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“A landed proprietor maintains that the use of
machinery in agricultural operations, as practised

in England, is an excellent institution, since an
engine does the work of many men. You give him to

understand that it will not be very long before
carriages are also worked by steam, and that the

value of his large stud will be greatly depreciated;
and you will see what he will say.”

(Arthur Schopenhauer)





ABSTRACT

Analog integrated circuits have a high range of applications, from interface circuits to
signal processing. These systems need to be carefully designed in order to achieve a
suitable trade-off between performance and power consumption. Traditional method of
designing an analog circuit is based on trial-and-error. The designer uses his own experi-
ence for testing and modifying circuit parameters with the aid of an electrical simulator,
until achieving the desired solution. However, the process of sizing the circuit requires
several hours of design. In addition, a SPICE simulation can take a long time. The
designer needs to wait for the end of the simulation, verify the results, and from there to
do another simulation. An alternative for design automation is to abstract the circuit as
an optimization problem. Using an optimization algorithm it is possible to explore the
design space in the search for an optimum solution. This work demonstrates an optimi-
zation analysis performed with a low-voltage bulk-driven operational transconductance
amplifier. Previous works demonstrated the modeling of this circuit as an optimization
problem, but only for nominal values. However, a nominal analysis presents the per-
formance disregarding process parameter variability that affect the performance. In the
present work, we propose a design automation tool of analog integrated circuits using
yield analysis, i.e, estimating performance with Monte Carlo electrical in order to eva-
luate the impact of process variability on circuit performance. In general, optimization
algorithms present random variables (i.e., even with the same parameters, different seeds
for the random number generator function may converge to different results). In order to
further understanding this behavior, this work analyses the behavior of many executions
of the algorithm. The adjustable parameter on the present algorithm (Cuckoo Search)
is the number of nests. We performed the simulation 30 times for the same number of
nests, varying the number of nests from 10 to 490 with a total of 1470 executions. As
result, this work demonstrates a statistic analysis of all designs intending to find the best
parameters for the tool. After getting the parameters, we analysed the circuit behavior
for the worst, median and best cases, with the fixed parameter. The tool is able to design
analog integrated circuits automatically, however without a guarantee of a feasible solu-
tion. For instance, in the worst case example, the algorithm converges to an unfeasible
solution for practical terms. However, this could be mitigated with a large member of
iterations or with more than one execution. In the best case, the amplifier designed with
the optimization tool presents improvements in terms of 𝑃𝑐𝑜𝑛𝑠 (8.86nW of mean ± 0.22
of standard deviation in comparison to 18nW designed manually), PM (59.99 ∘ ± 10.15
in comparison to 52.50 ∘) and GBW (3.81kHz ± 0.65 in comparison to 1.88kHz).

Key-words: Analog IC design. Optimization algorithm. CAD tool.





RESUMO

Os circuitos analógicos integrados possuem uma ampla gama de aplicações e necessitam
ser projetados de modo a atender a requisitos conflitantes de desempenho e consumo de
energia. O método tradicional de projeto de um circuito analógico é baseado em tentativa
e erro. O projetista utiliza sua própria experiência para testar e modificar os parâmetros
até encontrar uma solução satisfatória. A análise do desempenho do circuito é feita com o
auxílio de simulação elétrica SPICE. Todavia, este processo exige muito tempo de projeto
e a simulação SPICE pode demorar um longo tempo. O projetista necessita esperar o
fim da simulação para analisar os resultados e, a partir disso, alterar os parâmetros do
circuito e fazer outra simulação. Uma alternativa para a automação do projeto é abstrair
a tarefa de dimensionamento dos circuitos como problema de otimização. Utilizam-se
algoritmos de otimização para explorar o espaço de projeto em busca de uma solução
otimizada. O presente trabalho propõe o uso de otimização para o projeto de síntese
analógica, com base em um amplificador operacional de transcondutância de ultra baixa
tensão alimentado pelo substrato. Trabalhos anteriores já foram realizados com este cir-
cuito, porém realizando apenas simulações nominais no circuito. Contudo, somente com
análise nominal não é possível determinar o comportamento do circuito sob a influência
de variações nos parâmetros do processo de fabricação. No presente trabalho, propomos
uma ferramenta para automação do projeto do circuito utilizando a análise de rendimento,
isto é, utilizando simulação Monte Carlo para estimar o rendimento do circuito após a
fabricação. Além disso, os algoritmos utilizados para a otimização de circuitos possuem
variáveis aleatórias (i.e., diferentes execuções podem divergir os resultados conforme a se-
mente da função de geração de números aleatórios, mesmo tendo os mesmos parâmetros).
Para prever este comportamento, o objeto de estudo analisa o comportamento de diversas
execuções do algoritmo Cuckoo Search. Como resultado, demonstra-se uma análise es-
tatística dos projetos. A partir desta análise, é possível escolher os melhores parâmetros
para o algoritmo. Dado os parâmetros, analisou-se o comportamento dos circuitos para
pior, mediano e melhor caso das execuções. A ferramenta consegue projetar circuitos ana-
lógicos integrados de forma automática, porém não há garantias que ela sempre converge
em um resultado viável. Por exemplo, o resultado que o algoritmo converge no pior caso
não é viável. Todavia, isso é mitigado com um grande número de execuções ou maior
número de iterações no algoritmo. No melhor caso, os resultados do projeto do amplifi-
cador projetado com a ferramenta de otimização proposta alcançou melhoria em termos
de Potência (8.86nW de média ± 0.22 de desvio padrão em comparação com 18nW em
relação ao projetado de forma manual), Margem de fase (59.99 ∘ ± 10.15 em comparação
52.50 ∘) e de produto ganho largura de banda (3.81kHz ± 0.65 em comparação 1.88kHz).

Palavras-chave: Projeto de circuitos analógico integrados. Algoritmos de otimização.
Ferramentas CAD.





LIST OF FIGURES
Figure 1 – Analog design optimization procedure. . . . . . . . . . . . . . . . . . . 24
Figure 2 – Gaussian distribution example. . . . . . . . . . . . . . . . . . . . . . . 28
Figure 3 – Example of a greedy optimization algorithm. The arrow follows the

minimum path at each iteration, trying to find the minimum point of
the function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 4 – Optimization methodology for the problem of analog sizing. . . . . . . 33
Figure 5 – Optimization procedure including statistical evaluation for best solu-

tion candidates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 6 – Schematics of a low-voltage bulk-driven OTA . . . . . . . . . . . . . . 36
Figure 7 – Cost function mean behavior according to the number of nests. . . . . 39
Figure 8 – Cost function standard deviation behavior according to the number of

nests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 9 – Cost function behavior according to the number of nests considering

the empirical rule and confidence interval. . . . . . . . . . . . . . . . . 41
Figure 10 – Cost function evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 11 – Distribution performance. . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 12 – Bode diagram of the optimized solution. . . . . . . . . . . . . . . . . . 45
Figure 13 – Phase x Frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 14 – Slew-rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46





LIST OF TABLES
Table 1 – Performance indicators. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 2 – Confidence interval. �̄� is the calculated mean via simulation. 𝐶𝐼𝑙𝑜𝑤 and

𝐶𝐼ℎ𝑖𝑔ℎ are the bounds for the mean with 99.7% of confidence. . . . . . 43





LIST OF ACRONYMS
A/D Analog-to-Digital

𝐴𝑣0 Low-frequency gain

CAD Computer-Aided Design

CS Cuckoo Search

CSA Cuckoo Search Algorithm

D/A Digital-to-Analog

EDA Electronic Design Automation

GA Genetic Algorithm

GBW Gain Bandwidth Product

GSA Gravitational Search Algorithm

ICMR Common Mode Input Voltage Range

OTA CMOS Miller Operational Transconductance Amplifier

PM Phase margin

𝑃𝑐𝑜𝑛𝑠 Power consumption

PSO Particle Swarm Optimization

SPICE Simulation Program with Integrated Circuit Emphasis

SR Slew rate





SUMMARY

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 THEORETICAL BACKGROUND . . . . . . . . . . . . . . . . 27
2.1 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Confidence interval and Empirical Rule . . . . . . . . . . . . . . 27
2.3 Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Abstraction of a problem as a cost function . . . . . . . . . . . 30
2.5 Operational amplifier case . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 PROPOSED METHODOLOGY . . . . . . . . . . . . . . . . . . 33
3.1 Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 SPICE simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Random behavior of the Algorithm . . . . . . . . . . . . . . . . 37

4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1 Statistic analysis of number of nests . . . . . . . . . . . . . . . . 39
4.2 Study case design and behavior . . . . . . . . . . . . . . . . . . . 40

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . 49





23

1 INTRODUCTION
Analog integrated circuits are very used in several applications, such as communi-

cation systems, Analog-to-Digital (A/D)/ Digital-to-Analog (D/A) converters, and inter-
face circuits. The design flow of such circuits is different from its digital counterpart. It
is required to size individually each device, such as transistors, resistors and capacitors,
for achieving the desired electrical behavior. Each analog block has its own particular
performance features, which turns the design automation more complex. Digital inte-
grated circuit design, by the other side, takes advantage of the circuit regularity and
relies on high automation level and well-established Computer-Aided Design (CAD) tools
(GRAEB, 2007).

Traditional analog design methodology uses Simulation Program with Integrated
Circuit Emphasis (SPICE) simulator (GRAEB, 2007) to estimate circuit performance
without having to build the physical system. With a SPICE tool, it is possible to perform
electrical simulation for a given process technology. Thus, a designer can estimate the
features of the designed circuit and verify whether or not it is necessary to change some
parameter to improve performance (ANTOGNETTI; MASSOBRIO, 1990). Therefore,
the traditional trial-and-error procedure of sizing an integrated circuit consists in manual
sizing each component of the system followed by electrical simulations using SPICE tool.
The experience of the designer is fundamental in this case, since the search for a sized
circuit with good performance is dependent on the ability to adjust the correct design
parameters. However, an electrical simulation may take days or even months depending on
the project complexity. The designer needs to wait this simulation finish for trying a new
solution. Furthermore, it becomes increasingly difficult to find qualified professionals to
size complex circuits in a short design time and with a high degree of reliability (BALKIR;
DÜNDAR; ÖGRENCI, 2003).

An alternative to the manual design methodology is to abstract the problem into
an optimization procedure. The circuit is modeled as a non-linear optimization problem
in which devices sizes are the free variables. Each feature of the circuit is simulated by a
SPICE tool and a cost function evaluates the circuit performance. From the cost function,
the optimization algorithm perturbs the design parameters until the circuit performance
converges to an optimal point. In the literature, it is possible to find optimization al-
gorithms applied to this problem, such as Genetic Algorithm (GA) (JAFARI; SADRI;
ZEKRI, 2010), Cuckoo Search (CS) (FORTES; SILVA; GIRARDI, 2018) and hybrid ap-
proaches with Particle Swarm Optimization (PSO), and Gravitational Search Algorithm
(GSA) (MALLICK et al., 2017).

Figure 1 depicts a simplified process of analog design optimization using a CAD
tool. The optimization method initialize randomly the design parameters and sends the
circuit to the SPICE tool for simulation. The SPICE tool simulates and returns the
output to the cost function that evaluates the result. If the stop criterion is not achieved,
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the optimization method perturbs the design parameters and sends the circuit again to
the simulator. The stop criterion can be defined as the number of runs or the minimal
variation of the cost function. At the end, the algorithm returns the best circuit found
thus far. This process is more detailed in Chapter 2.

Figure 1 – Analog design optimization procedure.
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Source: the author.

The technology used on analog integrated circuits has a high degree of variability
in their physical parameters. The variability affects directly circuit performance. For
example, if a performance specification (e.g. low-frequency voltage gain) in a circuit
has nominal value of 60 dB and standard deviation of 5 dB, and considering a normal
distribution, we can calculate that the fabricated units having this specification ranges
its values from 45 dB to 75 dB in 99.7% of the cases. Thus, this work also considers the
variability of each performance specification.

A SPICE tool can estimate performance specification using different methods.
The first method is with a nominal simulation, performing the simulation for only one
sample, disregarding the variability of a circuit production. Other method is the corner
simulation, to estimate the worst case (e.g., estimating that 99% circuits instances are
above a value). It is a good approach for getting a circuit yield estimation. However, the
corner parameters are, in general, extracted for digital circuits and might show a false
worst case for analog integrated circuits because it tends to overestimate performance in
the extreme cases. Finally, the method that shows the behavior of many circuits is with
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the Monte Carlo simulation, performing the simulation of many samples and considering
the variability procedure.

The Monte Carlo simulation randomly selects values for variables within a given
range for estimating the system performance. The result is a Gaussian distribution curve
that describes the output according to the variation of these variables. It has been applied
to a diversity of problems such as in biology for estimating the likelihood of an individual
having any disease, or in finance to estimate the risk of financial investment (BINDER
et al., 1993). For analog integrated circuit design, Monte Carlo is used for simulating the
performance of a circuit under process parameter variability. It is necessary to moderate
the use of Monte Carlo simulation because each simulation can take days or even months.
For example, if the number of Monte Carlo simulations is 1000, it is necessary to repeat
SPICE simulations 1000 times with different values for process parameters (GRAEB,
2007). Thus, it is necessary to reduce the time spent with Monte Carlo simulations when
exploring the search space. A strategy is to make pre-estimation of circuit performance
with nominal parameters (with only one sample, without Monte Carlo). If the nominal
simulation has an impracticable result, the Monte Carlo is not considered, otherwise it
evaluates the Monte Carlo simulation.

This work evaluates the circuit described by (FERREIRA; SONKUSALE, 2014)
automatically exploring and evaluating the design space. For this purpose, the work
consists of modeling the analog sizing problem as an optimization problem and solving
it, intending to search a feasible solution. Part of the work is a spin-off of the work of
(FORTES; SILVA; GIRARDI, 2018), which intends to use algorithms for sizing analog
integrated circuits with better performance compared to the manual sizing. The contri-
bution of this work is the insertion of statistical analysis in the optimization loop for the
search of solutions under process parameter variability. Also in this work, the tool was
coded in Python.

This work is organized as follows: Chapter 2 provides a background of the methods,
algorithms and related works used for the development of this work; Chapter 3 describes
the methodology used for this work; Chapter 4 shows the results of the performance of
this work; and, finally, Chapter 5 presents the final remarks.
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2 THEORETICAL BACKGROUND
This chapter gives a background about the statistical methods, optimization algo-

rithms, problem modeling and the state of art of Electronic Design Automation (EDA)
tools for optimum sizing of analog integrated circuits.

2.1 Monte Carlo

The analog integrated systems projects are influenced by the variability procedure.
Circuits with the same size, dimensions, project specifications and even from the same
manufacturing round tends to present different performance. This occurs because of the
randomness nature of some components (i.e., process parameter variability). Considering
this variability, only one circuit instance is not enough to represent the circuit behavior.
Many simulations considering the process parameter variability for a specification perfor-
mance could demonstrate this behavior statistically with the evaluation of the solution
quality.

Monte Carlo simulation is the basis for the methods used to estimate performance
of many circuits samples considering the distribution of a parameter under process vari-
ability. It is possible to obtain mean values and standard deviation of each performance
feature. This simulation is used to generate the distribution of a function from random
values (BINDER et al., 1993).

The random sampling is the simplest method to generate samples based on pseudo-
random numbers. Basically, given constraints and bounds, the Random Sampling method
generate a set of valid inputs. With these inputs it is possible to extract performance
specifications from different circuit simulations. The random sampling tends to generate
reliable solutions (similar to the real world), but requires many runs, which takes a lot of
time to simulate.

2.2 Confidence interval and Empirical Rule

The Monte Carlo algorithm is designed to achieve a Gaussian distribution (BIN-
DER et al., 1993). The analog integrated circuits in the manufacturing process tends to
have the same behavior of this distribution. The Gaussian distribution is characterized
by a greater quantity of samples close to a median value and a small quantity close to the
left and right limits. Figure 2 presents an example of Gaussian distribution with standard
deviation (𝜎 = 1) and sample mean (�̄� = 0). The majority of the samples tends to the
mean (0). There are other rare samples distant from the mean. The sum or multiplication
between Gaussian distributions result in another Gaussian distribution. Thus, the final
distribution presents the same pattern of the original distribution.

For an analog integrated circuit design, it is necessary to know this behavior given a
performance specification distribution (LUO et al., 2008). The empirical rule is a reliable
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Figure 2 – Gaussian distribution example.
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method to estimate the project behavior. According to the rule, 68% of the samples
𝑥 are on the interval �̄� − 𝜎 ≤ 𝑥 ≤ �̄� + 𝜎. 95% of the samples 𝑥 are on the interval
�̄�−2 ·𝜎 ≤ 𝑥 ≤ �̄�+2 ·𝜎. 99.7% of the samples 𝑥 are on the interval �̄�−3 ·𝜎 ≤ 𝑥 ≤ �̄�+3 ·𝜎
(PUKELSHEIM, 1994).

Even knowing the variability, there are another issue: the obtained mean is diffe-
rent from the real mean. This occurs because a random procedure with a finite number
of samples could not represent perfectly a distribution. A larger number of samples tends
to mitigate this problem. However, it is necessary to estimate this error. It can be done
by estimating the confidence interval (CI, 1987). This rule defines the probability of the
mean to be inside a given range. Equation 2.1 shows how it can be obtained:

𝐶𝐼 = �̄� ± 𝑡
𝜎√
𝑛

(2.1)

Here, 𝜎 is the standard deviation, �̄� is the mean, 𝑛 is the number of samples and
𝑡 is a variable calculated according the confidence level. Equation 2.2 shows an example
for calculating the confidence interval with 95% of confidence:

𝐶𝐼 = 1.77 ± 1.960.24√
30

(2.2)

Here, the sample is equals to 1.77 (�̄� = 1.77). The variable 𝑡 = 1.96 because it is
the value determined for 95% of confidence (CI, 1987). The standard deviation is equals
to 0.24 (𝜎=0.24). Finally, N=30 because it is the sample size. The result presents two
confidence intervals. The low confidence interval equals to 1.68 and the high confidence
interval equals to 1.86.
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2.3 Optimization Algorithms

An optimization algorithm is used to search for a solution into a quantifiable
problem. There are some classic optimization algorithms such as gradient descent and hill
climbing (RUDER, 2016) (GOLDFELD; QUANDT; TROTTER, 1966). They are known
as greedy methods, because they make a better choice at each step as they attempt to find
the overall optimal way to solve the entire problem. These algorithms only guarantees
the best solution in convex functions that have only a global minimum.

The Figure 3 illustrates a greedy algorithm behavior in a non-convex function.
The algorithm (arrow) starts on random a point, following the minimum path, trying to
find the minimum point of the function. In this case, the objective is to find the smallest
possible value. Considering Figure 3, the algorithm may converge to the best solution,
starting from a point less than zero (horizontal axis). However, it may converge to a local
minimum if it starts from a point grater than 0. It occurs because the function is non-
convex and have a global minimum (in some cases more than one with the same values)
and a local minimum, making it difficult to find the global minimum. The problem of
analog circuit sizing is non-convex. Thus, greedy methods such as the gradient descent
may converge to a local minimum.

Figure 3 – Example of a greedy optimization algorithm. The arrow follows the minimum
path at each iteration, trying to find the minimum point of the function.

Source: the author

There are in the literature other methods capable of find the best global solution,



30 Chapter 2. Theoretical background

such as Simplex (NELDER; MEAD, 1965). However, the Simplex method only guarantees
the best solution in linear equations, which is not the case of analog integrated circuits.
Even, it is possible to find in the literature algorithms for non-linear functions similar to
Simplex methods. However, these similar methods require an equation to find the solution.
In analog sizing, we can not model circuit performance features in simple equations, we
can only estimate them from simulation. Even knowing the equations, they are very
complex, making them unfeasible to solve the problem from an optimization method
based on analytical equations.

Another way to optimize non-linear problems is via a heuristic. This procedure find
a solution without guarantee to find the best solution. However, the generated solution
might be close to the optimum. Some heuristics are capable to escape from a local
minimum, such as Evolutionary Algorithms, Cuckoo Search and Simulated Annealing
(ZITZLER; DEB; THIELE, 2000) (LAARHOVEN; AARTS, 1987) (YANG; DEB, 2009).

2.4 Abstraction of a problem as a cost function

Circuit sizing optimization problem can be modeled as a cost function. The op-
timization algorithm is responsible for minimizing this cost function, which can be an
abstraction of a real problem in terms of circuit variables and performance features. The
weight of each performance feature can be defined by the user, by the tool or even ran-
domly. An example of cost function is shown in Equation 2.3 with a quantity of 𝑁 features
(𝑥𝑖), each one with a weight 𝑤𝑖 in which 𝑖 is the index of each specification performance
representation. This is a weighted average sum of performance features.

𝑐𝑜𝑠𝑡 =
𝑁∑︁

𝑖=0
(𝑤𝑖 · 𝑥𝑖) (2.3)

Other example is according the sum of performance features 𝑥𝑖 normalized by a
reference parameter (divided by a reference value �̂�𝑖) as described on Equation 2.4. In
this work, the reference (�̂�𝑖) means the results obtained by (FERREIRA; SONKUSALE,
2014) with the same circuit description. This cost function presents the same instance of
Equation 2.3. However, with the normalized terms, the equation tends to have similar
weights to the cost function compared to arbitrary weights.

𝑐𝑜𝑠𝑡 =
𝑁∑︁

𝑖=0
(𝑥𝑖

𝑥𝑖

) (2.4)

For evaluating the cost function of the Monte Carlo simulation it is required to use
other approach for considering process variations that influence the performance features.
An example is using the empirical rule. According to this rule: 68% of all samples are
between �̄�𝑖 −𝜎𝑖 and �̄�𝑖 +𝜎𝑖, 95% are between �̄�𝑖 −2𝜎𝑖 and �̄�𝑖 +2𝜎𝑖, and 99.7% are between
�̄�𝑖 − 3𝜎𝑖 and �̄�𝑖 + 3𝜎𝑖 (PUKELSHEIM, 1994). Using the empirical rule with Equation 2.4
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it is possible to define Equation 2.5 that is the main way for evaluating the cost function
in the present work.

𝑐𝑜𝑠𝑡 =
𝑁∑︁

𝑖=0
( �̄�𝑖 + 3𝜎𝑖

�̂�𝑖

) (2.5)

The example illustrated on Equation 2.4 is only for objective functions. However,
in an optimization problem, there are also some hard constraints (features that could not
exceed a threshold and do not contribute to the cost function), or soft constraints (when
the condition is not satisfied, the objective cost function is penalized). In this work, we
considered only soft constraints. Equation 2.6 represents a soft constraint function, in
this case, 𝑦 is the constraint feature and 𝑠𝑜𝑓𝑡𝑐𝑜𝑛𝑠 is the function that, given a constraint,
returns if the cost function should be penalized.

𝑠𝑜𝑓𝑡𝑐𝑜𝑛𝑠(𝑦) = 𝑦 𝑖𝑓(𝑦 > 𝑦);

0 𝑖𝑓(𝑦 ≤ 𝑦)
(2.6)

Equation 2.7 shows the final cost function, including objective and soft constraints.
The 𝑥 variable represents the performance features and 𝑦 represents the constraints.

𝑐𝑜𝑠𝑡 =
𝑁∑︁

𝑖=0
( �̄�𝑖 + 3𝜎𝑖

�̂�𝑖

) +
𝑁∑︁

𝑖=0
(𝑠𝑜𝑓𝑡𝑐𝑜𝑛𝑠(𝑦𝑖 + 3𝜎𝑖)

𝑦𝑖

) (2.7)

2.5 Operational amplifier case

An example of analog integrated circuit to be sized is the operational amplifier.
The purpose of this circuit is to amplify an input signal with low distortion and low
power consumption. It is also used for building filters, A/D and D/A converters and
other systems.

There are some design parameters that impacts directly on circuit performance of
operational amplifiers. They depend on the manufacturing technology used to design the
circuit. In general, design parameters of the operational amplifier are transistors width
and length, current source values, capacitor values and resistor values. The variation
of these parameters impacts directly the circuit performance and behavior with external
sources. These parameters are modeled as input of the algorithm described in Section
2.3.

Circuit performance is measured by area, power consumption, GBW, Low-frequency
gain (𝐴𝑣0), PM, Slew rate (SR), Output Swing, Common Mode Input Voltage Range
(ICMR), among others. Performance features can be divided in constraint specificati-
ons and objective specifications. Constraint specifications are the performance features
that are bounded by a max/min value, but do not need to be optimized. The objective
specifications are that ones that must be maximized (or minimized) in the optimiza-
tion procedure (GRAY; MEYER, 1982). For example, the designer can determine that
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power consumption must achieve the smallest possible value (objective specification) and
low-frequency gain must be higher than 60 dB (constraint specification). As far as a
low-frequency gain higher than 60 dB does not contribute to the reduction of the cost
function, the search for a smaller power consumption continues regardless of its current
value. These performances are combined in a single value by the evaluation of the cost
function, as described in Section 2.4, and modeled as the output of the algorithm described
in Section 2.3.

2.6 Related work

There are some research effort towards analog sizing optimization described in the
literature.

The WiCkeD framework proposes the use of worst-case analysis for searching op-
timum solutions in a high-dimensional design space. It is suitable for designing robust
circuits under the effect of process variability. However, specific design models need to be
available for the target process technology (GRAEB, 2007) (ANTREICH et al., 2000).

The UCAF tool is another system for sizing analog circuits automatically. The
method used to search for the best solution is the yield analysis. With this method it is
possible to optimize a circuit with few interactions with the designer. UCAF uses HSPICE
tool for electrical simulation, which provides models that guarantees the operation in all
device regions (SEVERO; KEPLER; GIRARDI, 2015). The present work is also based
on this tool.

The Γ (Gamma) framework provides a sizing tool which uses a look-up table (LUT)
method that is faster to converge to a solution than SPICE simulation and, according
to the authors, has an accuracy similar to that of a SPICE simulation. However, this
technique requires a set of equations exclusive for the target process technology. So, the
migration for a new technology demands the algorithm to be rewritten. In addition, the
tool does not allow a fully automated circuit analysis, requiring the expertise of a designer
(STATTER; CHEN, 2016a) (STATTER; CHEN, 2016b).

Also, we can find in the literature the use of some algorithms for circuit optimi-
zation. (DEHBASHIAN; MAYMANDI-NEJAD, 2017) proposes an hybrid approach for
analog integrated circuits optimization. An hybrid algorithm using concepts of PSO and
GSA is responsible for the optimization. The algorithm is responsible for the reduction of
power consumption and area in a two-stage CMOS op-amp. That work uses the HSPICE
tool to simulate the circuits. (MALLICK et al., 2017) also proposes the same algorithm
for optimization. The work proposes the optimization of two circuits: the differential
amplifier circuit with current mirror load and the two-stage operational amplifier circuit.
For simulation, it uses the Spectre tool. (SASIKUMAR; MUTHAIAH, 2017) proposes
a hybrid approach of the PSO and GA. In this case, it is not used a SPICE tool for
performance evaluation. Equations are responsible for estimating the circuit behavior.
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3 PROPOSED METHODOLOGY
The methodology proposed in this work consists in modeling the analog sizing

problem as an optimization problem and searching the design space for a near-optimum
solution. Figure 4 depicts the adopted procedure. The designer selects the desired cir-
cuit topology and defines the design requirements, which are the circuit specifications
that must be pursued. Using the target technology device parameters, an optimization
algorithm performs the design space exploration searching for a circuit that attends the
requirements.

Figure 4 – Optimization methodology for the problem of analog sizing.
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Figure 5 illustrates more details about the optimization procedure illustrated in
Figure 4. The optimization method initializes randomly the design parameters and sends
the circuit description to the SPICE tool for simulation. The simulated circuit is returned
and the cost function is evaluated. If the simulation presents a feasible performance,
the algorithm applies a Monte Carlo simulation. Otherwise, the algorithm considers
a high-cost solution, without applying Monte Carlo. The strategy of applying Monte
Carlo only to feasible solutions reduces considerably the total optimization time, avoiding
unnecessary Monte Carlo simulations. After an iteration, if the stop criterion is not
achieved, the optimization method perturbs the design parameters and sends the new
circuit again to the simulator. The stop criterion can be defined as the maximum number
of iterations or the minimal variation of the cost function, for example. At the end, the
algorithm returns the best found circuit solution.

The optimization procedure is implemented as a script written in Python as descri-
bed in Figure 5. Basically it is responsible for: a) randomly select the project parameters;
b) run SPICE simulation with these parameters; c) read the simulation output; d) calcu-
late each performance feature with the results of the output simulation; e) calculate the
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Figure 5 – Optimization procedure including statistical evaluation for best solution can-
didates.
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cost function; f) return the best found cost if reached the stop criterion.

3.1 Optimization Algorithm

The optimization algorithm is responsible for perturbing design parameters since
the circuit is abstracted as an optimization problem. The chosen algorithm is the Cuckoo
Search, due to its simplicity and efficiency (YANG; DEB, 2009).

The Cuckoo Search Algorithm (CSA) is based on the behavior of a bird species
denominated cuckoo. The cuckoo put its eggs in nests belonging to other birds. It tries
to minimize the probability of the host bird discovers the intruder egg by imitating its
characteristics. In this case, an egg is an abstraction of a calculated cost. The good costs
represent the survivor eggs. In addition, the algorithm uses the concept of Lévy flight for
exploring the design space.

Algorithm 1 demonstrates the CSA via Lévy flights. Given a cost function, the
algorithm generates a random population (i.e., a vector of costs obtained from random
inputs applied to the function). After, the algorithm starts a loop intending to find a
solution, repeating while a stop criterion is not archived. The algorithm obtains new
solutions from the Lévy flight as following:

r𝑘(𝑡 + 1) = r𝑘(𝑡) + 𝛼 · 𝐿é𝑣𝑦(𝜆) (3.1)

Here, 𝑟𝑘(𝑡) is the current iteration, 𝑟𝑘(𝑡 + 1) is the next iteration and 𝛼 is a scalar
that defines the step between each iteration. This equation is multiplied by the Lévy
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Algorithm 1 Cuckoo Search via Lévy Flights
Objective Function 𝑓𝑐(r), r = (𝑟1, ..., 𝑟𝑑);
Generate initial population of 𝑁 host nests 𝑋𝑘(𝑘 = 1, 2, ..., 𝑁);
while (NOT reaching the stop criteria) do

Obtain new solutions by Lévy flights;
Evaluate the quality of 𝑓𝑐𝑘

;
Choose randomly a ℎ nest between 1, ..., 𝑁 ;
if 𝑓𝑐𝑘

> 𝑓𝑐ℎ
then

Replace ℎ by the new solution;
end if
Replace a fraction (𝑝) of the worst nests;
Keep the best solutions of each nest;
Sort the nests by cost;

end while

function with a step size 𝜆. The Lévy flight step is defined by Equation 3.2.

𝑝(𝑙) = 𝑙𝜆 (3.2)

In this case, 1 < 𝜆 < 3 and 𝑙 are the steps in each iteration. In other words,
Equation 3.1 with the Lévi flight is basically a random walking with a power function as
step.

After the obtained solution set via Lévy flight, the algorithm evaluates the quality
of these solutions. Then, the procedure chooses randomly a nest. If the new solution
is better than the previous, it replaces the current solution by the previous. The best
solution for each nest is maintained. Finally, the algorithm sorts the nests by their costs.

3.2 SPICE simulation

The SPICE simulation is responsible for evaluating the circuit performance for the
generated solution in the optimization loop. In order to facilitate the simulation we used
a generic circuit description and the design variables are parameters in the SPICE netlist.
With this strategy, only a parameter file is necessary to edit for each new evaluation.

The script writes the parameter file and performs a system call to execute the
SPICE simulation. Finally the script reads the output of the SPICE simulation and
calculates the value of each specification of the specific analog circuit.

The HSPICE is the SPICE tool responsible for the simulation in this work because
of its reliability and correct functioning in the technology used. This tool is developed
and maintained by Synopsys (HSPICE, 2010). Another example of commercial SPICE
tool is the Spectre, developed and maintained by Cadence (MARTIN, 2002). There are
other SPICE tools, such as PSpice (TUINENGA, 1995), NgSpice (NENZI; VOGT, 2011)
and LTSpice (MIKKELSEN, 2005), that can be also adapted to our system.
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3.3 Case Study

We selected a case study for demonstrating the application of the proposed metho-
dology. It is based on the bulk-driven operational amplifier proposed by (FERREIRA;
SONKUSALE, 2014) and previously sized with a methodology proposed by (FORTES;
SILVA; GIRARDI, 2018). The operational amplifier schematic is depicted in Figure 6.
The work of (FORTES; SILVA; GIRARDI, 2018) used only nominal simulation for explo-
ring the design space, thus not considering process variation. It means that the generated
solution does not represent an optimum solution under process variability. It also used
ideal current sources, which may not show the actual performance of the proposed system.
Thus, this work intends to include yield analysis in the optimization procedure using real
implementation for the current sources.

Figure 6 – Schematics of a low-voltage bulk-driven OTA

Source: adapted from (FERREIRA; SONKUSALE, 2014).

For evaluating each performance feature of the bulk-driven operational amplifier
it is necessary to execute some procedures. Two types of simulations are necessary for
extracting circuit characteristics: AC simulation for extracting Low frequency Gain, Phase
Margin and GBW; and transient simulation for analysing the behavior of the circuit over
time, in which it is possible to extract the slew rate of the circuit.

𝐴𝑣0 and the GBW are extracted from the output frequency response (Bode dia-
gram). Equation 3.3 describes how 𝐴𝑣0 is calculated:

𝐴𝑣 = 20 · 𝑙𝑜𝑔10(𝑉 𝑜𝑢𝑡/𝑉 𝑖𝑛) (3.3)

Here, 𝑉 𝑜𝑢𝑡 and 𝑉 𝑖𝑛 are the circuit output and input voltages, respectively. The
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voltage gain is a complex function composed of a real (module) and an imaginary (phase)
part. With the module we can extract the absolute low frequency gain and with the phase
we can estimate phase margin. The extraction o GBW occurs at the frequency point in
which the voltage gain is unitary.

The PM is possible calculated with the following equation:

𝑃𝑀 = 180 − 𝑎𝑏𝑠(𝑎𝑛𝑔𝑙𝑒(𝑉 𝑜𝑢𝑡/𝑉 𝑖𝑛)) (3.4)

The 𝑎𝑛𝑔𝑙𝑒 function gets the angle of a complex number. The 𝑎𝑏𝑠 function gets the
absolute value of a real number.

Slew rate (SR) is calculated through transient simulation as:

𝑆𝑅 = 𝑚𝑖𝑛(Δ𝑉 𝑜𝑢𝑡𝑖

Δ𝑡𝑖

,
Δ𝑉 𝑜𝑢𝑡𝑗

Δ𝑡𝑗

) (3.5)

In this case, 𝑚𝑖𝑛 is a function that returns the minimum element, Δ𝑉 𝑜𝑢𝑡𝑖 is the variation
of the output at the rising transition, Δ𝑡𝑖 is the variation of time at the rising transition,
Δ𝑉 𝑜𝑢𝑡𝑗 is the variation of the output at the falling transition and Δ𝑡𝑗 is the variation of
time at the falling transition. Getting the minimum value guarantees the computation of
the worst SR value.

The power consumption is calculated by equation

𝑃𝑐𝑜𝑛𝑠 = 𝐼𝐷𝐷 · 𝑉𝐷𝐷 (3.6)

In this case, 𝐼𝐷𝐷 is the supply current and 𝑉𝐷𝐷 is the supply voltage.
Finally, area is computed as the sum of the gate area (𝑊 · 𝐿) of all transistors.
We can separate circuit specifications in objectives and constraints. We define in

this work 𝑃𝑐𝑜𝑛𝑠, 𝐴𝑣0 and GBW as objective functions to be minimized (maximized). The
remaining performance features are constraints in the optimization problem, such as SR
and PM.

The cost function is the sum of objective functions and constraint functions.
The constraint function contributes zero to the cost function if the obtained result

𝑥𝑖 for the performance feature is greater (smaller) than a reference value 𝑥𝑖. This reference
value is defined by the user. The objective functions continuously contributes positively
to the cost function and decreases the value as the performance function gets smaller
(larger), even if it exceeds the reference.

3.4 Random behavior of the Algorithm

As shown in Section 3.1, the CSA presents a random behavior for calculating
variable step. Because of this, the algorithm may present a different result for the same
specifications, if using different seeds for random number generation.
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Intending to mitigate this issue, it is performed a statistical analysis by executing
many times the algorithm with same initial parameters, and getting different results. 30
executions for the same initial parameters seems to be reliable for demonstrating the
algorithm behavior according to the parameters. This case does not require a very large
number of execution because algorithm maintains a behavior according to the increase of
the parameters.

This work uses the confidence interval applied in the cost results for verifying the
mean deviation. According to this rule, as shown in Chapter 2, we could know the degree
of confidence of the mean in a determined interval (CI, 1987). For this work, a confidence
interval of 95 % is sufficient, considering that this confidence is tested in a total of 49 set
of points.

Also, the empirical rule is responsible to verify the variation of the simulation,
according to its randomness. This rule could guarantees that the mean more two times
standard deviation of a set of points encompass 95% of the incidences.
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4 RESULTS
This chapter is divided in two parts. The first illustrates a statistical analysis of

the CSA varying a parameter, intending to find the best parameters for a practical use of
the tool. The second demonstrates some solutions achieved via the CSA with the defined
parameter.

4.1 Statistic analysis of number of nests

CSA has some parameters that must be adjusted for the given application. The
most important is the number of nests 𝑁 . We tested the algorithm performance for
different number of nests. Considering the algorithm randomness, it returns different
results depending on the random seed. Thus, we performed the optimization search
Thirty times for each number of nests. We varied the number of nests from 10 to 490.
Considering that each search could take several computation hours, we used a step of
10 between the number of nests (in this case: 10, 20, ..., 490 nests). The tool designed
a total of 1470 circuits with different number of nests as parameter and a fixed number
of 50 iterations. The result was produced with simulations using Monte Carlo with 30
samples.

Figure 7 shows the mean cost for each number of nests. The cost tends to decrease
quickly until around 200 nests. Thus, we could select the number of 200 nests as ideal for
this application. However, the average is not always the real value of every simulation.

Figure 7 – Cost function mean behavior according to the number of nests.
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Intending to predict the solution variability of the solution, we measured the costs



40 Chapter 4. Results

standard deviation as illustrated in Figure 8. The standard deviation vary from a 0.12
to 0.24. It presents more variability and lower before approximately 200 nests, and more
close to 0 and stable on the higher number of nests.

Figure 8 – Cost function standard deviation behavior according to the number of nests.
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Knowing the mean and standard deviation, we could estimate the statistical beha-
vior for new samples. According to the empirical rule, 95% of all samples are between
�̄�−2𝜎 and �̄�+2𝜎𝑖. Considering this law, the green and orange lines on Figure 9 show the
�̄�−2𝜎, and �̄�+2𝜎 solution behavior. The result shows that even the best solution, in the
5% of worst results, is worst than the mean of the worst solutions. Thus, in some cases,
even a high number of nests can lead to a bad result. It is the greater problem of the tool.
However, with a large quantity of simulations this problem is mitigated, tending to zero.
Even considering the empirical rule, the mean of a sample might be reliable. Intending to
predict how reliable is the sample, it is possible to use the confidence interval. As detailed
in Chapter 2, according this law, we can predict how reliable is a sample (CI, 1987). The
red and purple lines on Figure 9 demonstrates the behavior of the confidence interval with
95% of confidence in each point. The confidence interval demonstrates that the obtained
mean, compared to the algorithm evolution with more nests, is close to the real mean.

4.2 Study case design and behavior

Considering the behavior of the best cost according the number of nests, we choose
180 nests, because the decrease in the best average cost is practically irrelevant after 180
nests. In addition, 180 nests is not a too large number, consequently it will not slow down
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Figure 9 – Cost function behavior according to the number of nests considering the em-
pirical rule and confidence interval.
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the algorithm convergence. The rest of this section consists in a behavior analysis of the
best, median and worst solutions found for 180 nests, which are the worst, median and
best cases for a practical use of the tool.

Figure 10 illustrates the evolution of the cost function in all three cases (best,
median, and worst cases). Blue line illustrates the cost evolution for the best solution.
It is possible to observe that the cost converge to a value less than 1. Comparing to the
median solution (orange line) it has approximately 50% more cost, and the worst solution
(green line) has approximately 1.8 times more cost. Thus, there are a large difference
between the solution - practically the double of the cost - between the best and the worst
solution. Also, the best solution demonstrates an abruptly decreasing, for less than 1,
after iteration #40, meaning that the algorithm might converge to a good solution after
some iterations with a poor cost.

Table 1 shows each performance specifications compared to (FERREIRA; SON-
KUSALE, 2014) and (FORTES; SILVA; GIRARDI, 2018). The first column is the name
of each specification. The second, fourth and sixth columns shows the mean performance
of the simulated circuits for the best, median and worst solutions, respectively. The third,
fifth and seventh column show the standard deviation of each specification for the best,
median and worst solution, respectively. The eighth column shows results obtained by
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Figure 10 – Cost function evaluation.
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(FORTES; SILVA; GIRARDI, 2018) for the same circuit with nominal simulation. Fi-
nally, the ninth column show the result obtained by (FERREIRA; SONKUSALE, 2014)
using manual sizing. In all instances the area is larger compared to the reference. This
occurs by two main reasons: the area is not considered in the cost function and this work
implements the current sources with real transistors. Compared to Ferreira e Sonkusale
(2014), the best solution of this work has better performance specifications mean in terms
of GBW, PM and 𝑃𝑐𝑜𝑛𝑠 compared to the reference. The 𝐴𝑣0 and SR are worst, however
with a low difference and some instances of the circuits are better in all these specifica-
tions. The median solution has a similar solution compared to the best, however with a
small GBW and one instance has an 𝐴𝑣0 greater than 60 dB. The worst case converged
to a poor solution, with exception the GBW. This solution is worse than the reference.
In this case, the worst solution is infeasible in practice. Considering the used parameters,
the algorithm can converge to an infeasible solution for commercial use. However, the
algorithm explored only 50 iterations. In a real use case, the algorithm could explore for
more time.

Table 2 shows the confidence interval of each specification performance for the
best, mean and worst cases. The calculated confidence interval is for 99.7% of confidence,
i.e., the method presents a finite number of samples to estimate the mean. Thus, the real
mean could differ from the estimated mean. The confidence interval gives a reliability of
99.7% that the real mean is between the bounds. The results present a stable confidence
interval. Even the lower bounds, for all specification performances, present similar solu-
tions compared to the calculated mean. Table 1 shows only the mean and the standard
deviation. Table 2 shows the specifications confidence interval. However, it is not possible
to see the distribution of the simulated circuits.
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Table 1 – Performance indicators.

Best cost
(this work)

Median cost
(this work)

Worst cost
(this work)

Fortes
(2018)

Ferreira
(2014)

Specification mean 𝜎 mean 𝜎 mean 𝜎 nominal measured
Gate Area (𝜇𝑎2) 23892* - 13858* - 24479* - 1719** 1372**
𝐴𝑣0 (dB) 48.22 10.69 42.86 2.32 36.70 5.86 67.64 60.00
GBW (kHz) 3.81 0.65 1.54 0.13 2.84 0.35 7.54 1.88
PM (∘) 59.99 10.15 53.68 7.56 51.59 4.78 88.00 52.50
SR (Δ𝑉/Δ𝑚𝑠) 0.53 0.05 0.67 0.03 0.49 0.08 0.65 0.77
𝑃𝑐𝑜𝑛𝑠 (nW) 8.86 0.22 9.57 0.24 18.19 0.45 10.12 18.00

* Considering the current sources area.
** Not considering the current sources area.

Source: the author

Table 2 – Confidence interval. �̄� is the calculated mean via simulation. 𝐶𝐼𝑙𝑜𝑤 and 𝐶𝐼ℎ𝑖𝑔ℎ

are the bounds for the mean with 99.7% of confidence.
Best cost Median cost Worst cost

Specification 𝐶𝐼𝑙𝑜𝑤 �̄� 𝐶𝐼ℎ𝑖𝑔ℎ 𝐶𝐼𝑙𝑜𝑤 �̄� 𝐶𝐼ℎ𝑖𝑔ℎ 𝐶𝐼𝑙𝑜𝑤 �̄� 𝐶𝐼ℎ𝑖𝑔ℎ

𝐴𝑣0 (dB) 47.22 48.22 49.22 42.65 42.86 43.08 36.15 36.70 37.25
GBW (kHz) 3.75 3.81 3.87 1.53 1.54 1.56 2.81 2.84 2.87
PM(∘) 59.04 59.99 60.94 52.98 53.68 54.39 51.14 51.59 52.04
SR (Δ𝑉/Δ𝑚𝑠) 0.52 0.53 0.53 0.67 0.67 0.68 0.49 0.49 0.50
𝑃𝑐𝑜𝑛𝑠 (nW) 8.84 8.86 8.89 9.55 9.57 9.59 18.15 18.19 18.24

Source: the author

Figure 11 shows the distribution of each performance feature under variability for
the best, median and worst solutions. Figures. 11 (a), (b) and (c) illustrate the PM.
Compared to the reference (FERREIRA; SONKUSALE, 2014) (52.5∘) the best case has
943 instances above the reference, the median 506 and the worst solution 393.

Figures 11 (d), (e) and (f) show the GBW. Comparing with (FERREIRA; SON-
KUSALE, 2014) (1.88 kHz of GBW), the best case has 981 instances with superior per-
formance, the median only 1 and the worst solution 995.

Figures 11 (g), (h) and (i) show 𝐴𝑣0, which is 60 dB on the reference. The best case
has 70 instances with a performance superior to 60 dB and median and worst solutions
have no solution above the reference.

For SR (Figures 11 (j), (k) and (l)), no sample overcame the reference of 0.77
V/ms. However, the best and the median solution achieved a SR close to this value.

Power consumption (Figures 11 (m), (n) and (o)) presented the best results, with
all instances from best and median cases presenting smaller values than the reference of
18 nW. For the worst solution, only 304 instances overcame the reference.

Considering all features, with exception to the slew-rate, 53 instances overcame all
references of (FERREIRA; SONKUSALE, 2014). Disregarding low-frequency gain, 934
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Figure 11 – Distribution performance.
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instances overcame the reference in the best cases.
Figure 12 shows the Bode diagram for the best, median and worst costs. Each

line represents the behavior of one of 1000 simulated operational amplifiers with respect
to frequency. In Bode diagram, the 𝐴𝑣0 is the absolute value (dB) of the gain in low
frequency. The value of the frequency (Hz) crossing the dotted black line represents
GBW. Graphically, the best solution (Figure 12 (a)) appears the most influenced solution
to the variability procedure (having instances with a negative 𝐴𝑣0). This occurs because
some instances converges to a poor solution. Actually there are few instances with this
poor solution and it is compensated on the final cost with greater majority of instances
with a feasible result. The median solution (Figure 12 (b)), demonstrates the most stable
result, however with a poor 𝐴𝑣0 (42.86 dB) and GBW (1.54 kHz) mean. Finally, the
worst solution (Figure 12 (c)) presents a poor and high variability 𝐴𝑣0. However, with a
feasible GBW.
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Figure 12 – Bode diagram of the optimized solution.
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To calculate the PM, it is necessary to measure the phase in the unity gain fre-
quency (dotted black line in Figure 12). Figure 13 shows the phase behavior in the interval
which the module is equals to zero. It is possible to observe that all figures presents a
similar pattern. The best result (Figure 13 (a)) presents the larger phase margin mean
(59.99∘), however with more sensitivity to the variability process (𝜎 = 10.15). Even so,
the other solution demonstrates a similar behavior. The median solution (Figure 13 (b))
presents a mean of 53.68∘, and a bit less sensitive solution (𝜎 = 7.56). Finally, the worst
solution (Figure 13 (c)) demonstrates the stablest solution (𝜎 = 4.78), however with the
worst mean solution (51.59∘).

The SR is calculated as Δ𝑉/Δ𝑚𝑠 on the maximum variation ascending and des-
cending interval. The lowest SR mean the worst result. For this work we consider the
worst result between the ascending and descending points for our SR. Figure 14 shows
the pattern that SR was extracted for the best, median and worst solutions. The best
case (Figure 14 (a)) presents a stable (𝜎 = 0.05) and feasible SR (mean=0.53Δ𝑉/Δ𝑚𝑠).
The median solution (Figure 14 (b)) presents the lower variability (𝜎 = 0.03) and best
solution mean (0.67Δ𝑉/Δ𝑚𝑠), with a small difference of the best solution. Also, the
worst solution is close to the others, with a small variability (𝜎 = 0.08) and a mean of
0.49Δ𝑉/Δ𝑚𝑠.
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Figure 13 – Phase x Frequency.
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Figure 14 – Slew-rate.
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5 CONCLUSION
This work showed the behavior of a method for automatic design of analog integra-

ted circuits under process variability. We abstracted the circuit design as an optimization
problem and used CSA to find a feasible solution.

The methodology uses Monte Carlo simulation in the optimization loop to estimate
circuit performance and calculate yield. Moreover, the analysis varying the number of
nests shows the trade-off between solution quality and computational time. With the
empirical rule and the confidence level, this work shows the statistical behavior of the
method.

Results demonstrate that the tool can be used to design a bulk-driven OTA au-
tomatically, without human interference. The generated result reached a better solution
than a hand-made design.

As future work, we propose the inclusion of a local search around the best solution
found by CSA, intending to refine even more the final result. The generalization of the
tool for other circuits topologies is also important to allow different kinds of circuits to be
optimized. The analysis of the behavior of other optimization algorithms can be important
for future improvements in the search for the best solution. Finally, the exploration of
different sample methods can improve Monte Carlo execution in terms of simulation time,
without losing a significant degree of reliability.
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