
1230/1R/DC T/1R	1	821, 4	841, 5	930, 1	831, 9	951, 6	864	885, 7	830, 8	840, 3	879, 6	1074	886, 9	852, 9	904, 9	954, 3	977, 3	882	922, 9	900 ,5	878, 4	895, 6	61, 0
1230/DCT/2 R	1 2						872, 9	893	874, 7	847, 7	852, 4	875, 3	885	944, 8	912, 6	957, 7	930, 8	894, 9	880, 2	974 ,5	1004 ,1	906, 7	46, 2

MICRODUREZA HV FINAL COM CARGA DE 50 g

				Α					В					С					D			М	DP
1170/2R	1	805, 3	845, 8	876, 5	817, 5	810, 6	938, 4	857, 2	857, 2	865, 6	925, 3	913, 4	977, 4	1002 ,9	953, 7	930	868, 9	865, 6	877, 4	853 ,1	836, 2	883, 9	55, 5
1170/2R/DC T	2	892, 9	819, 8	975, 4	984, 4	883, 4	912, 5	869, 7	886, 8	1009	913, 4	1022	935, 6	992, 6	862, 2	995, 7	920, 7	911, 6	867, 2	854	937, 5	922, 3	57, 8
1170/1R/DC T/1R	3	871, 4	822, 1	759, 4	824, 4	958, 6	868, 9	876, 5	948, 9	1048 ,2	1091 ,9	939, 4	921, 7	947, 9	1001 ,9	950, 8	956, 6	923, 5	820, 6	918	885, 1	916, 8	79, 7
1170/DCT/2 R	4	792, 7	892, 9	789, 8	890, 3	837	1044 ,9	1105 ,1	954, 7	1046	931, 9	908	928, 1	973, 4	1042 ,7	918	838, 6	885, 1	889, 5	899 ,1	1012 ,4	929, 0	86, 8
1200/2R	5	892, 9	949, 9	917, 1	1020 ,9	935, 6	1033 ,9	1094 ,3	914, 4	1014 ,5	1037 ,2	1072	1009 ,2	925, 3	988, 5	961, 5	855, 6	883, 4	1026 ,3	859 ,7	931, 9	966, 2	70, 1
1200/2R/DC T	6	899, 1	933, 7	892, 1	966, 4	962, 5	989, 5	946	1090 ,7	1175 ,8	1048 ,2	970, 4	920, 7	954, 7	901, 8	989, 5	934, 7	853, 7	968, 4	819 ,8	878, 2	954, 8	81, 2
1200/1R/DC T/1R	7	947, 9	869, 7	807, 6	902, 7	938, 4	1087 ,2	992, 6	983, 4	1065 ,1	1061 ,9	829, 9	985, 4	919, 8	868, 1	947, 9	901, 8	1074 ,3	819	835 ,4	806, 8	932, 2	92, 4

1200/DCT/2 R	8	867, 2	899, 1	893, 8	876, 5	896, 5	971, 4	1004	892, 1	1053 ,8	1073 ,2	1032 ,8	1036 ,1	1083 ,7	1135 ,8	1072	892, 9	888, 6	922, 6	930 ,9	954, 7	968, 9	84, 6
1230/2R	9	945, 1	992, 6	1028 ,5	1075 ,5	984, 4	943, 2	1040 ,5	1029 ,5	994, 6	1059 ,5	1006 ,1	1099	1012 ,4	1070 ,9	1116	888, 6	889, 5	841	898 ,2	886	990, 1	79, 1
1230/2R/DC T	1	903, 6	914, 4	1084 ,8	1006 ,1	886, 8	990, 5	927, 2	849, 1	947	924, 4	939, 4	1029 ,5	1019 ,8	940, 3	919, 8	874	966, 4	969, 4	930	853, 1	943, 8	60, 5
1230/1R/DC T/1R	1	747, 1	929, 1	1014 ,5	858, 1	957, 6	1011 ,3	1097 ,8	986, 5	977, 4	1041 ,6	946	1023 ,1	942, 2	976, 4	1160 ,1	856, 4	794, 2	911, 6	900 ,9	912, 5	952, 2	97, 0
1230/DCT/2 R	1	952, 8	817, 5	887, 7	1051 ,6	935	951, 8	940, 3	930, 9	739, 8	965, 4	1017 ,7	1035	1151 ,1	1081 ,3	1116	809, 9	806, 1	891, 2	868 ,1	859, 7	940, 4	110 ,2

MICRODUREZA HV FINAL COM CARGA DE 25 g

				A					В					С					D			М	DP
1170/2R	1	806, 9	870	780, 9	753, 3	798, 4	797, 4	793, 2	802, 6	771, 9	916	852, 4	909, 4	1034 ,3	1102 ,4	900, 5	1001 ,1	936, 7	830, 8	768 ,9	973, 7	870, 0	99, 0
1170/2R/DC T	2	1014 ,5	934, 1	963, 9	807, 9	806, 9	1158 ,8	860, 5	943, 4	1031 ,2	917, 1	861, 7	1029 ,7	1067 ,5	1005 ,6	958, 4	838, 7	814, 4	814, 4	893	868, 8	929, 5	99, 0
1170/1R/DC T/1R	3	852, 4	839, 4	935, 4	889, 3	819, 8	958, 4	1110 ,9	1045 ,2	978	952, 9	855, 8	1001 ,1	931, 4	951	927, 5	780, 9	823, 1	966, 7	968 ,1	837, 5	921, 2	83, 4
1170/DCT/2 R	4	842	850	922, 3	931, 4	873, 5	1169 ,9	1105 ,8	931, 4	857	992, 4	975, 2	1117 ,8	882	951, 6	976, 6	998, 2	930, 1	862, 9	848 ,9	898	945, 9	94, 3
1200/2R	5	836, 4	1051 ,5	1005 ,6	883, 2	801, 6	1114 ,4	924, 9	1102 ,4	935, 4	1051 ,5	803, 7	1042 ,1	978	118	1057 ,9	851, 2	802, 6	811, 1	923 ,9	906, 8	900, 1	211 ,8
1200/2R/DC T	6	857	943, 4	1034 ,3	966, 7	908, 1	999, 7	1149 ,7	1053 ,1	1082 ,2	1147 ,9	1051 ,5	1072 ,4	992, 4	1080 ,6	1110 ,9	965, 3	926, 2	983, 7	915 ,8	958, 4	1010 ,0	82, 3
1200/1R/DC T/1R	7	955, 7	844, 3	825, 3	924, 4	973, 7	983, 7	905, 6	908, 1	875, 9	966, 7	1007	958, 4	962, 6	1001 ,1	980, 1	765, 9	988	961, 2	780 ,9	720, 8	914, 5	84, 9
1200/DCT/2 R	8	901, 8	1048 ,3	911, 9	905, 6	1011 ,5	1034 ,3	939, 4	990, 9	936, 7	1014 ,5	1114 ,4	985, 1	1028 ,1	1045 ,2	1001 ,1	932, 7	818, 7	1478 ,3	878 ,4	846, 6	991, 2	137 ,1
1230/2R	9	969, 5	1026 ,6	1087 ,2	946, 1	989, 5	1072 ,4	1082 ,2	939, 4	837, 5	1026 ,6	1164 ,4	1077 ,3	1151 ,5	1173 ,6	1048 ,3	850	932, 7	922, 3	827 ,5	965, 3	1004 ,5	104 ,4
1230/2R/DC T	1	917, 1	910, 7	942, 1	980, 8	1011 ,5	1007	900, 5	978	1049 ,9	1046 ,8	1022	1166 ,2	1097 ,3	996, 7	1020 ,5	812, 2	729, 9	724, 4	805 ,8	753, 3	943, 6	123 ,8
1230/1R/DC T/1R	1	963, 9	844, 3	873, 5	852, 4	829, 7	1046 ,8	1034 ,3	1031 ,2	950, 2	948, 8	1032 ,7	1082 ,2	1039 ,9	979, 4	1149 ,7	961, 2	896, 8	828, 6	857	895, 5	954, 9	93, 5
1230/DCT/2 R	1 2	924, 9	868, 8	867, 6	882	947, 5	966, 7	935, 4	831, 9	921	978	998, 2	943, 4	952, 9	976, 6	1075 ,7	824, 2	814, 4	904, 3	900 ,5	888, 1	920, 1	64, 2

ANEXO I – Valores de Microdureza HK após tratamento térmico e DCT

				Α					В					С					D			М	DP
1170/2R	1	819	823	796	765	870	824	833	855	779	767	750	743	739	758	745	792	826	820	839	772	795,8	40,2
1170/2R/DCT	2	775	774	785	771	790	803	806	789	831	817	793	770	752	802	787	732	733	722	717	728	774,0	33,1
1170/1R/DCT/1 R	3	846	817	865	822	849	809	868	819	807	789	539	519	482	451	501	831	796	815	821	839	744,2	147, 9
1170/DCT/2R	4	922	874	916	955	910	936	994	924	867	795	721	726	746	753	702	776	778	741	799	785	831,0	91,1
1200/2R	5	999	904	908	824	891	863	856	842	828	876	744	741	780	709	715	792	791	777	818	766	821,4	73,3
1200/2R/DCT	6	883	895	890	846	890	860	860	851	778	819	803	830	818	781	596	860	864	863	913	872	838,6	68,1
1200/1R/DCT/1 R	7	834	827	919	832	870	849	852	832	841	832	778	786	787	809	817	867	821	842	803	839	831,8	32,4
1200/DCT/2R	8	925	949	902	860	869	830	877	841	889	837	745	763	777	814	787	838	862	893	869	784	845,5	54,8
1230/2R	9	963	932	968	986	101 8	856	862	851	873	860	773	842	698	809	859	835	872	821	840	820	866,8	75,5
1230/2R/DCT	1 0	816	799	732	742	776	814	808	825	828	812	895	877	892	836	792	849	835	817	850	875	823,5	43,8
1230/1R/DCT/1 R	1	825	871	892	849	872	849	882	842	843	920	799	892	875	869	872	846	886	856	844	855	861,9	26,9
1230/DCT/2R	1	919	900	889	922	882	837	805	849	869	819	753	912	725	863	872	763	753	717	732	664	822,2	78,1

MICRODUREZA HK FINAL COM CARGA DE 200g

				Α					В					С					D			М	DP
1170/2R	1	775	850	703	882	815	800	879	808	815	816	744	726	760	798	660	804	830	821	861	852	799,9	57,9
1170/2R/DCT	2	806	838	847	840	834	891	892	909	779	874	864	778	884	845	792	799	698	729	696	717	815,6	66,1
1170/1R/DCT/1 R	3	944	931	854	882	865	886	982	743	101 9	916	608	581	688	567	603	868	872	851	831	849	817,0	137, 1
1170/DCT/2R	4	917	871	121 4	104 9	102 8	905	814	860	851	766	710	740	740	747	714	825	787	876	796	840	852,5	125, 8
1200/2R	5	768	860	833	834	872	877	973	870	957	899	734	783	782	802	744	797	771	789	861	837	832,3	65,3
1200/2R/DCT	6	905	920	952	929	880	825	891	894	981	102 6	800	870	795	869	822	884	999	797	896	915	892,5	65,4
1200/1R/DCT/1 R	7	986	944	901	892	820	869	928	956	913	892	859	852	828	936	844	902	928	841	847	822	888,0	48,6
1200/DCT/2R	8	845	844	104 5	870	854	942	930	923	977	874	818	866	801	877	883	833	839	875	889	875	883,0	57,2
1230/2R	9	104 1	107 3	107 0	105 2	101 6	895	916	919	873	957	841	816	820	899	845	871	821	881	899	873	918,9	86,1
1230/2R/DCT	1	786	818	758	814	771	793	811	793	840	820	910	929	935	878	916	896	839	849	845	831	841,6	53,0
1230/1R/DCT/1 R	1	899	938	856	940	929	873	875	920	806	903	944	894	881	936	815	905	863	872	923	883	892,7	39,2
1230/DCT/2R	1 2	103 4	899	947	100 5	100 2	894	872	902	854	843	926	877	917	948	958	787	840	818	805	854	899,1	68,5

MICRODUREZA HK FINAL COM CARGA DE 100g

				Α					В					С					D			М	DP
1170/2R	1	883	824	802	104 7	101 3	872	862	813	904	859	885	896	945	728	895	925	910	859	979	972	893,6	74,9
1170/2R/DCT	2	981	897	855	862	951	104 8	903	878	896	887	823	935	991	910	672	807	797	774	596	615	853,8	119, 1
1170/1R/DCT/1 R	3	936	976	107 3	947	102 4	862	108 4	898	768	857	818	866	740	578	542	949	856	100 4	979	948	885,2	144, 0
1170/DCT/2R	4	872	972	101 6	103 3	110 8	900	935	907	938	907	779	738	774	832	891	887	859	101 9	914	835	905,8	93,0
1200/2R	5	899	831	844	100 6	868	102 1	971	997	897	995	840	825	827	738	674	899	837	805	892	860	876,3	89,9
1200/2R/DCT	6	955	101 4	107 9	916	967	117 4	951	980	932	980	873	823	880	606	918	966	101 1	961	930	100 5	946,0	109, 5
1200/1R/DCT/1 R	7	889	105 6	946	940	915	103 0	100 8	918	980	102 1	964	935	916	970	692	941	964	915	948	958	945,2	73,4
1200/DCT/2R	8	921	843	100 8	853	889	938	816	972	982	102 9	993	932	974	802	874	988	960	975	108 2	975	940,3	73,6
1230/2R	a	126	109	113	118	123	954	972	895	982	940	877	975	929	760	963	848	919	810	952	100	985 7	135,

1230/2R/DCT	1 0	833	854	880	870	849	829	879	802	852	882	905	109 7	975	101 3	980	880	896	100 3	922	952	907,7	74,2	
1230/1R/DCT/1 R	1 1	103 9	991	933	103 7	913	112 7	100 1	987	999	976	863	927	880	100 8	108 9	843	857	938	101 6	961	969,2	76,1	
1230/DCT/2R	1 2	115 6	115 2	122 4	115 4	119 1	892	958	101 3	939	951	101 9	100	102	835	101 9	946	992	849	800	762	993,8	131, 3	

AICRODUREZA	HK EINIAI	COMICARGA	DE 50a

				Α					В					С					D			М	DP
1170/2R	1	902	986	970	112 6	995	919	101 6	939	103 4	988	771	811	955	786	103 2	916	929	110 5	103 6	106 1	963,9	96,7
1170/2R/DCT	2	834	104 9	832	820	925	969	876	126 4	117 5	980	967	664	826	868	956	735	883	847	780	817	903,3	141, 3
1170/1R/DCT/1 R	3	112 2	992	985	913	104 1	909	103 6	902	977	960	580	511	616	642	555	860	828	888	898	113 7	867,5	188, 5
1170/DCT/2R	4	112 1	110 7	137 3	110 6	929	972	103 5	811	909	957	676	709	864	643	752	101 3	886	101 6	958	934	938,7	173, 3
1200/2R	5	106 1	973	108 4	104 5	899	927	944	113 7	119 4	129 9	653	844	900	856	768	110 6	795	858	962	109 4	969,8	157, 9
1200/2R/DCT	6	111 3	109 8	965	111 9	100 4	118 2	104 6	109 3	121 9	109 8	911	844	950	909	962	106 1	102 6	101 3	104 4	957	1030, 9	95,4
1200/1R/DCT/1 R	7	104 1	946	106 4	112 0	954	955	119 4	983	105 7	927	893	993	974	986	906	830	108 8	109 6	123 3	110 0	1017, 0	102, 5
1200/DCT/2R	8	101 5	702	826	908	943	933	109 7	100 8	120 9	105 6	985	985	117 6	957	107 5	108 0	110 7	113 2	101 5	102 1	1011, 4	117, 9
1230/2R	9	157 0	152 1	155 4	161 9	142 4	898	861	102 4	103 3	101 8	884	884	730	106 6	101 3	986	109 9	119 8	995	103 2	1120, 5	267, 7
1230/2R/DCT	1 0	878	832	878	764	820	852	891	967	927	855	885	117 9	108 4	920	108 1	953	958	111 1	914	888	931,8	106, 6
1230/1R/DCT/1 R	1	104 5	106 6	980	115 1	955	933	112 2	102 9	115 0	107 3	107 5	932	100 8	780	950	992	118 3	100 7	105 2	100 0	1024, 2	93,5
1230/DCT/2R	1	792	129 0	117 0	116 9	925	969	883	943	100 9	939	962	117 4	108 0	103 7	106 5	127 0	111 1	980	971	936	1033, 8	130, 5

MICRODUREZA HK FINAL COM CARGA DE 25g

				A					В					С					D			М	DP
1170/2R	1	121 2	114 7	149 4	125 7	119 3	103 3	109 3	102 5	651	978	913	105 3	844	108 1	949	983	651	112 4	979	894	1027, 7	195, 3
1170/2R/DCT	2	869	118 6	897	846	113 4	110 9	109 8	973	902	112 4	884	925	554	763	890	911	901	879	804	126 6	945,9	165, 4
1170/1R/DCT/1 R	3	106 9	109 4	801	124 0	112 1	888	111 8	119 4	483	180 2	794	467	524	644	529	100 0	102 7	100 0	883	973	932,6	318, 4
1170/DCT/2R	4	773	117 4	108 8	928	133 9	879	983	115 1	102 7	905	863	677	912	713	973	106 3	136 0	116 8	102 6	140 0	1020, 2	203, 3
1200/2R	5	116 0	116 3	145 6	946	943	132 9	140 7	977	125 1	105 0	775	940	819	712	867	107 9	111 5	113 5	121 4	113 2	1073, 6	203, 5
1200/2R/DCT	6	999	899	948	109 4	103 7	146 0	115 8	917	103 3	123 5	870	753	112 8	943	105 8	118 3	111 3	101 6	112 4	111 4	1054, 0	152, 2
1200/1R/DCT/1 R	7	139 0	105 0	904	692	994	118 2	116 7	102 4	641	109 5	906	932	121 9	105 9	860	113 2	113 0	117 2	120 5	130 3	1052, 8	189, 8
1200/DCT/2R	8	839	101 1	108 6	841	105 9	120 9	875	795	118 4	101 1	106 9	105 2	979	933	993	123 5	112 5	114 4	114 6	109 9	1034, 3	127, 7
1230/2R	9	140 0	115 4	141 4	131 9	109 4	998	105 4	944	991	108 9	851	920	102 9	966	112 3	107 0	121 8	100 2	117 8	100 4	1091, 0	153, 0
1230/2R/DCT	1	855	986	906	103 4	756	117 0	861	104 8	113 0	129 1	758	973	111 3	107 9	882	107 2	126 2	896	111 6	121 8	1020, 2	157, 7
1230/1R/DCT/1 R	1	115 5	859	993	100 3	104 4	112 3	118 7	103 8	109 3	102 6	106 9	101 8	867	137 1	681	117 6	124 3	938	125 9	117 6	1066, 0	157, 8
1230/DCT/2R	1 2	105 2	110 9	118 6	119 1	153 6	862	827	894	840	908	114 7	101 2	112 8	119 1	987	147 9	134 2	106 7	953	105 4	1088, 3	197, 6

ANEXO J – Resultados e análise do Impacto Charpy considerando todos as medições

		Α	В	С	D	MÉDIA ARITMÉTI CA	DESVIO PADRÃO
1	1170/2R	5,0	14,5	11,5	26,5	14,4	9,0
2	1170/2R/DCT	12,0	18,0	24,0	17,0	17,8	4,9
3	1170/1R/DCT/1R	19,0	8,0	22,5	21,5	17,8	6,7
4	1170/DCT/2R	16,5	19,0	18,0	14,0	16,9	2,2
5	1200/2R	12,0	15,5	13,0	18,0	14,6	2,7
6	1200/2R/DCT	15,5	12,5	17,5	11,0	14,1	2,9
7	1200/1R/DCT/1R	18,0	17,0	16,0	19,5	17,6	1,5
8	1200/DCT/2R	17,5	18,5	22,0	19,0	19,3	1,9
9	1230/2R	12,5	20,0	17,0	20,0	17,4	3,5
10	1230/2R/DCT	16,0	16,5	15,5	9,0	14,3	3,5
11	1230/1R/DCT/1R	15,5	16,5	14,5	12,0	14,6	1,9
12	1230/DCT/2R	11,5	14,5	15,5	14,5	14,0	1,7

TRATAMENTO TÉRMICO	MÉDIA ARITMÉTICA	DESVIO PADRÃO	COEFICIENTE DE VARIAÇÃO	AUMENTO EM RELAÇÃO AO TRATAMENTO TÉRMICO CONVENCION AL
1170/2R	14,4	-	-	-
1170/2R/DCT	17,8	4,9	28%	23%
1170/1R/DCT/ 1R	17,8	6,7	38%	23%
1170/DCT/2R	16,9	2,2	13%	17%
1200/2R	14,6	-	-	-
1200/2R/DCT	14,1	2,9	21%	-3%
1200/1R/DCT/ 1R	17,6	1,5	8%	21%
1200/DCT/2R	19,3	1,9	10%	32%
1230/2R	17,4	-	-	-
1230/2R/DCT	14,3	3,5	25%	-18%
1230/1R/DCT/ 1R	14,6	1,9	13%	-16%
1230/DCT/2R	14,0	1,7	12%	-19%

ANEXO K – Perda de massa após ensaio de desgaste abrasivo

Resumo

		25 cicl	os	50 cicl	os	100 cio	clos	200 cio	clos	300 cic	los
AMOSTRA	ROTA	MÉDIA DE % DE PERDA DE MASSA	DP								
1	1170/2R	0,096	0,020	0,121	0,022	0,162	0,035	0,235	0,039	0,293	0,033
2	1170/2R/DCT	0,093	0,019	0,112	0,017	0,139	0,014	0,197	0,019	0,255	0,022
3	1170/1R/DCT/1R	0,089	0,007	0,121	0,024	0,154	0,032	0,212	0,041	0,269	0,050
4	1170/DCT/2R	0,088	0,008	0,108	0,010	0,146	0,011	0,218	0,023	0,281	0,038
5	1200/2R	0,086	0,009	0,109	0,009	0,145	0,015	0,218	0,021	0,291	0,018
6	1200/2R/DCT	0,095	0,007	0,118	0,010	0,157	0,015	0,231	0,028	0,304	0,022
7	1200/1R/DCT/1R	0,088	0,007	0,115	0,013	0,147	0,023	0,209	0,028	0,269	0,039
8	1200/DCT/2R	0,082	0,010	0,101	0,016	0,128	0,020	0,181	0,028	0,237	0,030
9	1230/2R	0,098	0,013	0,126	0,016	0,163	0,020	0,226	0,035	0,277	0,041
10	1230/2R/DCT	0,093	0,024	0,114	0,026	0,152	0,033	0,205	0,046	0,249	0,056
11	1230/1R/DCT/1R	0,083	0,006	0,104	0,007	0,142	0,019	0,214	0,029	0,282	0,029
12	1230/DCT/2R	0,088	0,014	0,112	0,017	0,152	0,035	0,210	0,043	0,261	0,045

		MASSA INICIAL AMOSTR A "A"	MASSA INICIAL AMOSTR A "B"	MASSA INICIAL AMOSTR A "C"	MASSA INICIAL AMOSTR A "D"	MASSA DE "A" APÓS 25 CICLO S	MASSA DE "B" APÓS 25 CICLO S	MASSA DE "C" APÓS 25 CICLO S	MASSA DE "D" APÓS 25 CICLO S	% DE PERDA DE MASSA PARA AMOSTR A "A"	% DE PERDA DE MASSA PARA AMOSTR A "B"	% DE PERDA DE MASSA PARA AMOSTR A "C"	% DE PERDA DE MASSA PARA AMOSTR A "D"	MÉDIA DE % DE PERD A DE MASS A	DESVIO PADRÃ O
1170/2R	1	10,8743	10,3981	10,2336	10,4247	10,864	10,389	10,2208	10,4165	0,095	0,088	0,125	0,079	0,096	0,020
1170/2R/DCT	2	11,646	10,2411	10,4167	10,3078	11,632	10,2323	10,4075	10,2998	0,120	0,086	0,088	0,078	0,093	0,019
1170/1R/DCT/1 R	3	10,5367	10,2951	10,2565	10,6239	10,5271	10,2852	10,2477	10,6153	0,091	0,096	0,086	0,081	0,089	0,007
1170/DCT/2R	4	10,5277	10,3362	10,2932	10,3683	10,5174	10,3275	10,284	10,36	0,098	0,084	0,089	0,080	0,088	0,008
1200/2R	5	10,5367	10,2424	10,2634	10,526	10,5269	10,2326	10,2554	10,5177	0,093	0,096	0,078	0,079	0,086	0,009
1200/2R/DCT	6	10,3268	10,2939	10,2251	10,4589	10,3159	10,2845	10,2159	10,449	0,106	0,091	0,090	0,095	0,095	0,007
1200/1R/DCT/1 R	7	10,4023	10,2923	10,0537	10,5323	10,3921	10,2837	10,0454	10,5231	0,098	0,084	0,083	0,087	0,088	0,007
1200/DCT/2R	8	10,4711	10,4684	10,3132	10,2797	10,4624	10,461	10,3035	10,2715	0,083	0,071	0,094	0,080	0,082	0,010
1230/2R	9	10,2515	10,4748	10,4998	10,6134	10,2398	10,4641	10,4907	10,6039	0,114	0,102	0,087	0,090	0,098	0,013
1230/2R/DCT	1	10,8778	10,2486	10,3993	10,3245	10,8644	10,2381	10,3915	10,3171	0,123	0,102	0,075	0,072	0,093	0,024
1230/1R/DCT/1 R	1	10,5297	10,2598	10,2948	10,2873	10,5206	10,2515	10,2857	10,2795	0,086	0,081	0,088	0,076	0,083	0,006
1230/DCT/2R	1 2	10,3225	10,4061	10,285	10,5298	10,3132	10,3975	10,2741	10,522	0,090	0,083	0,106	0,074	0,088	0,014

ENSAIO DE DESGASTE ABRASIVO 50 CICLOS

		MASSA INICIAL AMOSTR A "A"	MASSA INICIAL AMOSTR A "B"	MASSA INICIAL AMOSTR A "C"	MASSA INICIAL AMOSTR A "D"	MASSA DE "A" APÓS 50 CICLO S	MASSA DE "B" APÓS 50 CICLO S	MASSA DE "C" APÓS 50 CICLO S	MASSA DE "D" APÓS 50 CICLO S	% DE PERDA DE MASSA PARA AMOSTR A "A"	% DE PERDA DE MASSA PARA AMOSTR A "B"	% DE PERDA DE MASSA PARA AMOSTR A "C"	% DE PERDA DE MASSA PARA AMOSTR A "D"	MÉDIA DE % DE PERD A DE MASS A	DESVIO PADRĂ O
1170/2R	1	10,8743	10,3981	10,2336	10,4247	10,8615	10,3868	10,2179	10,4138	0,118	0,109	0,153	0,105	0,121	0,022
1170/2R/DCT	2	11,646	10,2411	10,4167	10,3078	11,63	10,2302	10,4060	10,2974	0,137	0,106	0,103	0,101	0,112	0,017
1170/1R/DCT/1 R	3	10,5367	10,2951	10,2565	10,6239	10,5204	10,283	10,2452	10,6133	0,155	0,118	0,110	0,100	0,121	0,024
1170/DCT/2R	4	10,5277	10,3362	10,2932	10,3683	10,5149	10,3258	10,282	10,3577	0,122	0,101	0,109	0,102	0,108	0,010
1200/2R	5	10,5367	10,2424	10,2634	10,526	10,5241	10,231	10,2533	10,5148	0,120	0,111	0,098	0,106	0,109	0,009
1200/2R/DCT	6	10,3268	10,2939	10,2251	10,4589	10,3131	10,2822	10,2137	10,4468	0,133	0,114	0,111	0,116	0,118	0,010
1200/1R/DCT/1 R	7	10,4023	10,2923	10,0537	10,5323	10,3884	10,2814	10,0426	10,5209	0,134	0,106	0,110	0,108	0,115	0,013
1200/DCT/2R	8	10,4711	10,4684	10,3132	10,2797	10,4596	10,4598	10,3011	10,2698	0,110	0,082	0,117	0,096	0,101	0,016
1230/2R	9	10,2515	10,4748	10,4998	10,6134	10,237	10,4604	10,4881	10,6014	0,141	0,137	0,111	0,113	0,126	0,016
1230/2R/DCT	1	10,8778	10,2486	10,3993	10,3245	10,8627	10,235	10,3888	10,3158	0,139	0,133	0,101	0,084	0,114	0,026
	1	10,5297	10,2598	10,2948	10,2873	10,5179	10,2498	10,2838	10,2771	0,112	0,097	0,107	0,099	0,104	0,007
1230/DCT/2R	1 2	10,3225	10,4061	10,285	10,5298	10,3112	10,3946	10,2711	10,52	0,109	0,111	0,135	0,093	0,112	0,017

		MASSA INICIAL AMOSTR A "A"	MASSA INICIAL AMOSTR A "B"	MASSA INICIAL AMOSTR A "C"	MASSA INICIAL AMOSTR A "D"	MASSA DE "A" APÓS 100 CICLO S	MASSA DE "B" APÓS 100 CICLO S	MASSA DE "C" APÓS 100 CICLO S	MASSA DE "D" APÓS 100 CICLO S	% DE PERDA DE MASSA PARA AMOSTR A "A"	% DE PERDA DE MASSA PARA AMOSTR A "B"	% DE PERDA DE MASSA PARA AMOSTR A "C"	% DE PERDA DE MASSA PARA AMOSTR A "D"	MÉDIA DE % DE PERD A DE MASS A	DESVIO PADRĂ O
1170/2R	1	10,8743	10,3981	10,2336	10,4247	10,8578	10,3834	10,2118	10,4101	0,152	0,141	0,213	0,140	0,162	0,035
1170/2R/DCT	2	11,646	10,2411	10,4167	10,3078	11,6275	10,2272	10,4033	10,2942	0,159	0,136	0,129	0,132	0,139	0,014
1170/1R/DCT/1 R	3	10,5367	10,2951	10,2565	10,6239	10,5157	10,2798	10,2419	10,6106	0,199	0,149	0,142	0,125	0,154	0,032
1170/DCT/2R	4	10,5277	10,3362	10,2932	10,3683	10,5108	10,3222	10,2778	10,3539	0,161	0,135	0,150	0,139	0,146	0,011
1200/2R	5	10,5367	10,2424	10,2634	10,526	10,5194	10,2276	10,2502	10,511	0,164	0,144	0,129	0,143	0,145	0,015
1200/2R/DCT	6	10,3268	10,2939	10,2251	10,4589	10,3083	10,2787	10,2102	10,4428	0,179	0,148	0,146	0,154	0,157	0,015
1200/1R/DCT/1 R	7	10,4023	10,2923	10,0537	10,5323	10,3836	10,2792	10,0391	10,5178	0,180	0,127	0,145	0,138	0,147	0,023
1200/DCT/2R	8	10,4711	10,4684	10,3132	10,2797	10,4571	10,4573	10,2975	10,2673	0,134	0,106	0,152	0,121	0,128	0,020
1230/2R	9	10,2515	10,4748	10,4998	10,6134	10,2335	10,4556	10,4846	10,5978	0,176	0,183	0,145	0,147	0,163	0,020
1230/2R/DCT	1	10,8778	10,2486	10,3993	10,3245	10,8568	10,2319	10,3853	10,3124	0,193	0,163	0,135	0,117	0,152	0,033
1230/1R/DCT/1 R	1	10,5297	10,2598	10,2948	10,2873	10,5118	10,2466	10,2806	10,2737	0,170	0,129	0,138	0,132	0,142	0,019
1230/DCT/2R	1 2	10,3225	10,4061	10,285	10,5298	10,3076	10,3909	10,2643	10,5174	0,144	0,146	0,201	0,118	0,152	0,035

		MASSA INICIAL AMOSTR A "A"	MASSA INICIAL AMOSTR A "B"	MASSA INICIAL AMOSTR A "C"	MASSA INICIAL AMOSTR A "D"	MASSA DE "A" APÓS 200 CICLO S	MASSA DE "B" APÓS 200 CICLO S	MASSA DE "C" APÓS 200 CICLO S	MASSA DE "D" APÓS 200 CICLO S	% DE PERDA DE MASSA PARA AMOSTR A "A"	% DE PERDA DE MASSA PARA AMOSTR A "B"	% DE PERDA DE MASSA PARA AMOSTR A "C"	% DE PERDA DE MASSA PARA AMOSTR A "D"	MÉDIA DE % DE PERD A DE MASS A	DESVIO PADRÃ O
1170/2R	1	10,8743	10,3981	10,2336	10,4247	10,8495	10,3742	10,2041	10,4044	0,228	0,230	0,288	0,195	0,235	0,039
1170/2R/DCT	2	11,646	10,2411	10,4167	10,3078	11,6204	10,2202	10,3975	10,2893	0,220	0,204	0,184	0,179	0,197	0,019
1170/1R/DCT/1 R	3	10,5367	10,2951	10,2565	10,6239	10,5083	10,2736	10,2367	10,6053	0,270	0,209	0,193	0,175	0,212	0,041
1170/DCT/2R	4	10,5277	10,3362	10,2932	10,3683	10,5015	10,3143	10,2707	10,3483	0,249	0,212	0,219	0,193	0,218	0,023
1200/2R	5	10,5367	10,2424	10,2634	10,526	10,5106	10,2204	10,2427	10,5042	0,248	0,215	0,202	0,207	0,218	0,021
1200/2R/DCT	6	10,3268	10,2939	10,2251	10,4589	10,2987	10,2719	10,2032	10,4354	0,272	0,214	0,214	0,225	0,231	0,028
1200/1R/DCT/1 R	7	10,4023	10,2923	10,0537	10,5323	10,3786	10,2749	10,0305	10,5104	0,228	0,169	0,231	0,208	0,209	0,028
1200/DCT/2R	8	10,4711	10,4684	10,3132	10,2797	10,4539	10,4501	10,2903	10,2629	0,164	0,175	0,222	0,163	0,181	0,028
1230/2R	9	10,2515	10,4748	10,4998	10,6134	10,2266	10,4469	10,4797	10,5917	0,243	0,266	0,191	0,204	0,226	0,035
1230/2R/DCT	1	10,8778	10,2486	10,3993	10,3245	10,8526	10,2228	10,3802	10,3089	0,232	0,252	0,184	0,151	0,205	0,046
1230/1R/DCT/1 R	1	10,5297	10,2598	10,2948	10,2873	10,5025	10,2391	10,2744	10,2668	0,258	0,202	0,198	0,199	0,214	0,029
1230/DCT/2R	1 2	10,3225	10,4061	10,285	10,5298	10,3011	10,3845	10,2577	10,5129	0,207	0,208	0,265	0,160	0,210	0,043

		MASSA INICIAL AMOSTR A "A"	MASSA INICIAL AMOSTR A "B"	MASSA INICIAL AMOSTR A "C"	MASSA INICIAL AMOSTR A "D"	MASSA DE "A" APÓS 300 CICLO S	MASSA DE "B" APÓS 300 CICLO S	MASSA DE "C" APÓS 300 CICLO S	MASSA DE "D" APÓS 300 CICLO S	% DE PERDA DE MASSA PARA AMOSTR A "A"	% DE PERDA DE MASSA PARA AMOSTR A "B"	% DE PERDA DE MASSA PARA AMOSTR A "C"	% DE PERDA DE MASSA PARA AMOSTR A "D"	MÉDIA DE % DE PERD A DE MASS A	DESVIO PADRĂ O
1170/2R	1	10,8743	10,3981	10,2336	10,4247	10,8416	10,3683	10,1997	10,3984	0,301	0,287	0,331	0,252	0,293	0,033
1170/2R/DCT	2	11,646	10,2411	10,4167	10,3078	11,6141	10,2132	10,3912	10,2842	0,274	0,272	0,245	0,229	0,255	0,022
1170/1R/DCT/1 R	3	10,5367	10,2951	10,2565	10,6239	10,5014	10,2676	10,2302	10,6010	0,335	0,267	0,256	0,216	0,269	0,050
1170/DCT/2R	4	10,5277	10,3362	10,2932	10,3683	10,4927	10,3084	10,2644	10,3433	0,332	0,269	0,280	0,241	0,281	0,038
1200/2R	5	10,5367	10,2424	10,2634	10,526	10,5032	10,2139	10,2341	10,4964	0,318	0,278	0,285	0,281	0,291	0,018
1200/2R/DCT	6	10,3268	10,2939	10,2251	10,4589	10,2924	10,2651	10,1948	10,4268	0,333	0,280	0,296	0,307	0,304	0,022
1200/1R/DCT/1 R	7	10,4023	10,2923	10,0537	10,5323	10,3723	10,2693	10,0224	10,5056	0,288	0,223	0,311	0,254	0,269	0,039
1200/DCT/2R	8	10,4711	10,4684	10,3132	10,2797	10,4473	10,4432	10,2847	10,2587	0,227	0,241	0,276	0,204	0,237	0,030
1230/2R	9	10,2515	10,4748	10,4998	10,6134	10,2215	10,4405	10,4751	10,5865	0,293	0,327	0,235	0,253	0,277	0,041
1230/2R/DCT	1	10,8778	10,2486	10,3993	10,3245	10,8518	10,2149	10,3754	10,3039	0,239	0,329	0,230	0,200	0,249	0,056
1230/1R/DCT/1 R	1	10,5297	10,2598	10,2948	10,2873	10,4955	10,2318	10,2674	10,26	0,325	0,273	0,266	0,265	0,282	0,029
1230/DCT/2R	1 2	10,3225	10,4061	10,285	10,5298	10,2951	10,3793	10,2525	10,5081	0,265	0,258	0,316	0,206	0,261	0,045